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Abstract

In many applications, estimates are required for small sub-populations with so few (or no) sample1

plots that direct estimators that do not utilize auxiliary variables (e.g. remotely sensed data) are2

not applicable or result in low precision. This problem is overcome in small area estimation (SAE)3

by linking the variable of interest to auxiliary variables using a model. Two types of models can4

be distinguished based on the scale on which they operate: i) Unit-level models are applied in the5

well-known area-based approach (ABA) and are commonly used in forest inventories supported6

by �ne-resolution 3D remote sensing data such as airborne laser scanning (ALS) or digital aerial7

photogrammetry (AP); ii) Area-level models, where the response is a direct estimate based on8

a sample within the domain and the explanatory variables are aggregated auxiliary variables,9

are less frequently applied. Estimators associated with these two model types can make use of10

sample plots within domains if available and reduce to so-called synthetic estimators in domains11

where no sample plots are available. We used both model types and their associated model-based12

estimators in the same study area with AP data as auxiliary variables. Heteroscedasticity, i.e.13

for continuous dependent variables typically an increasing dispersion of residuals with increasing14

predictions, is often observed in models linking �eld- and remotely sensed data. This violates the15

model assumption that the distribution of the residual errors is constant. Complying with model16

assumptions is required for model-based methods to result in reliable estimates. Addressing17

heteroscedasticity in models had considerable impacts on standard errors. When complying18
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with model assumptions, the precision of estimates based on unit-level models was, on average,19

considerably greater (29%-31% smaller standard errors) than those based on area-level models.20

Area-level models may nonetheless be attractive because they allow the use of sampling designs21

that do not easily link to remotely sensed data, such as variable radius plots.22

Keywords: Keywords: Forest inventory, model-based inference, synthetic estimator, variance

estimation, image matching

1. Introduction23

Fine-resolution remotely sensed data such as 3D point clouds acquired using airborne laser24

scanning (ALS) or digital aerial photogrammetry (AP) can be utilized for estimating forest pa-25

rameters with individual tree crown approaches (ITC), area-based approaches (ABA), or domain-26

level approaches (DLA). The three approaches can be linked to two model types (unit-level and27

area-level) and their associated model-based estimators in small area estimation (SAE). The aim28

is typically to provide estimates of forest parameters on the level of stands or other domains.29

For example, main outcomes of an inventory using the ABA are stand-level mean timber vol-30

ume estimates resulting from averaging the grid-cell predictions per stand. Today, ITC and31

ABA are commonly applied in operational forest management inventories (Næsset, 2014) while32

domain-level approaches (DLA) have mostly been used in research studies (van Aardt et al.,33

2006; Goerndt et al., 2011).34

Unit-level models are applied in ITC and ABA because the variable of interest and the35

explanatory variables are available on the level of population units such as geo-located trees or36

�eld sample plots (Rao, 2003, Ch. 5.3). Area-level models are applied in DLA if variables of37

interest are estimates based on a sample within a domain (Rao, 2003, Ch. 5.2). The explanatory38

variables in area-level models are obtained by aggregating the auxiliary variables to the domain39

level, for example by calculating the mean of the ALS heights within each forest stand. The40

advantage of area-level models is that no exact geo-locations are required for sample plots which41

can be also of interest in cases where plot coordinates are con�dential. Furthermore, it allows42

the use of plot designs that cannot be exactly matched to remotely sensed data. For example,43

it may be di�cult to link a line transect, as used in distance sampling, to remotely sensed data44

and to tesselate the study area according to the transect as required for unit-level estimators45

(Bäuerle et al., 2009). Similar issues arise with variable radius plots although workarounds may46

be feasible (Kirchhoefer et al., 2017). In that way, area-level models may simplify the use of47
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remote sensing techniques, such as mobile laser scanning (Saarela et al., 2017) or UAV-based48

data acquisitions (Nevalainen et al., 2017), as reference data in larger scale applications.49

Inference in remote sensing-supported forest inventories, i.e. the estimation of a population50

parameter and the associated uncertainty, using unit-level estimators has recently received more51

attention (Mandallaz, 2013; McRoberts et al., 2014; Saarela et al., 2015, 2016; Gregoire et al.,52

2016; Chen et al., 2016; Mauro et al., 2016). Also, area-level estimators are becoming more53

studied (Goerndt et al., 2011, 2013; Boubeta et al., 2015; Magnussen et al., 2017). However,54

unit- and area-level estimators are seldom compared (Hidiroglou and You, 2016). Mauro et al.55

(2017b) compared unit- and area-level estimators in an ALS-supported forest inventory where56

the domains were forest stands aggregated to management units larger than 4 ha. They found57

that the root mean squared errors (RMSE) of area-level estimates were, on average, between 1.358

(Lorey's height) and 2.8 (timber volume) larger than RMSE of unit-level estimates.59

For continuous dependent variables such as timber volume, heteroscedasticity typically man-60

ifests itself as an increasing dispersion of residuals with increasing predictions. It is frequently61

observed in linking models for remote-sensing supported forest inventories (e.g., Rahlf et al.,62

2014; Saarela et al., 2016). Heteroscedasticity may be caused by natural phenomena but can63

also indicate an omitted explanatory variable or a mis-speci�ed model shape (e.g., linear instead64

of curvylinear relationship). How to handle heteroscedasticity in SAE is still an active �eld65

of research and did not receive much attention in area-level estimation. In unit-level estima-66

tion, Militino et al. (2006) used the number of sample units within a domain for considering67

heteroscedasticity. This choice, however, does not allow any synthetic estimates that are often68

required in forest inventories. Mauro et al. (2017b) chose one of three transformations of the most69

important explanatory variable based on goodness of �t criteria and visual inspections of the70

residuals to model the heteroscedasticity. An alternative was suggested by Jiang and Nguyen71

(2012) who assumed that the data come from di�erent super-populations by categorizing the72

sample units into few groups. The mean squared error is then a function of the empirical resid-73

uals within each group. This has, however, the disadvantage that the continuous nature of the74

heteroscedasticity is categorized and the number of super-populations has to be selected.75

The aim of this study was to compare area-level and unit-level models and associated model-76

based estimators in a case study with forest inventory data using AP as auxiliary variables.77

Speci�cally, we analyze the consequences of heteroscedasticity because realistic uncertainty as-78

sessment of estimators associated with area-level and unit-level models depends on compliance79
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with model assumptions. We study the case where several �eld sample plots are available within80

stands which are used in linear models linking the variable of interest with auxiliary information.81

Synthetic estimators, i.e. aggregates of model predictions, are applied in stands without sample82

plots (Breidenbach et al., 2015; Magnussen et al., 2016).83

2. Methods84

2.1. The direct estimator85

The aim is to estimate the population mean of some variable of interest (e.g., timber volume)86

for each of i = 1, . . . ,M domains (small areas). Each domain is composed of j = 1, . . . , Ni87

population units, such that88

Ȳi =
1

Ni

Ni∑
j=1

yij (1)

where yij is the variable of interest of the j-th population unit within the i-th domain and Ni is89

the known number of population units within the i-th domain.90

The estimate is denoted ˆ̄Yi and can be calculated from the sample units (e.g., sample plots)91

for the m ≤M domains (e.g., forest stands). This estimator is denoted direct (D) and is usually92

a Horvitz-Thompson estimate of the mean. Assuming simple random sampling (SRS) within a93

domain, the estimator is given by94

ˆ̄Y D
i =

1

ni

ni∑
j=1

yij (2)

where yij is the j-th sample unit in domain i, i = 1, . . . ,m, j = 1, . . . , ni, and ni is the number95

of sample units within domain i. Its variance is estimated by96

σ̂2i = Fi
s2i
ni

(3)

where97

Fi =
Ni − ni
Ni

(4)

is the �nite population correction that is close to one and can thus be ignored for large populations98

where the sampling fraction fi = ni
Ni

is small, and99

s2i =

ni∑
j=1

(yij − ȳi)2/(ni − 1) (5)
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is the sample variance. Domain totals and their variances can be estimated by multiplying the100

mean estimate with the domain size Ni and the variance estimate with N2
i .101

2.2. Notation for the use of auxiliary variables102

We assume that for each population unit (e.g., pixels or grid cells) a vector of p explanatory103

variables xij , j = 1, . . . , Ni (auxiliary variables), obtained from remotely sensed data, is available104

(wall-to-wall). Consequently, the explanatory variables are available for each sample unit xij , i =105

1, . . . , ni, and can be used in unit-level models (next section).106

The mean of the explanatory variables over all population units within a domain (xij , j =107

1, . . . , Ni) will be denoted x̄iP and can be used for area-level or unit-level estimates on domain108

level. The mean of the explanatory variables over the Ni − ni population units not sampled109

within a domain (xij , j = 1, . . . , Ni − ni) will be denoted x̄iR. In forest inventories, it will often110

be the case that some domains (stands) do not contain any sample plots. Explanatory variables111

for those domains are still available and will be used for so-called synthetic estimates. In this112

case, synthetic estimates are aggregate statistics, such as mean or sum, of the model predictions113

over all population units in a domain.114

Following Rao and Molina (2015), the term variance will be used for design-based estimators115

(i.e., the direct estimator, section 2.1), while the term mean squared error (MSE) will be used for116

model-based estimators which are not necessarily design-unbiased. The square root of variance or117

MSE estimates will be denoted standard error (SE) (Rao and Molina, 2015, p. 187). The software118

implementation of the methods described below is available as an R-package (Breidenbach, 2013).119

2.3. Unit-level models and estimators120

To estimate the population mean (Rao and Molina, 2015, Ch. 7), unit-level estimators use121

the nested-error linking model122

yij = xTijβ + υi + εij , υi∼N(0, σ2υ), εij∼N(0, k2ijσ
2
e), i = 1, . . . ,m, j = 1, . . . , ni (6)

where β is a vector of coe�cients, υi is an independently identically distributed random intercept123

with variance σ2υ which is assumed to be independent of the residuals εij which are assumed to124

be mutually independent with variance σ2e , and kij is a known constant used for capturing125

heteroscedasticity. For kij = 1, the model is suitable for homoscedastic residual variances and all126
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further estimators simplify considerably (Prasad and Rao, 1990; Breidenbach and Astrup, 2012).127

Transformed residuals and standardized residuals (συ- and σe-residuals) can be used to test the128

model assumptions of homoscedasticity and normality (see AppendixA.1.1 for details).129

For large populations and negligible sampling fractions (Battese et al., 1988), the residual130

error mean assumes its expected value (zero) and the EBLUP estimator (empirical best linear131

predictor) of the domain mean is132

µ̂UE
i = x̄TiP β̂ + υ̂i = µ̂US

i + υ̂i (7)

where the superscript UE denotes the Unit-level EBLUP estimator and the superscript US de-133

notes the Unit-level (EBLUP) Synthetic estimator. The synthetic estimator134

µ̂US
i = x̄TiP β̂ (8)

is the mean over all predictions within a domain which makes the estimator applicable for domains135

without samples.136

The weight γ̂i is the ratio of the unexplained among-domain variability (the random-e�ect137

variance, σ̂v) and the total variability138

γ̂i =
σ̂2υ

σ̂2υ + σ̂2e/ai·
(9)

where ai· =
∑ni

j=1 aij and aij = k−2
ij . Under homoscedasticity (kij = 1), ai· reduces to ni. The139

smaller the relative unexplained among-domain variability (i.e., the more variance is explained140

by the �xed part of model (6)), the smaller is γ̂i and the more weight is given to the synthetic141

estimator (i.e., the smaller is the predicted random e�ect υ̂i).142

For domains with small populations (Rao and Molina, 2015, Ch. 7.1.3), sampling fractions143

(fi) can be non-negligible and the EBLUP estimator is given by144

ˆ̄Y UE
i = µ̂US

i + ωi(
ˆ̄Y D
i − µ̂US

i ) (10)

where ωi = fi + (1 − fi)γ̂i and ˆ̄Y D
i is the sample mean (eq. 2). The symbol ˆ̄Y UE

i is used here145

rather than µ̂UE
i because the sample units are considered in the estimate.146

The uncertainty (MSE) of unit-level estimators results from estimating the random e�ects,147
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the �xed model parameters, and the residual error (see AppendixA.1.2 for details).148

2.4. Area-level models and estimators149

In the area-level estimators (Rao and Molina, 2015, Ch. 6), the model that links the auxiliary150

variables to the direct mean estimate is described as a mixed-e�ects model151

ˆ̄Y D
i = x̄TiPβ + biυi + εi, υi∼N(0, σ2υ), εi∼N(0, σ2i ), i = 1, . . . ,m (11)

where υi is a random intercept, bi is a known constant for considering heteroscedasticity and σ2i152

is the variance of the direct estimator. With bi = 1, the model is suited for homoscedastic data.153

The direct estimator ˆ̄Y D
i is based on sample units within a domain such as eq. (2) but can be154

based on any probability sampling design. This allows the use of plot designs that are di�cult155

to link to remotely sensed data on the population unit level. Because of the missing repetitions156

of observations on domain-level, the estimation of the �xed-e�ects parameters β is non-standard157

(see AppendixA.2.1 for details on estimating �xed and random e�ects).158

The area-level EBLUP estimator (superscript AE) (Fay and Herriot, 1979)159

µ̃AE
i = µ̂AS

i + biυi = x̄TiP β̂ + biυi (12)

is the weighted average of the synthetic and a direct estimate such as eq. (2).160

µ̂AE
i = γ̂i

ˆ̄Y D
i + (1− γ̂i)µ̂AS

i (13)

with161

γ̂i =
σ̂2υb

2
i

σ̂2υb
2
i + σ̂2i

. (14)

Here, γ̂i gives more weight to the direct estimate if its variance is relatively small and vice versa.162

The more variance is explained by the �xed part of model (11), the more weight is given to the163

synthetic estimator. The area-level synthetic estimator (superscript AS) can be used for domains164

without observations and is given by165

µ̂AS
i = x̄TiP β̂. (15)

The uncertainty (MSE) of area-level estimators results from estimating the random e�ect166

and the �xed model parameters, and the uncertainty of the direct estimate (see AppendixA.2.2167

for details).168
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3. Case study169

3.1. Overview170

The study area consisted of parts of Vestfold county in south-eastern Norway with a full171

coverage of digital aerial photogrammetry (AP) data. Our aim was to estimate the mean timber172

volume scaled to per-hectare values for each of i = 1, . . . ,m = 64 stands (domains) from which173

between ni = 4 and ni = 7 population units were sampled using �xed-area sample plots. The174

sample plots had an area of 250 m2 and trees were recorded according to the protocol of the175

Norwegian National Forest Inventory (NFI) for temporary plots (Landsskogtakseringen, 2008).176

Single tree volume was predicted from diameter at breast height and tree height recordings177

applying the standard models used in the NFI. Volume per hectare on plot-level was obtained178

by aggregating and expanding the single tree predictions. Uncertainties arising from volume179

models were ignored in this study. Volume per hectare, yij , ranged between 0.0 and 947.8 m3/ha180

on the n =
∑i=64

i=1 ni = 382 sample plots. The stands were sampled from areas with available181

forest management inventories (FMI) in the municipalities of Holmestrand, Lardal, and Stokke182

(Fig. 1).183

A total of 30 stands was selected in Lardal with an aim to take a sample of 7 plots per stand184

(two stands had 6 plots). In Holmestrand and Stokke, 14 and 15 stands were selected with an185

aim to take a sample of 5 plots per stand (two stands had 4 plots). A constrained random sample186

of stand polygons that were delineated in the FMI was selected. The constraints were based on187

area (between 1 and 3 ha in size), and shape (avoidance of stands with a very complex outline) in188

order to simplify the �eld work. More information on the �eld data can be found in Breidenbach189

et al. (2015).190

Potential explanatory variables were the mean and other metrics (McGaughey, 2014) of AP191

heights. The AP metrics were calculated for the sample plots and for square grid cells with192

16 m side length tessellating the study area. The grid cell size was selected to correspond193

approximately with the sample plot size. Image matching was performed using Socet Set 5.5.0194

on digital aerial images with a pixel size of 20 cm that were acquired using a Vexcel UltraCamX195

sensor. More information on the remotely sensed data can be found in Breidenbach and Astrup196

(2012).197

The number of grid cells within a stand Ni ranged from 38 to 159 with a mean of 68 (1.7 ha).198

For 4-7 sample plots per stand, this resulted in sampling fractions of 4%-15% with a mean of199

10% and corresponding �nite population corrections (eq. (4)) of 0.84-0.96 with a mean of 0.90.200
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Figure 1: Left: Location of the study area within Norway (red square). Right: Location of the sample plots
within the forest areas of Holmestrand (orange), Lardal (blue), and Stokke (green).
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3.2. Modeling201

3.2.1. Unit-level models202

The unit-level variable of interest yij in the mixed e�ects model (6) was timber volume203

scaled to per-hectare values observed on the sample plots. Possible e�ects of unequal sampling204

fractions among the stands were ignored when estimating the model parameters. Based on205

previous experience, AP mean height observed on a sample plot (x2ij) and its square (x3ij) were206

the only explanatory variables in models with intercept (x1ij = 1), resulting in p = 3. Restricted207

maximum likelihood was used to estimate the model parameters. The �xed part of the mixed208

models explained more than 74% of the total variation.209

Models ignoring heteroscedasticity (kij = 1, eq. 9) showed clear patterns of increasing variance210

with increasing x values in the residuals (Fig. 2 A and B). The constant kij for considering211

heteroscedasticity a�ects standard errors of estimates, and to a smaller degree, also the estimates212

themselves. Because in�uential observations may have a strong in�uence of the decision, we used213

the following procedure to select kij :214

• The Akaike's information criterion (AIC) was minimized by varying the parameter ξ in215

kij = xξ2ij .216

• Five in�uential observations were removed temporarily from the data set after inspecting217

the συ-residuals (eq. A.1) and σe-residuals (eq. A.2). The sample plot with the largest218

observed timber volume was among the in�uential observations.219

• Minimizing the AIC with the reduced data set still left structures in the residuals. There-220

fore, the harmonic mean of the p-values of Breusch-Pagan tests (Breusch and Pagan, 1979)221

for the squared συ- and σe-residuals was maximized under the constraint that both p-values222

were > 0.05 by varying the parameter ξ in kij = xξ2ij . With p-values > 0.05, the hypothesis223

of homoscedasticity is not rejected given a 95% signi�cance level.224

The optimized value was ξ = 0.48 resulting in Breusch-Pagan p-values of 0.14 and 0.10 for the σv-225

and σe-residuals, respectively. Breusch-Pagan p-values were smaller than 0.05 for the full data226

set with the in�uential observations. Larger values of ξ would have led to a stronger visibility of227

heteroscedasticity in the estimated standard errors but also to structures in the residuals. The228

values of kij ranged from 0.7 to 14.5 with a mean of 8.2. The value of kij is selected based on229

data although it is assumed to be known (Rao and Molina, 2015, Ch. 4.3). Possible in�uences230

on MSE estimators were ignored.231
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In some studies �outliers� are removed in order to meet the model assumptions (Battese et al.,232

1988). The four in�uential observations that were removed temporarily in order to select ξ were,233

however, not outliers because we could not �nd any evidence of data errors. We therefore kept all234

observations in the models but also report results for models without the in�uential observations.235

Although the scaled residuals were approximately symmetrically distributed around zero236

(Fig. 2 C and D), it was not possible to select kij values that would have resulted in normally237

distributed residuals (test: Shapiro-Wilk given a 95% signi�cance level), even after removing the238

in�uential observations.239

For stand-level estimates, the stand-level mean of AP mean height observed on all grid240

cells (x̄2iP ), and the mean of squared AP mean height (x̄3iP ) were calculated. For considering241

small population sizes (eq. (10)), stand-level means need to be calculated also for the non-242

sampled population units (x̄iR, eq. (A.7)). However, the sample plots are circular and not243

aligned with the grid cells. Therefore, for each sample plot the closest grid cell was omitted in244

order to calculate x̄2iR, and x̄3iR. Table 1 summarizes some characteristics of the response and245

explanatory variables. Synthetic estimates (eq. (8)) were generated for the 64 stands with plots246

by assuming that no �eld data were available for them.247

Mean Min Max SD
yij 193.02 0.00 947.80 141.23
x2ij 91.70 0.47 263.73 57.11
x̄2iP 91.73 8.31 201.92 45.75

Table 1: Characteristics of plot-level timber volume (yij , m
3/ha), plot-level AP mean height (x2ij , dm), and

stand-level means of AP mean height observed on all grid cells (x̄2iP , dm).

3.2.2. Area-level models248

The response variable in the area-level model (eq. (11)) was the direct mean timber volume249

estimate of the sample plots ( ˆ̄Y D
i , eq. (2)). The stand-level mean of AP mean height observed250

on all grid cells (x̄2iP ) was the only explanatory variable in models with intercept (x̄1iP = 1)251

such that p = 2. As opposed to the unit-level model, the parameter estimate of the square of252

the AP mean height was not signi�cantly di�erent from 0. Restricted maximum likelihood was253

used to estimate the model parameters.254

The constant bi for considering heteroscedasticity a�ects standard errors of estimates, and to255

a smaller degree, also the estimates themselves. Furthermore, in�uential observations may have256

a strong in�uence on the selection of bi. Models ignoring heteroscedasticity (bi = 1) showed clear257

patterns of increasing variability in the residuals with increasing x̄2iP (Fig. 3 A). However, values258
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Figure 2: Transformed and scaled residuals (see AppendixA.1.1, including in�uential observations) versus pre-
dicted values for the unit-level model with kij = 1 (A and B), and kij = x0.48

2ij (C and D).

12

This is a post-peer-review, pre-copyedit version of an article published in Remote Sensing of Environment. 
The final authenticated version is available online at: http://dx.doi.org/10.1016/j.rse.2018.04.028.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/



of bi in the order of x̄2iP led to numeric instability. Therefore, we used the following procedure259

to select bi:260

• The explanatory variable x̄2iP was transformed (x̄∗2iP ) to the range 0, . . . , 1 and the AIC261

was minimized by varying the parameter ζ in bi = x̄∗2iP + ζ.262

• One in�uential observation was removed temporarily from the data set and scaled random263

e�ects (eq. A.15) were obtained. The in�uential observation was also among the in�uential264

observations in the unit-level model.265

• Minimizing the AIC with the reduced data set still resulted in structures in the residuals.266

Therefore, the harmonic mean of the p-values of Breusch-Pagan and Shapiro-Wilk tests for267

the scaled random e�ects was maximized under the constrain that both p-values were >268

0.05 by varying the parameter ζ in bi = x̄∗2iP + ζ.269

The selected value was ζ = 0.39 resulting in Breusch-Pagan and Shapiro-Wilk p-values of 0.32270

and 0.14, respectively. The Breusch-Pagan p-value was larger than 0.05 for the data set including271

the in�uential observation but the Shapiro-Wilk p-value was smaller than 0.05 (Fig. 3 B). As272

before, we did not have any indication of errors and therefore did not exclude the in�uential273

observation. The values of bi ranged from 0.39 to 1.39 with a mean of 0.82. Possible in�uences274

on MSE estimators due to the selection of bi were ignored.275

3.3. Results276

3.3.1. Comparison of unit- and area-level estimators277

This section gives an overview of the results which are further described in the two following278

sections. Due to the small sample size within stands, results of the design-based direct estimator279

are presented with the area-level estimates.280

Although unit-level and area-level EBLUP estimates at stand-level were similar (Fig. 4),281

their SE di�ered considerably (Fig. 4 and 5). When not considering heteroscedasticity, SE of282

unit-level EBLUP estimates varied unrealistically little, and were on average similar to SE of283

area-level EBLUP estimates where SE increased with increasing estimates. Furthermore, SE of284

synthetic estimates were similar for unit-level and area-level models. However, not considering285

heteroscedasticity strongly violated the model assumption of homogeneity of variance.286

In models where heteroscedasticity was addressed, SE of unit-level EBLUP estimates in-287

creased in parallel with increasing mean estimates but were on average 31% smaller than SE of288
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Figure 3: Scaled random e�ects (including one in�uential observation) versus area-level EBLUP estimates on
stand-level with bi = 1 (A), and bi = x̄2iP + 0.39 (B).

area-level estimates. However, for 11 of the 64 stands, the SE of area-level EBLUP estimates was289

slightly smaller than the SE of unit-level EBLUP estimates. These were typically stands with290

relatively precise direct estimates. SE of unit-level synthetic estimates were consistently and, on291

average, 28% smaller than SE of area-level synthetic estimates.292

The in�uence of heteroscedasticity was hardly visible in SE unit-level and area-level synthetic293

estimates. For unit-level estimates, this is because the contribution of the residual variance294

(k2ijσ
2
e) that models the heteroscedasticity is negligible as it is divided by a large number of grid295

cells (eq. A.11). Therefore, heteroscedasticity is only indirectly accounted for by the uncertainty296

of the �xed parameter estimates. Also for area-level synthetic estimates, heteroscedasticity is297

only accounted for by the uncertainty of the �xed parameter estimates (A.21).298

3.3.2. Unit-level estimators299

Stand-level synthetic estimates (assuming no sample plots within stands, eq. (8)) of mean300

timber volume were similar whether heteroscedasticity was considered (kij = x0.482ij ) or not (kij =301

1) and whether in�uential observations were included in the model or not (Fig. B.6 A). In other302

words, the �xed e�ects estimates di�ered only slightly between the models. EBLUP estimates303

(kij = x0.482ij , all observations) of stand-level timber volume ranged from 6.13 to 437.77 with a304
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Figure 4: Stand-level estimates assuming small populations (SP-EBLUP) based on unit-level models (A) and
area-level models (B). SRS = direct estimates.
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Figure 5: Standard errors versus AP mean height for unit-level (A) and area-level estimates (B).
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mean of 190.83 m3/ha.305

SE increased slightly for models including in�uential observations (Tab. B.7). The fact that306

mean estimates remained similar while standard errors increased made us more con�dent in307

keeping the in�uential observations despite of the formal violation of the assumptions of ho-308

moscedasticity and normality of the residuals.309

SE of mean estimates based on models considering heteroscedasticity or not di�ered drasti-310

cally (Fig. 5 A and Tab. 3) which also resulted in di�erences in the EBLUP estimates (Fig. B.6311

B). Random-e�ect variances of models assuming heteroscedasticity were smaller than of models312

assuming homoscedasticity (Tab. 2), which resulted in larger values of γ̂i and thus more weight313

assigned to the synthetic estimator.314

R2 σ2υ σ2e mean(γi) min(γi) max(γi)
k=1 all obs. 0.75 1437.71 3744.15 0.69 0.61 0.73

k=f(x) all obs. 0.74 943.55 44.86 0.67 0.38 0.98
k=1 sel. obs. 0.75 1401.29 3331.46 0.71 0.63 0.75

k=f(x) sel. obs. 0.75 995.00 41.08 0.69 0.38 0.98

Table 2: Unit-level model characteristics. k=1: no heteroscedasticity; k=f(x): heteroscedasticity considered; all
obs.: all observations; sel. obs.: selected observations (without in�uential observations).

SE of EBLUP estimates assuming homoscedasticity are almost exclusively dependent on the315

number of observations within the stands (eqs. (9) and (A.4)), which made them appear rather316

unrealistic for the given data set. Most of the SE follow two imaginary lines in Fig. 5 A (black317

hollow squares) for stands with 7 sample plots (SE approximately 20 m3/ha) and 5 sample plots318

(SE approximately 23 m3/ha). Deviations from the two lines are visible for four stands with319

6 sample plots (SE between 20 and 23 m3/ha) or 4 sample plots (SE greater than 23 m3/ha).320

Some smaller deviations are caused by the secondary error terms (eqs. (A.5) and (A.6)). The321

in�uence of sample size on SE of EBLUP estimates was visible because the sampling fraction322

within stands was variable. SE of synthetic estimates (the same stands ignoring the sample plots)323

were, on average, almost twice as large as SE of EBLUP estimates (the same stands considering324

the sample plots) and, as expected, increased toward the extremes of the explanatory variable325

(Fig. 5 A, black hollow triangles).326

SE of EBLUP estimates considering heteroscedasticity showed an increasing trend over the327

explanatory variable (Fig. 5 A, red �lled dots) and were, on average, smaller than SE of EBLUP328

estimates assuming homoscedasticity. SE of synthetic estimates considering heteroscedasticity329

(Fig. 5 A, red �lled triangles) exhibited a stronger increase toward the maximum than toward330
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the minimum of the explanatory variable. SE of synthetic estimates were always larger than SE331

for stands with observations but the di�erence decreased with increasing estimates (Fig. 5 A, red332

�lled symbols).333

mean(SE) min(SE) max(SE) mean(SE%) min(SE%) max(SE%)
k=1 all obs. 21.48 20.11 24.45 22.30 5.15 219.86

k=f(x) all obs. 17.42 4.92 25.89 13.55 5.55 100.74
k=1 all obs. synth. 38.64 38.35 40.59 35.09 8.91 199.87

k=f(x) all obs. synth. 31.38 31.08 34.67 25.43 7.51 110.30

Table 3: Standard errors (SE, m3/ha) and relative SE (%) of unit-level estimates. k=1: no heteroscedasticity;
k=f(x): heteroscedasticity considered; all obs.: all observations; synth.: synthetic estimate.

Considering the small population size (eq. 10) had only minor e�ects for most stands (see334

AppendixB.2).335

3.3.3. Area-level estimators336

Direct (SRS) estimates of stand-level timber volume ( ˆ̄Y D
i ) are a part of area-level EBLUP337

estimates (eq. 13), and ranged from 0.6 to 547.6 with a mean of 193.5 m3/ha. Standard errors338

(SE) including �nite population correction (fpc, eq. 4) were on average 2 percentage points (pp)339

smaller than SE not considering fpc (Tab. 4).340

mean(SE) min(SE) max(SE) mean(SE%) min(SE%) max(SE%)
SRS 34.35 0.38 114.47 22.37 8.33 81.33

SRS fpc 32.67 0.37 107.61 21.24 7.85 74.58

Table 4: Standard errors (SE) in m3/ha and SE relative to the estimate (%) of direct estimates (SRS) with and
without �nite population correction (fpc).

Di�erences between mean estimates and SE of area-level EBLUP estimates based on models341

including all observations or omitting one in�uential observation were less than 1%. Results342

for omitting one in�uential observation are therefore not reported. This suggests that a minor343

violation of model assumptions as indicated by test statistics (the null-hypothesis of normal dis-344

tributed residuals was rejected when including one in�uential observation) was of little practical345

relevance. Some model characteristics can be found in Table 5.346

Considering heteroscedasticity (bi = x∗2i + 0.39) or not (bi = 1), had little e�ect on the347

�xed-e�ects parameter estimates β̂ (Fig. B.8 A), however EBLUP estimates (Fig. B.8 B) and348

SE changed considerably (Fig. B.9, Tab. 6). EBLUP estimates considering heteroscedasticity349

ranged from 0.6 m3/ha to 411.0 m3/ha with a mean of 186.8 m3/ha.350

Assuming heteroscedasticity in the model, resulted in almost a doubling of the random-e�ect351

variance (Fig. B.9, Tab. 5), and thus in more weight on the direct estimator (eq. (13)), and352
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consequently a larger SE of EBLUP estimates. This e�ect was most noticable in stands with353

large SE (Fig. B.9 A). For synthetic estimates (assuming observations were not available), the354

SE increased on average by 12 pp (Fig. B.9, Tab. 6).355

In tendency, γ̂i decreased with increasing EBLUP estimates which is the reason for similar356

SE of area-level estimates and direct (SRS) estimates up to direct SE of approximately 30 m3/ha357

(Fig. B.9 B). For the smallest mean estimate, γ̂i was close to 1 such that the EBLUP estimate358

was approximately equal to the direct (SRS) estimate (Tab. 5).359

R2 σ2υ mean(γi) min(γi) max(γi)
b=1 0.78 1116.54 0.57 0.09 1.00

b=f(x) 0.78 2002.78 0.61 0.19 1.00

Table 5: Area-level model characteristics for models including one in�uential observation. b=1: no heteroscedas-
ticity; b=f(x): heteroscedasticity considered.

mean(SE) min(SE) max(SE) mean(SE%) min(SE%) max(SE%)
b=1 RV 23.10 0.37 35.92 17.31 7.39 74.05

b=f(x) RV 25.43 0.37 53.70 17.73 7.61 72.67
b=1 synth. 34.39 33.87 37.31 40.41 8.86 390.72

b=f(x) synth. 45.46 45.01 47.84 53.50 11.33 521.73

Table 6: Standard errors (SE, m3/ha) and SE relative to the estimate (%) of area-level estimates. b=1: no
heteroscedasticity; b=f(x): heteroscedasticity considered; RV: variance of the direct estimate considered; synth.:
synthetic estimate.
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4. Discussion360

Individual tree crown approaches (ITC), area-based approaches (ABA), or domain-level ap-361

proaches (DLA) can utilize explanatory variables obtained from �ne-resolution 3D remotely362

sensed data such as airborne laser scanning (ALS) or digital aerial photogrammetry (AP). The363

three approaches can be linked to two model types (unit-level and area-level) and their associ-364

ated model-based estimators. Unit-level and area-level EBLUP estimators are weighted averages365

of estimators that are exclusively dependent on the �tted linking model (synthetic estimators)366

and estimators that are based on the sample units within a domain. The weight depends on367

the model accuracy which again depends on the quality of the explanatory variables. In a case368

study, unit-level and area-level estimators were used for inference on mean timber volume within369

stands using linear linking models. Adjustments to the described methods would be required if370

non-linear models were to be applied (Rao and Molina, 2015, Ch. 4.6).371

Satisfying all model assumptions (e.g., homogeneity of variance, normality of residual disper-372

sion) using real data can be di�cult as we learned from our case study. However, small deviations373

from model assumptions may be inconsequential. For important decisions that require large ac-374

curacy, investing more in �eld sample plots deserves consideration. Due to their robustness375

against model-misspeci�cation, model-assisted (design-based) estimators (e.g. Mandallaz, 2013;376

McRoberts et al., 2014) may be an interesting alternative to the model-based estimators used377

here if su�cient sample sizes per domain are available.378

As observed in other studies (Hidiroglou and You, 2016; Mauro et al., 2017b), mean estimates379

from unit-level and area-level estimators can be similar. Furthermore, when satisfying the model380

assumptions unit-level estimators, on average, result in smaller standard errors (SE) than area-381

level estimators and SE decrease with domain size which is an intuitive property (Breidenbach382

et al., 2015). Furthermore, unit-level models can be used to generate sub-domain maps of forest383

resources. For these reasons, unit-level estimators may be preferred over area-level estimators, if384

the data a�ord their use.385

However, the �eld data acquisition for area-level estimators can be considerably cheaper than386

for unit-level estimators, because exact sample locations are not required and e�cient plot designs387

such as variable radius plots can be used without compromising the link to remotely sensed data.388

The reduced costs per sampling unit can be used toward a larger �eld sample which, in turn,389

may improve the precision of area-level estimates relative to unit-level estimates under a given390

budget.391
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Heteroscedasticity has a strong in�uence on the SE of unit-level and area-level estimates. If392

observed, it should be considered in the models to avoid violated assumptions and unrealistic SE.393

However, selecting the constants kij (unit-level) and bi (area-level) for considering heteroscedas-394

ticity is a delicate matter because they a�ect standard errors of estimates and, to a smaller395

degree, also the estimates themselves. Therefore, we based the selection of these constants on396

objective methods that aim at ful�lling the model assumptions. Based on a visual inspection of397

residuals, Mauro et al. (2017b) selected similar values for the constants kij of unit-level models398

for estimating timber volume.399

While the challenge of the chosen method for considering heteroscedasticity in unit-level400

models is to select an adequate value of the constant kij , the challenges of an alternative method401

proposed by Jiang and Nguyen (2012) is that the continuous nature of the heteroscedasticity402

is categorized and the number of categories has to be selected. Transformation of the response403

variable is another method that can help meeting model assumptions (e.g. Næsset, 1997). Infer-404

ence on domain means using transformed variables would, however, require modi�cations to the405

methods used here due to the required back-transformation (Rao and Molina, 2015, p. 140).406

Considering heteroscedasticity in SAE deserves more attention. A reason for the limited407

attention to this topic in area-level estimators is that heteroscedasticity is naturally included408

because of their relation to the direct estimator. Furthermore, synthetic estimates using area-level409

estimators are often not considered when observations are available for each domain (Hidiroglou410

and You, 2016; Molina and Marhuenda, 2015). However, in forest inventories, the majority411

of stands may not contain any sample plots due to small sampling fractions and thus require412

synthetic estimates.413

Remotely sensed data play a pivotal role in the discussed methods as they provide auxiliary414

information which are highly correlated to the variables of interest. Without the availability of415

auxiliary information, synthetic estimates (for stands without sample plots) would be of little416

practical relevance. With the availability of remotely sensed data that are less closely related417

to the variables of interest than the AP data we had available (for example Landsat images),418

synthetic estimates need to be used with care as they can have large systematic errors. Due to419

the advantages of coarser-resolution remotely sensed data, such as easier data handling, they may420

nonetheless be useful, especially for estimates on larger scales. With the availability of remotely421

sensed data that are more closely related to the variables of interest than the AP data we had422

available, issues of heteroscedasticity may be reduced.423
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To exploit remotely sensed data for estimation of volume and biomass we need auxiliary424

information that provide information proxies for stand structures related to densities of volume425

and biomass. Canopy height metrics and metrics related to canopy density, as provided by 3D426

remotely sensed data such as ALS and AP, are therefore key. But of course, environmental427

auxiliary information may also be useful, but typically more so the stronger the environmental428

gradients within the study region are expressed. For example, exposure and elevation can be429

useful predictors, but only when the vegetation is strongly in�uenced by these factors and if430

other auxiliary information (such as 3D remotely sensed data) have not already explained the431

variation in the vegetation. In sum, the scale of the study, and the study environment dictates432

the utility of the available auxiliaries.433

5. Conclusions434

The following conclusions can be drawn from this study. i) If present, including heteroscedas-435

ticity in models used for unit- and area-level SAE is important for obtaining realistic measures436

of precision. ii) SAE under heteroscedasticity should be studied more, especially for area-level437

estimation. The same is true for synthetic estimation in domains without samples, which is438

uncommon in area-level SAE. iii) On average, unit-level estimates can be expected to be more439

precise than area-level estimates. However, if the direct estimate (based on sample units only)440

has high precision (e.g., due to su�cient number of sample units and small variability such as in441

young stands), area-level estimates can have greater precision than unit-level estimates. iv) The442

use of digital aerial photogrammetry data considerably improved the precision of estimates.443
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AppendixA. Methods561

AppendixA.1. Unit-level EBLUP estimators562

AppendixA.1.1. Transformed and scaled residuals563

The transformed residuals (συ-residuals) are given by564

uij =
(yij − τ̂ ˆ̄Y D

i )− (xij − τ̂ x̄i)T β̂
kij

(A.1)

with τ̂ = 1 −
√

1− γ̂ where γ̂ = σ̂2
υ

σ̂2
υ+σ̂

2
e
and x̄i is the sample mean of the explanatory variables565

(Militino et al., 2006). The standardized residuals (σe-residuals) are given by566

εij =
eij
kij σ̂e

(A.2)

where eij is an empirical residual.567

AppendixA.1.2. Estimating uncertainty568

For large populations (Rao and Molina, 2015, Ch. 7.2), the (unconditional) MSE is estimated569

as the sum of three terms570

M̂SE(µ̂UE
i ) = g1i + g2i + 2g3i (A.3)

where571

g1i = (1− γ̂i)σ̂2υ (A.4)

describes the in�uence of the random-e�ect variance (Militino et al., 2007). Because g1i is the572

leading term (has the most in�uence on the MSE) and due to the structure of γ̂i (eq. 9), the573

variability of the MSE among domains is almost exclusively a�ected by the number of samples574

within a domain (ni) in the case of homoscedasticity (kij = 1).575

The term g2i describes the uncertainty due to the estimation of the �xed-e�ects parameters576

β577

g2i = (x̄iP − γ̂ix̄ia)T Ĉov(β̂)(x̄iP − γ̂ix̄ia) (A.5)

where x̄ia =
∑ni

j=1 aijxij/ai· is the weighted sample mean of the explanatory variables and578

Ĉov(β̂) is the covariance matrix of the estimated �xed-e�ect parameters β̂.579
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The term g3i describes the uncertainty due to the estimation of σ2υ and σ2e580

g3i =
σ̂4eV υ + σ̂4υV e − 2σ̂2e σ̂

2
υV υe

a2i·(σ̂
2
υ + σ̂2eai·)

3
(A.6)

where V υ, V e and V υe are the asymptotic variance and covariance estimates of σ̂2υ and σ̂2e ,581

respectively.582

For small populations (Rao and Molina, 2015, Ch. 7.2.3), the MSE is estimated by583

M̂SE( ˆ̄Y UE
i ) = (1− fi)2M̃SE(µ̂UE

i ) + g4i (A.7)

where584

M̃SE(µ̂UE
i ) = g1i + g̃2i + 2g3i. (A.8)

g̃2i is obtained by substituting the population mean of the explanatory variables x̄iP with the585

mean of the the explanatory variables of the non-sampled population units x̄iR in g2i (eq. A.5).586

The fourth component of the MSE estimate considers the residual error variance587

g4i = g∗4iσ̂
2
e (A.9)

where588

g∗4i =
kTiRkiR
N2
i

(A.10)

is the proportion to which the residual error variance is incorporated into the MSE, with kiR as589

the vector of constants for considering heteroscedasticity of the non-sampled population units.590

Under homoscedasticity, the term g∗4i reduces to g
∗
4i = N−2

i (Ni − ni) which means that it is not591

necessary to know which population unit is part of the sample in that case. The term g4i can592

also be used to consider spatial autocorrelation (Mauro et al., 2017a; Breidenbach et al., 2015),593

which is, however, outside the scope of this study.594

The MSE of the synthetic estimator (eq. 8) results from595

M̂SE(µ̂US
i ) = g1i + g2i + g4i (A.11)

by setting γ̂i := 0 and noting that kiR = kiP and ni = 0 in g4i (eq. (A.9)). Under homoscedas-596
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ticity, g4i reduces to597

g4i =
σ̂2e
Ni

(A.12)

(McRoberts, 2006; Breidenbach et al., 2015). From this form of the component g4i it becomes598

clear how quickly the in�uence of the residual error variance reduces with domain size and that599

g4i can be ignored for large populations.600

AppendixA.2. Area-level EBLUP estimators601

AppendixA.2.1. Estimating model parameters602

The �xed model parameters are estimated by603

β̂ =

(
m∑
i=1

x̄iP x̄
T
iP

ϑ̂

)−1( m∑
i=1

x̄iP
ˆ̄Y D
i

ϑ̂

)
(A.13)

where ϑ̂ = σ̂2i + σ̂2υb
2
i is the estimated total model variance (Rao and Molina, 2015, Ch. 6.1.1).604

The random e�ects are indirectly estimated by605

υ̂i =
ˆ̄Y D
i − µ̂AE

i

bi
(A.14)

and scaled random e�ects result from606

ϕ̂i =
υ̂i
σ̂2υ
. (A.15)

AppendixA.2.2. Estimating uncertainty607

The MSE of area-level estimates as described by Fay and Herriot (1979) can be estimated by608

adding the terms609

M̂SE(µ̃AE
i ) = g1i + g2i + 2g3i (A.16)

where610

g1i = (1− γ̂i)σ̂2υ (A.17)

re�ects the uncertainty in the random e�ect,611

g2i = (1− γ̂i)2x̄TiP Ĉov(β̂)x̄iP (A.18)

re�ects the uncertainty in the �xed model parameter estimates β̂, and612

g3i = σ̂4i (σ̂
2
i + σ̂υ)−3V υ (A.19)
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re�ects the uncertainty due to estimating the random e�ect, where V υ is the asymptotic variance613

of the random e�ect.614

The assumptions in the MSE estimator (A.16) include that the variance of the direct estimate615

is known without uncertainty. In practice, the variance σ̂2i is estimated (i.e., is not known without616

uncertainty) and is either directly plugged-in to (A.16) as described in the equations above or617

after smoothing. However, Wang and Fuller (2003) described general estimators for area-level618

models where the assumptions about known model parameters are relaxed. Similarly, Rivest619

and Vandal (2003) developed estimators for the special case where the direct estimate is based620

on unit-level samples as in our case study. To account for the uncertainty in the variance of the621

direct estimate σ̂2i , an additional term is added to the MSE estimator (A.16)622

M̂SERV (µ̂AE
i ) = M̂SE(µ̂AE

i ) + 2(σ̂2υ + σ̂2i )
−3σ̂4υ δ̂ (A.20)

where δ̂ = 2σ̂4i /(ni − 1).623

For domains without samples, the variance of the synthetic estimate (Rao and Molina, 2015,624

Ch. 6.2.2) is the sum of the random e�ect variance estimate and the uncertainty in the model625

parameter estimates626

M̂SE(µ̃AS
i ) = g1i + g2i (A.21)

by setting γ̂i := 0.627

AppendixB. Results628

AppendixB.1. Unit-level EBLUP estimates629

AppendixB.2. Unit-level EBLUP estimates for small populations630

For small populations, the samples have to be considered in the EBLUP estimates (eq. 10).631

The latter were therefore more variable (Fig. B.7 A) than estimates assuming large populations.632

EBLUP estimates of stand-level timber volume ranged from 3.35 to 440.89 with a mean of 190.35633

m3/ha. Furthermore, the residual error term has to be considered in the standard errors (eq. A.7)634

which had di�erent e�ects for models considering heteroscedasticity or not (Fig. B.7 B and635

Tab. 3). For models assuming homoscedasticity, the standard errors were generally smaller when636

considering the sampling fraction. For models considering heteroscedasticity, the standard errors637

for small populations were often smaller for x2ij < 100 dm, but in tendency larger otherwise. The638

reason for this di�erence is that the residual error term receives more weight for larger estimates639
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Figure B.6: Mean timber volume estimates using unit-level models for 64 stands. Synthetic estimates (A) using
all observations or selected observations (omitting in�uential observations). EBLUP estimates (B).

due to heteroscedasticity which counter-acts the reduction of the SE by considering the sampling640

fraction (eq. (A.7)).641

mean(SE) min(SE) max(SE) mean(SE%) min(SE%) max(SE%)
k=1 all obs. 21.48 20.11 24.45 22.30 5.15 219.86

k=f(x) all obs. 17.42 4.92 25.89 13.55 5.55 100.74
k=1 sel. obs. 20.61 19.17 23.43 22.45 5.24 247.70

k=f(x) sel. obs. 17.29 4.72 25.84 13.28 5.55 95.35
k=1 all obs. synth. 38.64 38.35 40.59 35.09 8.91 199.87

k=f(x) all obs. synth. 31.38 31.08 34.67 25.43 7.51 110.30
SP k=1 all obs. 20.79 18.95 24.22 21.49 4.96 214.06

SP k=f(x) all obs. 17.18 5.01 25.96 13.30 5.50 95.74

Table B.7: Standard errors (SE, m3/ha) and relative SE (%) of unit-level estimates. k=1: no heteroscedastic-
ity; k=f(x): heteroscedasticity considered; all obs.: all observations; sel. obs.: selected observations (without
in�uential observations); synth.: synthetic estimate; SP: considering small population size.
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Figure B.7: EBLUP estimates assuming small populations (SP-EBLUP) and EBLUP estimates (A). Standard
errors of EBLUP estimates (B).
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Figure B.8: Mean timber volume estimates using area-level models for 64 stands. Synthetic estimates (A), EBLUP
estimates (B).

AppendixB.3. Area-level estimates642

SE of estimates considering the variance of the direct estimator (M̂SERV (µ̂AE
i )) were similar643

but slightly larger than SE not considering the variance of the direct estimator (M̂SEFH(µ̂AE
i ))644

(Tab. B.8).645

mean(SE) min(SE) max(SE) mean(SE%) min(SE%) max(SE%)
b=1 FH 21.44 0.37 34.38 16.33 6.96 74.01

b=f(x) FH 23.45 0.37 51.48 16.62 7.28 72.65
b=1 RV 23.10 0.37 35.92 17.31 7.39 74.05

b=f(x) RV 25.43 0.37 53.70 17.73 7.61 72.67
b=1 synth. 34.39 33.87 37.31 40.41 8.86 390.72

b=f(x) synth. 45.46 45.01 47.84 53.50 11.33 521.73

Table B.8: Standard errors (SE, m3/ha) and SE relative to the estimate (%) of area-level models. b=1: no
heteroscedasticity; b=f(x): heteroscedasticity considered; FH: variance of the direct estimate not considered; RV:
variance of the direct estimate considered; synth.: synthetic estimate.
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Figure B.9: Standard errors (SE) versus AP mean height for area-level estimates including all observations (A)
and SE of EBLUP estimates vs SE of direct estimates (B).
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