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ABSTRACT 
 

Projected climate change scenarios such as frequently occurring dry summer spells  are an enormous  threat to  the 

health of  boreal conifer forests. We  identified visible features indicating wood with tracheids predisposed  for 

hydraulic and mechanical dysfunction in Norway spruce, suggest why this is formed during severe summer drought 

and hypothesised on mechanism that would cause tracheid collapse and stem cracks. 

Trees from southern Sweden that showed signs of severe reaction to drought, i.e. stem cracks along the trunk, 

were compared to healthy, undamaged trees. Rings investigated included those formed in 2006, a year with an 

extremely dry summer  season in the  study region. In southern Norway, we investigated trees with and with-    out 

drought-induced top dieback symptoms. We analysed anatomical features such as tracheid lumen diameter, 

thickness of cell wall and its various layers (S1, S2 and S3), applied Raman imaging in order to get information on 

the lignin distribution in the cell wall and the compound middle lamellae and performed hydraulic flow and 

shrinkage experiments. 

Although tracheids in annual rings  with signs  of collapse had higher tangential lumen diameters than  those in 

“normal” annual rings, we conclude that collapse  of tracheid  walls depends  mainly on wall thickness,  which is 

genetically determined to a large extent. Spruce trees that produce earlywood with extremely thin cell walls  can 

develop wall collapse and internal cracks under the impact of dry spells. We also present a new diagnostic tool for 

detecting individuals that are prone  to cell wall collapse  and stem cracks:  Lucid bands,  i.e.  bands  in  the fresh 

sapwood with very thin cell walls and inhomogeneous lignin distribution in the S-layers and the com- pound middle 

lamellae that lost their hydraulic function due to periods of severe summer drought. The detection of genotypes 

with lucid bands could be useful for an early selection against individuals that are prone to stem cracks under the 

impact of severe summer drought, and also for early downgrading of logs prone to cracking during industrial kiln 

drying. 

https://doi.org/10.1016/j.foreco.2017.11.051


 

 

 
 

1. Introduction 

 
Boreal conifer forests play an important role in the national and 

rural economy of Nordic countries (Schlyter et al., 2006) and provide 

also important ecosystem services, such as climate regulation by atmos- 

pheric carbon fixation (Gauthier et al., 2015; Stinziano et al., 2015; 

McDowell et al., 2016). Conifer forests of the northern hemisphere can 

react to warming by increased growth (Kauppi et al., 2016) and some 
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might still have sufficient resilience to cope with the current temper- 

ature increase (Kapeller et al., 2017). Several studies underline how- 

ever that the prognosticated climate change scenarios (IPCC, 2013) in- 

dicate serious threats to the health of boreal conifer forests (Gauthier et 

al., 2015; Allen et al., 2015; McDowell et al., 2016). High vulnerabil- 

ity is especially expected for species such as Norway spruce (Picea abies 

L. Karst.), in particular when it is grown at the margins of its natural 

range or cultivated outside its realized niche (Seidl et al., 2017). Nor- 

way spruce is an autochthonous species of the alpine timberline (Mayr 

et al., 2003; Mayr et al., 2014) and of high latitude northern regions 

(Solberg, 2004; Andreassen et al., 2006; Kapeller et al., 2017), but it 

has also been widely planted in low elevation regions of Central Eu- 

rope where increased vulnerability to climate change is expected (Seidl 

et al., 2017), in particular if summer precipitation would continuously 

decrease (Spinoni et al., 2017). In that regard, Norway spruce forests 

planted at the margins of its natural range become increasingly endan- 

gered; first hints into this direction are reports of tree mortality after 

summer droughts in southern Norway (Solberg, 2004; Hentschel et al., 

2014; Rosner et al., 2016b), representing the most southern distribution 

of European high latitude Norway spruce forests (Caudullo et al., 2016). 

In general, conifer species have quite high hydraulic safety margins 

compared to angiosperms; conifer’s P50, i.e., the water potential caus- 

ing 50% conductivity loss, were found to be much lower than mini- 

mum water potentials measured on a seasonal basis (Choat et al., 2012). 

However, conifers are also vulnerable to high conductivity losses be- 

cause they are supposed to have little capacity to restore a hydraulically 

functional state after severe summer droughts (McDowell et al., 2008; 

McDowell, 2011; Meinzer and McCulloh, 2013; Zwieniecki and Secchi, 

2015). High hydraulic safety in conifers is achieved by structural modi- 

fications in pit membrane design (torus overlap; i.e. the ratio of torus to 

pit aperture diameter), cell wall thickness and lumen diameters of the 

tracheids (Bouche et al., 2014). The conduit wall reinforcement ((t/b)2), 

defined as the second power of the double wall (t) to lumen (b) ratio, 

was introduced by Hacke et al. (2001) as a proxy for P50. A first prereq- 

uisite for high hydraulic safety is a safe cell design with smaller lumen 

and/or thicker walls in order to resist implosion when the mechanical 

stresses increase with increasing negative xylem water potential prior to 

embolism. (t/b)2 proved as a good predictor for P50 in empirical stud- ies 

performed within- (Rosner et al., 2016b) and across conifer species 

(Bouche et al., 2014). As these risks are highest in earlywood, tracheid 

dimensions for calculation of t/b have been assessed either in the first 

tangential files of earlywood (Rosner et al., 2009), in the whole early- 

wood (Bouche et al., 2014, Rosner et al., 2016a), or along the whole 

radial file across an annual ring, excluding tracheids that show high de- 

viation from a calculated hydraulic diameter (Mayr and Cochard, 2003; 

Domec et al., 2009; Hacke and  Jansen,  2009;  Hereş et al.,  2014). Re- 

cently, Rosner et al. (2016b) found that (t/b)2 calculated from tangential 

lumen diameters was more strongly related to P50 than (t/b)2 based on the 

mean- or radial lumen diameter. 

Generally, embolism of conifer tracheids is suggested to occur long 

before walls of normal cells would implode (Bouche et al., 2014). In 

Pinus radiata, collapse was found under the impact of extreme drought 

stress in poorly lignified tracheids of young trees grown in lysimeters 

(Barnett, 1976), due to suppression of 4-coumarate-coenzyme A lig- ase 

(Wagner et al., 2009), and in deformed trees that had copper de- ficiency 

(Downes and Turvey, 1990). Glerum (1970) observed drought rings with 

signs of collapse in Picea glauca seedlings exposed to arti- ficially 

induced severe drought. Reversible collapse has been reported in 

(transfusion) tracheids of conifer needles (Cochard et al., 2004; Brodribb 

and Holbrook, 2005; Zhang et al., 2014). In angiosperms, col- lapse in 

xylem of vascular bundles has been found in mutants of Ara- bidopsis 

(Turner and Somerville, 1997; Carpita and McCann, 2015), in xylem 

vessels of maize (Kaufmann et al., 2009), in conductive elements 

of leaf veins of red oak (Zhang et al., 2016) and in sapwood of trans- 

genic poplars (Kitin et al., 2010). Sudden imbalances in free water when 

trees are hit by lightning may also lead to a sudden tracheid wall col- 

lapse (Wimmer, 2002). 

In the present study, we focus on signs of extreme reaction to sud- 

den dry summer spells in the wood of Norway spruce trees grown in 

southern Scandinavia. Although tracheid collapse has only been ob- 

served after extreme, often artificially induced, climate conditions, or in 

mutants, the question arises if this phenomenon will become a prob- lem 

in the near future under the impact of more frequent, intensive drought 

spells. Another phenomenon associated with extreme summer drought 

are cracks which can run for up to several meters along a tree trunk and 

cause severe economic losses (Caspari and Sachsse, 1990; Persson, 

1994; Ferenczy and Tomiczek, 1996). Internal cracking in liv- ing trees 

is suggested to develop in low density wood (Grabner et al., 2006); such 

wood might also be prone to cell wall collapse. The aims of this study 

were (a) to investigate tracheid collapse in Norway spruce wood and (b) 

to increase our understanding of the anatomical predis- position and 

mechanisms behind tracheid collapse. We screened annual rings of ten 

trees that showed signs of severe reaction to drought stress, 

i.e. stem cracks along the trunk, and 64 healthy undamaged trees from 

three sites in southern Sweden. Annual rings from one site included 

those formed in 2006, a year with the hottest July in Lund (southern 

Sweden) since recording started in 1859 (SMHI). In southern Norway, 

we investigated 110 trees with symptoms of top dieback (induced by 

drought) and 110 healthy looking trees grown on eleven different sites. 

Annual rings of 242 trees were scanned for abnormities such as col- 

lapsed cell walls or density variations. “Normal” wood and wood with 

collapsed cells were compared by qualitative and quantitative anatomi- 

cal investigations on the tissue- (X-ray wood density, scanning electron 

microscopy (SEM)), the tracheid- (maceration, light microscopy, SilviS- 

can (Evans 1994, 1999)) and cell wall level (transmission electron mi- 

croscopy (TEM), Raman imaging). Differences in the physiological func- 

tioning of wood without- and with signs of collapse were tested by hy- 

draulic flow- and shrinkage experiments. We hypothesize that (a) wall 

collapse occurs in trees that showed stem cracks, (b) that the thickness 

of tracheid walls rather than the lumen diameter is the main anatom- ical 

character associated with tracheid collapse, and (c) that the col- lapse 

causes irreversible mechanical and hydraulic dysfunction of the 

sapwood. In order to test our hypotheses we performed anatomical in- 

vestigations on the tissue-, tracheid-, and cell wall level and carried out 

hydraulic experiments. 

 

2. Material and methods 

 
2.1. Plant material 

 
An overview on the tree sample sets is given in Supplement Table 1 

and Supplement Fig. 1. The study is based on plant material from a se- 

ries of samplings of Norway spruce trees in southern Sweden and south- 

ern Norway, including also wood specimens from earlier studies (Rosner 

et al., 2008, Rosner et al., 2016b). 

From an existing sample set (Rosner et al., 2008), specimens from 52 

healthy Norway spruce trees were available for additional anatomical 

analyses (SET 1, Supplement Table 1, Supplement Fig. 1). The sample 

set comprised six clones growing at two sites in southern Sweden with 

different water availability (Tönnersjehöden and Vissefjärda). SilviScan 

technology was applied on 95 sapwood specimens from these trees in 

order to investigate genetic and site predisposition of cell wall thickness. 

In June 2008, 22 Norway spruce trees were selected from a clone 

archive in Ekebo, located in southern Sweden (SET 2a and SET 2b, 

Supplement Table 1, Supplement Fig. 1). We selected ten Norway spruce 

clones with visible cracks along the trunk (Fig. 1a) and ten 



S. Rosner et al. Forest Ecology and Management xxx (2017) xxx-xxx 

3 

 

 

PR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Norway spruce clones prone to stem cracking. Cracks (indicated by red arrows) can develop several meters along the main trunk (a); after the development of a crack, trees are 

often invested by fungi (b). A lucid band within the conducting sapwood is indicated by a blue arrow in image (b); the band does not run continuously around the whole perimeter. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
 

healthy, undamaged, clones. Most of the clones (73%) with visible 

cracks were infested by pathogenic wood destroying fungi such as 

Stereum sanguinolentum or Heterobasidion spp. (Ferenczy and Tomiczek, 

1996) and apparently only the outermost annual rings were capable of 

conducting water (Fig. 1b). In Fig. 1b an extreme example is shown. The 

sample set (SET 2a, Supplement Fig. 1) comprised also two younger 

trees (age = 15 years), one clone non-susceptible to stem cracking and 

one susceptible clone, which showed nevertheless no signs of cracking 

at the time of harvesting. In total, eleven clones susceptible- and eleven 

clones not susceptible to stem cracking were selected at Ekebo site. 

Trees from southern Norway came from eleven different sites. We 

investigated in total 220 trees at a field age of 30–70 years (SET 3a and 

SET 3b, Supplement Table 1, Supplement Fig. 1). Within an area of 250 

m2, ten trees with symptoms of top dieback and the nearest healthy 

looking neighbour with a quite similar size were selected. From two of 

the sites, Sande and Hoxmark (SET 3a), not only wood cores were taken, 

but 24 trees were harvested in September 2011 (Rosner et al., 2016b). 

 
 

2.2. Sampling 

 
From trees harvested at Ekebo, southern Sweden (SET 2a and SET 

2b, n= 22, Supplement Table 1), wood discs were sawn at breast 

height (1.3 m above the soil). Two wood cores (12 mm in diameter) 

per tree were taken at breast height of 20 individuals from each of the 

eleven sites selected in southern Norway (SET 3a and SET 3b, n= 220, 

Supplement Table 1). In addition, at Sande and Hoxmark, 30 mm thick 

wood discs weretakenfromthe living crown offelled trees (n= 24, part 

of SET 3a). Directly after harvesting or coring, all sapwood specimens 

were transported to BOKU, Vienna, in plastic bags containing some fresh 

water and 0.01 vol% Micropur (Katadyn Products Inc.). Specimens were 

stored at −18 °C. Sapwoodsamplesobtainedfromfelledtrees atEkebo 

were directly after harvesting in the field examined with the naked eye 

for abnormalities such as bands with a lighter colour than the adjacent 

sapwood colour (Figs. 1b and a). 

Sampling of the sapwood specimens (Supplement Table 1, SET 1) 

from the Tönnersjehöden and Vissefjärda sites is described in Rosner et 

al. (2008); in the present study we analysed 95 sapwood beams origi- 

nating from 52 trees. 

Care was taken that none of the wood specimens used in this study 

contained any reaction wood or traumatic tissue. 

 
2.3. Sapwood hydraulic staining experiments of specimens with lucid bands 

 
Hydraulic staining experiments were performed in July 2008 on de- 

frosted, never dried, sapwood samples from young healthy trees har- 

vested in Ekebo, southern Sweden. Freeze-storage for some weeks has 

no impact on hydraulic conductivity or vulnerability of Norway spruce 

sapwood (Mayr et al., 2003; Rosner et al., 2006). Wood specimens (6 

mm (radial) × 6 mm (tangential) × 100 mm (longitudinal)) produced with 

a chisel were fully saturated under low vacuum (Hietz et al., 2008), fo- 

cusing on samples containing one complete annual ring with wood that 

had a band of lighter (almost white) colour than the surrounding early- 

wood of the adjacent rings, hereafter termed “lucid band” (Supplement 

Fig. 2, Fig. 2a). Flow experiments were performed with 1% solution (w/ 

v) Phloxine-B ((Sigma Chemical Co., St. Louis, MO, USA)) under a hy- 

draulic pressure head of 80 cm, i.e. 8 kPa, (Hietz et al., 2008). 

 
2.4. Wood shrinkage during dehydration of normal wood and wood with 

lucid bands 

 
Experiments were performed on defrosted, never dried, sapwood 

samples originating from two young healthy trees harvested in Ekebo, 

southern Sweden. Wood shrinkage measurements were performed as 

described in Rosner et al., (2009). Radial wood shrinkage was as- sessed 

by a load cell (DMS, Type 8416–5500, range 0–500 N; ampli- fication 

with an inline amplifier for DMS, Type 9235; Burster, Gerns- bach, 

Germany). Sensors were positioned on the tangential face  of fully 

saturated small sapwood beams (6 mm tangential, 6 mm radial and 100 

mm longitudinal) using an acrylic resin clamp assemblage. The whole 

clamp assemblage was positioned on a balance (resolution 



S. Rosner et al. Forest Ecology and Management xxx (2017) xxx-xxx 

4 

 

 

UN 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. Phloxine B staining experiment of a lucid band (LB) in Norway spruce sapwood 

(annual ring 2006) from Ekebo (southern Sweden). In the never dried and fully saturated 

state, the LB regions have a lighter, almost white, colour compared to the surrounding 

wood (a); LB remain unstained when flow experiments with the Phloxine B solution are 

performed. The transverse view is shown in (b), the radial longitudinal view in (a) and (c), 

reference bars= 3 mm. 

 

10−3 g, Sartorius, Göttingen, Germany). Absolute shrinkage was cal- 

culated by relating the total radial shrinkage (digital gauge,  accuracy   1 

µm, Mitutoyo Corporation, Japan) to the total coupling pressure de- 

crease. Dry mass of the wood beams was obtained by drying at 103 °C to 

constant weight to calculate the relative water loss. Cumulative radial 

shrinkage was referenced to the nearest 5% relative moisture loss steps. 

 
2.5. Observations at the tissue level: Screening for abnormities and tracheid 

dimensions 

 
Sapwood samples from the felled trees in southern Norway (speci- 

mens from the living crown) and from Ekebo were sawn from the wood 

discs after thawing in tap water and were kept wet during all prepara- 

tion steps. 

For scanning electron microscopy (SEM), sapwood specimens from 

SET 2a and two tress of SET 2b (Supplement Table 1, Supplement Fig. 

1), were dehydrated in 99% ethanol and dried at ambient temperature. 

Specimens were mounted on aluminium stubs and were coated with gold 

using a sputtering device (FL-9496, Balzers Union, Lichtenstein) for 2 

min at 13.3 mPa and 40 mA. SEM Observations were carried out with a 

scanning electron microscope DSM 942 (Carl Zeiss, Oberkochen, Ger- 

many) under 9 kV. 

For light microscopy, microtome sections with a thickness of 20 µm 

were produced on a sliding microtome (Jung-Reichert, Vienna, Austria) 

from all wood cores and sapwood samples of SET 2a, SET 2b, SET 3a 

and SET 3b (Supplement Table 1, Supplement Fig. 1). Sections of trunk 

wood specimen from the felled trees (SET 2a, SET 2b and 24 trees of 

SET 3a) were thereafter stained with methylene blue, dehydrated, and 

mounted in Euparal (Carl Roth GmbH + Co. KG, Karlsruhe, Germany). 

Annual rings of the permanent and non-permanent wood sections of in 

total 242 trees were screened for visual signs of cell wall collapse. In 

trees from Southern Norway (n = 220, SET 3a and SET 3b) we could 

investigate annual rings 1980–2011 at breast height as well as rings 

2000–2011 from the living crown (n = 24) and in trees from Ekebo, 

southern Sweden (n = 22), annual rings 2003–2007 at breast height (SET 

2a and SET 2b). Cell wall thickness (t) of the radial (tr) and the tangential 

cell wall (tt) and the radial (br) and the tangential lumen di- ameter (bt) 

were measured in annual rings formed in 2010 in the liv- ing crown of 

24 trees from southern Norway (Sande and Hoxmark) and in breast 

height annual rings 2003–2006 in 22 trees from Ekebo. Cell wall and 

tracheid dimensions were assessed by means of Image J soft- ware 

(Schneider et al., 2012) in the first seven radial cell files. In addi- tion, 

we measured these traits in selected annual rings at breast height of five 

trees from Norway (n = 3) and Ekebo, Sweden (n = 2); these ad- ditional 

measurements were only performed for the regions of annual rings 

where collapsed cells were found. We calculated the conduit wall 

reinforcement (Hacke et al., 2001) in the radial direction ((tr/br)
2) from 

the square of the radial double cell wall thickness (tr) and the radial lu- 

men diameter (br), and the conduit wall reinforcement in the tangen- tial 

direction ((tt/bt)
2) from the square of the tangential double cell wall 

thickness (tt) and the tangential lumen diameter (bt). 

From dried small wood beams (Supplement Table 1, SET 1, n= 95 

specimens) of 52 treesfrom Tönnersjehöden and Vissefjärda(Sweden) 

that were used for hydraulic testing in a previous study (Rosner et al., 

2008), small wood cubes with radial, tangential and longitudinal di- 

mensions of 6 mm were sawn. Wood specimens from Ekebo (Sweden, 

SET 2a, n= 2 trees, Supplement Table 1, Supplement Fig. 1), Sandeand 

Hoxmark (Norway, Supplement Table 1, SET 3a, n= 40 trees) werede- 

frosted, dehydrated in 99% ethanol and dried at ambient temperature. 

Thereafter, strips with longitudinal dimension of 7 mm and tangential 

dimension of 2 mm were produced with a twin-blade saw. Wood strips 

were then analysed by SilviScan at CSIRO (Australia) and at Innventia 

(Sweden) (Evans, 1994, 1999). SilviScan is an instrument for efficient 

measurement of wood and fibre properties, such as wood density, wood 

stiffness, fibre dimensions and microfibril angle. For the present study, 

X-ray microdensity, radial and tangential tracheid diameters and cell 

wall thickness were assessed as averages for consecutive 50 µm radial in- 

tervals. After cross-dating the wood cores, a dataset of ring widths (RW) 

and potential functional traits for each annual ring was calculated. We 

then defined conduit wall reinforcement in the radial and tangential di- 

rections according to above (Rosner et al., 2016b). 

 

2.6. Observations at the tracheid level: maceration of earlywood 

 
About 2 mm thick radial wood sections were prepared with a ra- 

zorblade from defrosted earlywood of two young trees (age=15) har 
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vested in Ekebo (Supplement Table 1, SET 2a) and macerated using 

Jeffrey’s solution (Jeffrey, 1917). Tracheids were thereafter stained with 

methylene blue, dehydrated and embedded in Euparal (Carl Roth 

GmbH+Co. KG, Karlsruhe, Germany). Digitization was done with a Le- 

et al. (2009) as (Eq. (1)): 
 

  

 

 

(1) 

ica DM4000 M microscope equipped with a Leica DFC320 R2 digital 

camera and Leica IM 500 Image Manager image analyzing software (Le- 

ica, Wetzlar, Germany). 

 
2.7. Observations at the cell wall level 

 
Observations at the cell wall level were done on four trees from sam- 

ple SET 2a and SET 2b (Supplement Table 1, Supplement Fig. 1). 

Frozen sapwood specimens were thawed in deionised water, dehy- 

drated in ethanol and embedded in Technovit® 7100 (Heraeus Kulzer 

GmbH, Wehrheim, Germany), which is a plastic embedding system 

based on 2-hydroxyethyl methacrylate. Transverse semi-thin (1–2μm) 

sections were made with a Leica RM2235 Manual Rotary Microtome 

(Leica Biosystems GmbH, Nussloch, Germany). Sections were stained 

with toluidine blue, crystal violet, or astra-blue/safranine and mounted 

in Euparal (Carl Roth GmbH + Co. KG, Karlsruhe, Germany). The Tech- 

novit® 7100 embedding method has been used in a recent study (Mayr 

et al., 2014) in order to “conserve” the functional state of bordered 

pits in Norway spruce. To avoid pit aspiration due to dehydration, it is 

important to transfer the fully saturated specimen directly into 100% 

ethanol (Liese and Bauch, 1967). 

TEM observations were made on five sapwood specimens per tree. 

Frozen samples were thawed in deionised water. Specimens were there- 

after dehydrated through a graded ethanol series. The ethanol was then 

gradually replaced with epoxy resin (Sigma-Aldrich Co. LLC, St. Louis, 

Missouri, USA). Embedded samples were sectioned on an ultra-micro- 

tome (Ultracut, Reichert-Jung, Austria). Semi-thin sections were cut 

with a glass knife (Leica, Nussloch, Germany). Sections were stained 

with toluidine blue and/or crystal violet, dehydrated and mounted in 

Euparal. Ultra-thin (60–90 nm) transverse sections were produced with 

a diamond knife, then attached to Formvar (Agar Scientific, Stansted, 

UK) and 100 mesh copper grids, and thereafter post-stained with uranyl 

acetate (Merck, Darmstadt, Germany) and lead citrate (Plano GmbH, 

Wetzlar, Germany). Observations were carried out with a JEOL JEM- 

1210 TEM (Jeol, Tokyo, Japan) at 80 kV accelerating voltage. 

A confocal Raman microscope (Alpha300, WITec, Germany) 

equipped with a piezo scanner and a linear polarized NdYag laser 

(excitation wavelength = 532 nm) was used for high resolution Raman 

Imaging. The laser light was focused and collected with a diffraction 

limited spot size through an oil immersion objective (Nikon, 100×, 

N.A=1.4), guided through a 50µm multimode fibre to a spectrograph 

(WITec UHTS 300 spectrometer) and detected by a CCD camera (An- 

dor, DV401-BV, 352). Mapping was done on different positions of 2 µm 

thick in Technovit 7100 embedded sections as well as on 20 µm thick 

native micro-sections of normal and collapsed tracheids (Supplement 

Table 1). One spectrum was collected every 0.25 µm with an acquisi- 

tion time of 0.3 s per spectrum/pixel. From this multi-spectra file, im- 

ages were computed by integrating over certain ranges of Raman shifts 

using the ScanCtrlSpectroscopyPlus software (Witec, Germany) and the 

lignin distribution is shown based on the integration of the aromatic ring 

stretching vibration at 1600 cm−1 (Gierlinger et al., 2012). 

 
2.8. Theoretical implosion pressure 

 
The implosion pressure, i.e. the critical pressure difference between 

adjacent tracheids that would cause tracheids to implode was calcu- lated 

from data derived with Image J software from SEM and light mi- 

croscopy digital images as described in Hacke et al. (2004) and Domec 

where Da is the pit aperture diameter and Dm the pit (membrane) di- 

ameter. Da/Dm was calculated from 20 single measurements for each 

sample set. We used the simplified formula excluding the quantifica- 

tion of the spacing of the pit apertures distance between pits or between 

pits and the edge of tracheids for calculating the “ligament efficiency”, 

which quantifies the spacing of the pit apertures in the wall, because the 

spacing between bordered pits in the radial cell walls was highly variable 

(Supplement Fig. 2) and calculating a mean value would have obscured 

the result for Pimpl. The ligament efficiency was calculated as 

≈1 − Da/Dm. The constant (≈304) is calculated from the strength of the 

wall material taken as 80 MPa divided by the ratio of b to the tracheid 

length that was taken as 0.25. The quotient was multiplied by the mo- 

ment ratio (Ih/Is), i.e. the ratio of the second moment of area of a tra- 

cheid wall with pit chambers (Ih) to that of a solid wall with no pit 

chambers (Is) that averages about 0.95 in conifers (Hacke et al., 2004). 

 
2.9. Statistical analyses 

 
Statistical analyses were carried out with SPSS® 21.0. Data in the  flow 

text are given as mean ± standard error (SE). Mean values were ex- amined 

for significant differences by the Student’s t-test after testing for normal 

distribution with the Kolmogorov-Smirnov test. Significant dif- ferences for 

clones, sites and their interaction were tested using factorial ANOVA. 

Clones and sites were assumed to be fixed effects in the gen- eral linear 

models. Correlations between traits and differences in mean values were 

accepted as significant if P was <0.05. 

 
3. Results 

 
3.1. Macroscopic description of lucid bands 

 
Light coloured, even white bands, hereafter termed “lucid band” 

(LB), were observed in sapwood specimens from freshly harvested Nor- 

way spruce trees in Ekebo, southern Sweden (Fig. 1b,  Supplement  Fig. 

2a and c, Fig. 2a). LBs were found in the first formed earlywood re- gions 

of the 2006 annual ring (Supplement Fig. 2c), including the part of the 

2006 ring perimeter which was not deteriorated by rot at a crack (Fig. 

1b). LBs are visible on fresh wood, but can still be detected sev- eral 

years after sampling if the sapwood is stored frozen directly after 

harvesting and thereafter thawed in fresh water. However, once the sap- 

wood is dried, these bands show the same colour as the earlywood of ad- 

jacent annual rings (Supplement Fig. 2b). LBs were found in trees prone 

to cracking solely – in two out of eleven individuals. One of these trees 

was younger and had no crack at the time of harvesting. Artefacts due to 

dehydration or mechanical damaged that would cause LB can be ex- 

cluded because (a) stem segments were directly sawn (neither cut nor 

cored) from the main trunk directly after harvesting and (b) put immedi- 

ately in water. Only sapwood samples of trees felled at Ekebo site were 

macroscopically examined directly after harvesting, we therefore cannot 

provide detailed statistics on the occurrence of LB for the other sites. 

 

3.2. Hydraulic xylem dysfunction in lucid bands 

 
Hydraulic staining experiments showed that the sapwood in LB re- 

gions was not hydraulically functional. They remained unstained with 

Phloxine B (Fig. 2b and c), as no water was transported within these re- 

gions. After staining, LB had a light colour, whereas regions that were 

still capable of conducting water were stained bright magenta. 
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3.3. Shrinkage in sapwood with and without LB 

 
Radial sapwood shrinkage had a quite different pattern in  sam-  ples 

from a young tree where LB regions were found as compared to 

“normal” wood samples from a tree with the same age. The  differ- ence 

in cumulative shrinkage between the specimens was significant af- ter 

20% relative moisture loss (Fig. 3). The maximum radial shrinkage was 

significantly (P < 0.01) higher in specimens that had LB regions (−3.93 

± 0.29%, n= 8) than in “normal” wood (−2.72 ± 0.13%, n= 7). 

 

 
3.4. Qualitative anatomy of LB at the tissue, tracheid and cell wall level 

 
In regions with LB, tracheids had a more wavy shape (Supplement 

Fig. 3c and d) compared to tracheids in “normal” sapwood (Supplement 

Fig. 3a and b). Tracheids in LB (Fig. 4a) were also shorter than tra- 

cheids in “normal” wood (Fig. 4b). We assessed a mean tracheid length 

of 3.62 ± 0.08 mm (n= 20) in “normal” earlywood and a length of 

2.97 ± 0.10 mm (n = 20) for tracheids in the LB regions (P < 0.001). 

Light microscopy observations of LB regions indicated that many tra- 

cheids had mechanical deformations (Figs. 5 and 6). Such deformations, 

hereafter termed “collapse”, were found in 9.1% (two clones) of 22 trees 

harvested in Ekebo, southern Sweden. Signs of collapse were only found 

in individuals that were prone to stem cracking. In the same individuals, 

LBs were present. 6.4% (14 trees) of 220 trees investigated in southern 

Norway had signs of collapsed tracheids too. In tracheids of LB bordered 

pits were often aspirated (Supplement Fig. 4); an indication that the sap- 

wood in these regions does not contribute to water transport (Fig. 2). 

The contents of lignin in cell walls of tracheids with signs of collapse 

and the thin compound middle lamella (CML) in between them is in- 

dicated by red staining with safranin/astra-blue dye (Supplement Fig. 

5). The lignin distribution was also visualised with the help of Raman 

imaging(Fig.7).Whilethe“normal” tracheidsshowedatypicalstraight 

and thin CMLwithhigh lignin content(whiteareas), the CML in the LB 

tracheids looks thinner and lesshomogenous. Also within the S layer of 

LB tracheids a less homogenous lignin distribution was observed than 

in “normal” earlywood tracheids as indicated by darker regions (lower 

amount) especially near the cell corners and the CML. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Courses of the radial shrinkage of Norway spruce sapwood at different stages of 

relative water loss. Open symbols represent mean values, standard errors and standard de- 

viations for sapwood from a young Norway spruce tree prone to cracking that had a visible 

lucid band (n = 8) and closed symbols “normal” sapwood from a Norway spruce tree with 

similar age harvested in Ekebo, southern Sweden (n= 7). 

 

 
 

Fig. 4. Macerated tracheids of Norway spruce sapwood from lucid band regions (a) and 

from normal earlywood (b) from trees harvested in Ekebo, southern Sweden. After macer- 

ation, the tracheids were stained with methylene blue and mounted in a resinous embed- 

ding medium. The reference bar indicates 1mm. 

 
3.5. Quantitative anatomy: which morphological features are associated 

with wall collapse? 

 
In five trees from southern Norway, a chronological comparison of 

anatomical features between trees that showed signs of cell wall col- 

lapse and the nearest neighbour that showed no tracheid deformation 

was performed. Four out of these five trees showed symptoms of top 

dieback. The aim was to search for anatomical differences between both 

groups of trees in years with signs of wall collapse (symptomatic years). 

No significant differences in ring width were found in the years when 

collapse was observed. Ring width showed however a continuous 
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Fig. 5. Normal earlywood (a, c) and earlywood from regions of lucid bands with signs of collapse (b, d–g) of Norway spruce trees harvested in Ekebo, southern Sweden. Deformed tracheid 

double walls are indicated by stars in images d–g; collapsed walls are not marked in the overview image (b). The reference bar indicates 100 µm in images a and b, 50 µm in images c, d 

and g, and 25 µm in images e-f. The specimens in images a, b and g were stained with crystal violet, all other specimen with methylene blue. 

 

decrease in trees prone to collapse thereafter (Supplement Fig. 6). Wood 

density was slightly lower in rings with signs of collapse. In symp- 

tomatic years, tangential tracheid lumen were slightly wider in an-  nual 

rings with collapse; whereas double wall thickness was lower 

(Supplement Fig. 6). In a next step, the within-ring differences in symp- 

tomatic years of the tree pairs were analysed. Wood density was signif 

icantly lower in rings with collapse in the middle part of the annual ring 

(Supplement Fig. 7a). Trees with collapse in symptomatic years showed 

thinner cell walls (Supplement Fig. 7d) and significantly wider tangen- 

tial lumen diameters (Supplement Fig. 7e) and lower tangential tracheid 

wall reinforcement (Supplement Fig. 7f). 
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significantly lower in regions with collapse (Fig. 9c and d) and the his- 

tograms of both  traits  showed  two  slightly  overlapping  clusters (Fig. 

8c and d). Histograms of the conduit wall reinforcement traits dif- fered 

between regions of “normal” tracheids and those in LB regions (Fig. 8e 

and f), where tracheids in the latter had significantly lower theoretical 

safety against implosion (Fig. 9e and f). Pit membrane- and aperture 

diameters used for calculating the theoretical implosion pres- sure 

differed significantly (P < 0.01, n= 20) between normal and col- lapsed 

tracheids. Membrane- and aperture diameters were larger in collapsed      

(20.26 ± 0.52 µm,     5.90 ± 0.13 µm)     than     in normal 

(18.35 ± 0.40 µm, 5.33 ± 0.12 µm) tracheids. The conduit wall reinforce- 

ments used to calculate the implosion pressure for the radial cell walls 

((tr/br)
2) were 0.0193 for normal and 0.0042 for collapsed tracheids (Fig. 

9). The theoretical implosion pressure for the radial cell walls would 

make up only −0.91 MPa for tracheids prone to collapse but 

−4.16 MPa for normal earlywood tracheids. 

Cell walls of “normal”- and LB tracheids differed not only in the 

overall thickness (Fig. 10a), but also in the widths of their layers. 

Whereas the thickness of the CML (Fig. 10e) and S1 layer (Fig. 10b) 

showed no significant differences between “normal” earlywood- and LB 

tracheids, LB tracheids had  much  thinner  S2  and  S3  layers  (Fig. 10c 

and d). Consequently, the fraction of S1 in proportion to the single cell 

wall thickness was significantly higher in LB tracheids, the S2 fraction, 

however, was much lower compared to “normal” tracheids (Fig. 10f and 

h). 

 
3.6. Genetic and site influence on tracheid wall thickness and wall 

reinforcement in earlywood 

 
In Fig. 11 the wall thickness in the first 10% of an annual ring of six 

different clones grown on two sites is shown. Walls were always thicker 

in a given clone grown on the drier site (Vissefjärda) than on the wet- 

ter site (Tönnersjöheden). General linear models indicated a significant 

influence of the site in all wall- and conduit wall reinforcement traits 

(Table 1). Wall thickness showed the same trend in different clones (Fig. 

11), a significant clonal effect was thus found for all traits investigated, 

however, no significant clone x site interaction was detected (Table 1). 

 
3.7. Climate extremes: the final trigger that causes wall collapse? 

 

 

 

 

Fig. 6. TEM images of cell walls of tracheids with no signs of collapse (a-c) and with signs 

of collapse (d-j) of Norway spruce earlywood specimens from Ekebo, southern Sweden. 

Note that cell walls in the first formed tracheid rows are densely pitted (Fig. 5 g); the lay- 

ers from the middle lamellae to the S1 in images d–g are therefore slightly thicker. Image 

(j) gives a good impression on the thickness of these layers in cell wall regions without a 

bordered pit. The S1 layer is marked by white arrows, the S3 layer by black arrows. Bars 

in a–e and i, j indicate 1 µm, the bars in f-g indicate 5 µm. 

 

In order to define  which  cell  dimensions  are of key importance  to 

avoid mechanical dysfunction, we analysed anatomical traits of the first 

formed earlywood tracheids of selected rings formed between 2003–

2010 in 22 trees from southern Sweden and from 24 trees (Nor- way) 

where no signs of collapse were found, and compared these re- sults with 

annual rings of five trees where collapse was present. His- tograms 

indicated that radial- and tangential lumen diameters showed different 

distributions in earlywood regions with and without signs of collapse 

(Fig. 8a and b); mean values were, however, not significantly different 

(Fig. 9a and b). Radial- and tangential cell wall thickness was 

The occurrence of collapse in annual rings of trees from Norway 

could not be related to specific climate-related events, because (a) col- 

lapse occurred in different years and not always in the first formed ear- 

lywood tracheids, (b) no climate extremes were reported for these years 

(data not shown) and (c) most of the samples were collected by coring; 

we can thus not exclude some mechanical damage due to squeezing. We 

concentrated our investigations on the Ekebo site where 86% of all trees 

(n = 22) produced in 2006 a “false ring” (Supplement Fig. 8), which is 

a clear indicator for massive drought stress. Moreover, in two of the trees 

(9.1%) harvested in Ekebo, signs of collapse were found in the ear- 

lywood of the 2006 annual ring. These trees were both prone to stem 

cracking and included a single young tree that had a genetic predispo- 

sition but had developed no crack at the time of harvesting. In 2006, the 

driest summer since the 1960ties was measured in the weather sta- tion 

close to (8 km) Ekebo, where the trees were harvested (Supplement Fig. 

9b). Precipitation of June and July reached much lower values com- 

pared to previous and following years. However, August precipitation 

was quite high compared to previous years (Supplement Fig. 9c). 
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Fig. 7. Lignin distribution visualized by Raman spectroscopy of “normal” earlywood (a, b) earlywood of a lucid band (c, d). Samples came from Norway spruce harvested in Ekebo. Arrows 

point at regions with inhomogeneous lignin distribution (darker areas) near the compound middle lamellae and cell corners. 

 
 

4. Discussion 

 
4.1. The occurrence of lucid bands 

 
We decided to introduce the term “lucid bands” (LB) for the lighter 

(lucid) coloured bands of tracheids which we observed in fresh Nor- 

waysprucesapwood andwith propertiesrelated to collapse on drought, 

as none of the existing terms “light bands”, “light rings”, “white rings” 

nor “blue rings” were adequate. LBs do not represent “blue rings”, i.e. 

bands of non-lignified latewood tracheids indicated by differential stain- 

ing with safranin/astra-blue (Piermattei et al., 2015), because the ob- 

served collapsed tracheids were neither in latewood, nor was a to- tal 

lack of lignification indicated by Raman spectroscopy (Fig. 7). In- 

stead, safranin/astra-blue red stained cell walls of earlywood tracheids 

in the LB indicated that they were lignified (Supplement Fig. 5). Fur- 

ther, the lack of lignification in “blue-ring” tracheids is induced by 

low air temperature during latewood cell wall thickening. LBs are also 

not “light rings” that are formed in cool summers (Tardif et al., 2011) 

or “light bands”, i.e. extremely thin walled latewood formed in Nor- 

way spruce under abnormally low autumn temperatures observed for 

instance in 1912 after a volcano eruption (Gindl and Grabner, 2000). 

“White rings” are supposed to be associated with a lower carbohydrate 

availability in the early growing season of the subsequent year after 

e.g. defoliation by insects or crown damage due to extreme frost events 

(Waito et al., 2013). They have an (overall) lighter colour than adja 

 

cent rings, but – contrary to LBs – retain their lighter colour when dried. 

Finally, the light colour of LBs can only be observed in freshly sampled, 

non-dried sapwood. 

When held against a light source (picture not shown), LB regions ap- 

peared somehow less translucent. This loss in translucence is observed 

when wood lost its function of sap conductance (Světlik et al., 2013). 

Flow experiments with a staining solution (Hietz et al., 2008) on fully 

saturated specimens proofed that sap was not transported through the LB 

regions (Fig. 2). Moreover, light microscopy observations of freshly 

embedded sapwood (Mayr et al., 2014) indicated that many pits were 

already aspirated in the regions of the LB (Supplement Fig. 4). The 

healthy young tree in Ekebo (southern Sweden) with LB was harvested 

in the early summer season 2008; thus the annual ring 2006 should have 

been still conductive, if we consider that Norway spruce uses at least ten 

annual rings for conducting sap (Bertaud and Holmbom, 2004). Re- 

gions of LB might have a lighter colour than the later formed sapwood 

and the sapwood of the previous growth ring because the LB tracheids 

were filled with air rather than with water. We suggest that LBs have not 

been observed and/or described so far, because for dendrochrono- 

logical or dendroecological research it is quite common that specimens 

are dried immediately after sampling (after wood coring for instance). 

 
4.2. Cell wall collapse in earlywood of Norway spruce is possible 

 
We found irreversible, plastic deformation, in tracheids of Norway 

spruce wood from field grown trees in southern Scandinavia (Fig. 5, 
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Fig. 8. Histograms of radial (a) and tangential (b) lumen diameter, radial (c) and tangen- 

tial (d) cell wall thickness and (t/b)2 derived from radial lumen diameter/radial wall (e) 

and tangential lumen diameter/tangential wall (f) of the first formed earlywood tracheids 

of selected rings formed between 2003–2010 in 22 trees from southern Sweden and in 24 

trees from southern Norway where no signs of collapse were found (black bars) compared 

to annual rings of five trees where collapse was present (grey bars). An overview of the 

dataset for the histograms is given in Supplement Table 2. 

 
Supplement Fig. 4). Observations of such abnormal deformations have 

been reported for other conifer species either under the impact of ar- 

tificially induced drought (Glerum, 1970; Barnett, 1976) or in lum-  ber 

from trees growing at sites with periodic severe drought conditions 

(Donaldson, 2002). Extreme, artificially induced, drought during cam- 

 

 
 

Fig. 9. Anatomic characteristics of tracheids from earlywood formed between 2003 and 

2006 of 22 trees from Ekebo (southern Sweden) and from earlywood produced in 2010 of 

24 trees from southern Norway for earlywood with hydraulic dysfunction (“collapse”= Y; 

annual rings with collapse of 2 trees from Sweden and of 3 trees from Norway) and early- 

wood with no such signs (“collapse” = N; annual rings with no signs of collapse of 22 trees 

from Sweden and of 24 trees from Norway). Samples from the Swedish trees were taken 

at breast height, those from the Norwegian trees in the living crown. Tree mean values 

and standard deviations of anatomical features comprise radial- (a) and tangential lumen 

diameter (b), radial- (c) and tangential double wall thickness (d) and the conduit wall re- 

inforcement in the radial direction (e) and in the tangential direction (f). 

 

bial growth can result in tracheids that totally lack lignin in the sec- 

ondary wall, which consequently leads to cell wall collapse. In that case, 

collapse occurs prior to the completion of wall differentiation, since 

lignification lags behind cellulose production in the cell walls of 

tracheids (Barnett, 1976; Gricar et al., 2006). Donaldson (2002) found 

tracheids with concentric layers of abnormal lignification in the sec- 

ondary cell wall and a reduced lignification of the middle lamella in Pi- 

nus radiata trees grown under severe water stress. According to the re- 

sults obtained by Raman imaging, “normal” tracheids showed a straight 

CML with high lignin content, whereas the CML in the LB tracheids 

looked thinner and less  homogenous. In  addition, lignin  distribution in 

the S1 and S2 layers was less homogenous than in “normal” early- wood 

tracheids (Fig. 7). However, only a severe reduction of lignifica- tion 

would result in collapsed tracheids, which implies that even par- tial 

lignification of the secondary wall is sufficient to allow water con- 

duction when it is combined with an appropriate cell wall thickness  and 

a well-developed S3 layer. The S3 layer was thinner, but well de 

Fig. 10. Thickness of single cell walls (a) and wall layers (compound middle lamellae (e), 

S1 (b), S2 (c) and S3 (d)) as well as percentages of S layers of the wall related to cell wall 

thickness of tracheids (f-h) from earlywood of trees from Ekebo (southern Sweden), with- 

out (“collapse” = N, n= 2 trees) and with hydraulic dysfunction (“collapse” = C, n= 2 

trees) of annual rings formed between 2003 and 2010. Each mean value and the standard 

deviation was calculated from measurements on 40 tracheids (i.e. 20 double cell walls). 

Significant differences at the 0.1% level (at least) are indicated by different letters. 

 
veloped in tracheids with signs  of collapse  (Fig. 6i)  when compared to 

findings of normally developed Norway spruce earlywood tracheids 

(Singh and Daniel, 2001). Donaldson (2002) supposed that reduced 

lignifications of the middle lamellae in the radial cell walls could af- fect 

bordered pit functioning due to leakage of  water into extracellu- lar 

spaces that may result in pit aspiration. Also Glerum (1970) re- ports 

that wall thickness rather than a lack of lignification causes tra- cheid 

collapse in Picea glauca seedlings under severe drought. “Drought 
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Fig. 11. Double wall thickness assessed by SilviScan technology in the first 10% of annual 

rings 17–19 of six different Norway spruce clones harvested in Tönnersjöheden (empty 

symbols, n trees = 27), and Vissefjärda (filled symbols, n trees = 25). Vissefjärda site was 

drier than the Tönnersjöheden site. The error bars indicate both the standard error and the 

standard deviation for each mean value. Detailed information on the sites can be found in 

Rosner et al. (2008). 

 
rings” developed as bands of tracheids that had lignified but thinner cell 

walls and a reduced radial diameter with signs of collapse. Contrary to 

the LBs described in our study, the tangential walls in P. glauca were ex- 

tremely deformed, whereas the radial walls remained merely “in line”. 

The thickness of the S2 layer in tracheids without collapse cor- 

responded to data reviewed in Bergander and Salmén (2000) and 

Brändström (2001) for Norway spruce earlywood. We found no signif- 

icant difference in thickness of S1 between normal and collapsed tra- 

cheids, but the S2 layer was more than twice as thick in normal tra- 

cheids than in tracheids with signs of collapse. The S2 proportion was 

higher in normal tracheids (82.7%) than in collapsed tracheids (72.10%). 

Both values lay in the normal range reported for the S2 per- centage 

based on literature (Brändström, 2001), whereas the proportion of the S1 

was much higher in collapsed tracheids (20.0%) than in nor- mal 

tracheids (11.5%). The mean S1 percentage found in collapsed tra- 

cheids was high but did not exceed the maximum of 21.8% reviewed  in 

literature (Brändström, 2001). Overall, radial and tangential walls of 

tracheids with signs of collapse were much thinner than in mechanically 

well designed earlywood tracheids, whereas the radial and tangential 

lumen diameter showed no significant differences (Fig. 8). Histograms 

of double wall thickness showed two clusters that had a slight over- lap 

at 3 µm and 4 µm for radial and tangential walls, respectively (Fig. 8). 

Trees prone to wall collapse operated at the limit concerning their 

biomechanical design. The conduit wall reinforcement calculated from 

radial lumen diameters was 0.02 in “normal” earlywood tracheids, but 

only 0.004 in tracheids with wall collapse. When (t/b)2 was calculated 

for tangential diameters, even ten times lower values were found in ear- 

lywood tracheids prone to collapse than in “normal” tracheids (Fig. 9). 

The (t/b)2 values given in Fig. 9 describe only the weakest, low den- sity, 

parts of earlywood from annual rings of the main trunk. Therefore, even 

the conduit wall reinforcement for “normal” tracheids only reach the 

minimum values of data published so far for whole earlywood re- gions 

(Rosner et al., 2016a) and are much lower than in branch early- wood of 

different conifer species (Bouche et al., 2014). The (t/b)2 cal- culated 

from tangential lumen diameter showed significant differences when 

within annual ring variations of tree pairs with and without wall collapse 

were compared, whereas the (t/b)2 calculated from radial diam- eters did 

not (Supplement Fig. 7). This is in accordance with our recent findings 

where (t/b)2 calculated from tangential lumen diameters had a higher 

predictive quality for hydraulic safety (P50) than that calculated from 

radial lumen diameters (Rosner et al., 2016b). 

 
Table 1 

General linear models (fixed factors: clone and site) for double wall thickness from tracheids located in the first 10% and 25% of the annual ring and of earlywood (EW) tracheids. Samples 

were taken at breast height. The wetter site is Tönnersjöheden (T), the drier site Vissefjärda (V). SQ= sum of squares; and SE = standard error. 
 

 

Trait 

 

Site 

Mean 

(SE) 

Source 

clone 

  
Source 

site 

  
Source 

clone × site 

 

   
SQ F P > F SQ F P > F SQ F P > F 

Wall thickness T 3.01 2.90 9.15 0.000 1.25 19.46 0.000 0.08 0.26 0.933 

10% of ring  (0.07)         

width (µm)           

 V 3.32         

  (0.06)         

Wall thickness T 3.07 2.85 10.93 0.000 0.97 18.69 0.000 0.11 0.43 0.822 

25% of ring 

width (µm) 

 (0.06)         

 V 3.34         

  (0.07)         

Wall thickness of T 3.38 2.38 8.55 0.000 0.73 13.18 0.001 0.19 0.68 0.638 

EW tracheids  (0.06)         

(µm)           

 V 3.62         

  (0.06)         

(t/bt)
2 of 10% of T 0.015 0.00024 3.46 0.011 0.00013 9.59 0.004 0.00002 0.25 0.938 

ring width  (0.001)         

 V 0.018         

  (0.001)         

(t/bt)
2 of 25% of T 0.015 0.00025 3.98 0.005 0.00012 9.43 0.004 0.00002 0.29 0.914 

ring width  (0.001)         

 V 0.018         

  (0.001)         

(t/bt)
2 of EW T 0.020 0.00024 2.86 0.027 0.00015 8.71 0.005 0.00001 0.16 0.977 

tracheids  (0.001)         

 V 0.023         

  (0.001)  
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4.3. Catastrophic mechanical and hydraulic xylem dysfunction in 2006 in 

trees from Sweden 

 
In summer 2006, extremely low precipitation in June and July was 

recorded in the region of the Swedish study trees. This region is close to 

the city of Lund in southern Sweden, where the highest mean July sum- 

mer temperature was measured in 2006 since records started in 1859 

(SMHI). The influence of climate (temperature and precipitation) on an- 

nual variability in the mean cell wall thickness of Norway spruce tra- 

cheids is rather weak (Rosner et al., 2016b). Precipitation in September 

of the previous growing season and in May/June can influence lumen 

diameters positively (Gričar et al., 2015) and consequently (t/b)2 neg- 

atively (Rosner et al., 2016b). It is assumed that by the end of May/ 

beginning of June cell division and elongation of the first earlywood cell 

rows has already taken place. In the southern boreal zone about 10% of 

the radial increment develops between late May to early June, half of the 

annual ring is formed by the first week of July, and 90% of the annual 

ring is already completed in late July/beginning of August (Mäkinen et 

al., 2003; Henttonen et al., 2009; Jyske et al., 2014). In 2006, May 

precipitation was normal for southern Sweden (Supplement Fig. 9a). It 

is suggested that the initial stages of cell differentiation, i.e. division and 

elongation, in the first tangential bands of tracheids took place under 

sufficient moisture supply. Wall thickening was initially undergoing a 

normal development, but severe drought stress is  likely to have affected 

the final stages of cell differentiation, especially the thickening and 

lignification of the secondary wall. Under  the  impact of gradually 

increasing drought stress due to ongoing lack of precip- itation in June 

and July, trees invested in producing a  distinct  false ring rather than in 

the proper design of the first formed earlywood tra- cheids (Supplement 

Fig. 8). Since August was relatively wet, cell divi- sion started again at 

that time. It is likely that in  August the collapse  in the LB regions had 

occurred already and the question is if the tra- cheids were capable of 

conducting water before they were mechanically deformed. The 

theoretical implosion pressure for the radial cell walls was less negative, 

−0.91 MPa, for tracheids prone to collapse and much lower, −4.16 MPa, 

for “normal” earlywood tracheids. In young ma- ture trunkwood of 

Norway spruce trees grown in southern Sweden P50 can range between 

−3.06 MPa and −1.98 MPa (−2.41 ± 0.03 MPa) and 

P88  between −3.99 MPa  and  −2.41 MPa  (−2.41 ± 0.04 MPa)  (Rosner 

et al., 2014). Mayr et al. (2006) report minimum water potentials of 

−4.34 ± 0.07 MPa in branches of Norway spruce grown at the alpine 

timberline. Branches have much higher safety factors than the main 

trunk or roots (Domec et al., 2009) since much more negative water po- 

tentials can develop in the tracheids that are closer to the tree top. It    is 

not very likely that the water potential in the sapwood of the main trunk 

of a living tree reaches such low water potentials as reported for branches 

by Mayr et al. (2006); “normal” Norway spruce sapwood in our study 

had thus a sufficient hydraulic safety (−4.16 MPa). Under the impact of 

drought stress, the pre-dawn water potential of twigs can drop down to 

−2.5 MPa (Netherer et al., 2015), which implies that during the day less 

than −1 MPa could be easily reached in the main trunk.    In the LB 

sapwood regions, water potentials below −0.91 MPa would 

(theoretically) result in wall collapse. We suggest that cell wall collapse 

of tracheids with an insufficient hydraulic design can be induced by ex- 

treme summer drought, as observed 2006 in southern Sweden. It is also 

suggested that LB tracheids were functional only for a very short period 

after their formation. 

 
4.4. Low density earlywood is prone to internal cracking under the impact 

of severe drought 

 
We suppose that radial cracks can easily develop within lucid bands, 

and spread in an axial and radial direction towards the bark. The wounds 

in the bark produced by the cracks are sources for fungal in- fection; the 

tree has to invest carbohydrates for wound reaction and defence (Morris 

et al., 2016). Moreover, the tree loses a lot of its sap- wood area, if we 

assume  that  – under  normal conditions  – at least  the last ten annual 

rings are capable of conducting sap (Bertaud and Holmbom, 2004). 

Sapwood from trees that are prone to internal crack- ing showed extreme 

changes in shrinkage above 30% moisture content when compared to 

“normal” sapwood (Rosner et al., 2009). Such dif- ferential 

swelling/shrinking processes induced by high tension forces of free 

water in capillaries and conduits could lead to crack formation. Within-

ring crack formation in living Norway spruce trees due to “an imbalance 

between water loss and water replenishment during the dormant season” 

has been observed by Cherubini et al. (1997). In the ring where a crack 

was formed, the earlywood tracheids show wall collapse and the rays 

have the typical wavy structure as observed in our specimens (Fig. 5b, 

Supplement Fig. 3). Similar observations were made by Lutz (1952) in 

Picea glauca, where extremely high tensions that develop in water filled 

tracheids cause internal cracking. The crack is often not produced in the 

year when the low density wood was developed, but one or two years 

later under severe summer drought (Grabner et al., 2006). Cracks along 

the trunk are a not so rarely observed phenom- enon that can occur 

especially in young and fast growing (annual ra- dial increment >8 mm)  

Norway spruce trees at the age between 20  and 40 years (Caspari and 

Sachsse, 1990; Persson, 1994; Ferenczy and Tomiczek, 1996). As such, 

Persson (1994) warned against the cultiva- tion of fast growing eastern 

European Norway spruce provenances in southern Scandinavia, because 

low wood density is the major cause of economic losses, rather than the 

cracking itself. Even if cracks do not occur because of the lack of a dry 

period, the timber may be not suitable for structural purposes and may 

contain too little dry matter to be mar- ketable as raw material for 

chemical pulp. Moreover, even if the inter- nal cracks do not occur out 

in the field, they may develop in the lumber during industrial kiln drying 

(Putoczki et al., 2007). 

 

5. Conclusions 

 
Cell wall collapse was not present in all trees with stem cracks in- 

vestigated, but based on our dataset we conclude that conifer wood is 

often lacking a resistance against implosion or cell wall collapse. Tra- 

cheids with radial double cell walls much thinner than 3 µm (mean of  2 

µm) and a mean (tr/br)
2 of 0.004 are prone to cell wall collapse. As 

hypothesized, we found that the critical factor is not the lumen diam- 

eter, which showed similar values in both “normal” and collapsed tra- 

cheids, but the cell wall thickness that has a quite high heritability in 

Norway spruce (Chen et al., 2016). Cell wall thickness has a strong 

influence on wood density and wood density is genetically inversely 

related to growth in Norway spruce (Hannrup et al., 2004;  Chen  et  al., 

2014). Provenances or individuals that produce earlywood with ex- 

tremely thin cell walls can develop cell wall collapse and internal cracks 

under the impact of extreme dry summer spells, which are likely to be- 

come more frequent in the near future (IPCC, 2013). We propose in- 

spection for lucid bands (LBs) as a new diagnostic tool for risk of cell 

wall collapse and the initiation of cracks. To detect LBs, field diagnosis 

is necessary because once the sapwood has dried, the lucid bands will 

have the same colour as the earlywood of adjacent annual rings. LBs 

have a lighter colour than the later formed sapwood and the sapwood of 

the previous growth ring because the tracheids in these zones are 
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filled with air or water vapour. In addition, in LBs, the bordered pits are 

merely aspirated and the capacity to conduct water has been lost irre- 

versibly. This phenomenon has not been described so far and we sug- 

gest similar studies on other conifer species in order to face the threats 

to hydraulic functioning of trees under extreme summer drought. The 

detection of genotypes with LBs could be useful for an early selection 

of individuals that are prone to stem cracks under the impact of severe 

summer drought, and also for early downgrading of logs prone to crack- 

ing during kiln drying. 
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