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a b s t r a c t

An undesirable property of systematic spatial sampling is that
there is no known method allowing unbiased estimation of the
uncertainty of statistical estimates from these surveys. A number
of alternative variance estimation methods have been tested and
reported by various authors. Studies comparing these estimators
are inconclusive, partly because the studies compare different sets
of estimators. In this paper, three estimators recommended in
recent studies are compared using a single test dataset with known
properties.

The first estimator compared in this study (ST4) is based on
post-stratification of the data. The second estimator (V08) is using
a predetermined correction factor calculated from the spatial au-
tocorrelation. The third estimator (MB) is amodel based prediction
calculated using values from the semivariogram. MB and ST4 were
both found to be fairly accurate, while V08 consistently underesti-
mated the variance in this study. V08 relies on the assumption that
the autocorrelation structure in the dataset can be described using
a particular exponential function. The most likely explanation of
the weak result for V08 is that this assumption is violated by the
empirical data used in the experiment. A better correction factor
can be calculated, but the safe approach is to use MB or ST4.
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1. Introduction

Spatial sampling is a cost-efficientway to conduct surveys for ecological and environmental studies
and monitoring projects. Various sampling techniques are used when the study area is restricted
in size, but national and other wide ranging surveys will often rely on systematic sampling. Many
examples can be found. National forest inventories are habitually carried out using field-based
systematic sampling surveys (Tomter et al., 2010; Tomppo and Tuomainen, 2010). Systematic spatial
sampling provides the basis for landscape monitoring programs in Norway (Dramstad et al., 2002)
and Sweden (Ståhl et al., 2011) and is used in land cover and land use surveys on a national (Strand,
2013; Aune-Lundberg and Strand, 2017) as well as a continental scale (Eurostat, 2003; Martino and
Fritz, 2008). Many soil surveys also employ systematic sampling (Morvan et al., 2008).

Systematic spatial sampling is a sampling strategywith a number of favorable properties (Wang et
al., 2012). It is easy to implement and there is no risk of finding sample units clustered in a few regions
while other regions are left with few or no samples. In order to draw the systematic spatial sample, the
population of locations must be organized as a regular frame. A starting point is drawn randomly and
the rest of the sample is collected at regular intervals from this starting point. The systematic sample
will result in more precise estimates than a simple random sample, in the spatial context and under
commonly occurring conditions, because the sampling units are distributed more evenly across the
sampled area (Bellhouse and Sutradhar, 1988; Dunn and Harrison, 1993; D’Orazio, 2003; Ambrosio et
al., 2004).

The systematic sample is in particular preferable as a sampling method when nearby sampling
units show a high degree of positive correlation (Cochran, 1977). This was demonstrated by Flores et
al. (2003) who compared the relative efficiency of systematic sampling to simple random sampling
frompopulationswith knownproperties. The study demonstrated that systematic samplingwasmore
efficient than simple random sampling and showed that the improvement in efficiency was related
to sampling distance. The relative efficiency of systematic sampling was higher when the sampling
distance was short and lower when the sampling distance increased. The change in relative efficiency
was closely related to the spatial autocorrelation.

An undesirable property of systematic sampling is that there is no known method allowing
unbiased estimation of the uncertainty in these surveys. The higher precision achieved by systematic
sampling may therefore go unnoticed. The reason for this shortcoming is found in the systematic
sample design, where the population – at least in theory – is divided into a number of partitions.
Each partition consists of the population elements included in the sample when a particular starting
point is selected. There is a finite set of starting points representing a finite set of partitions (Madow
and Madow, 1944). Each and every population element is assigned to one (and only one) partition.
When a partition is included in the sample, then every population element in this partition is included
(Thompson, 2002 pp. 129–131). A simple example is illustrated in Fig. 1 where a population of grid
cells is divided into four partitions labeled A, B, C and D.

Systematic sampling is (usually) limited to drawing a single partition by choosing a single starting
point. This is equivalent to a sample size of n = 1 partitions. Ordinary variance estimation methods
require a denominator of n − 1 and can therefore not be applied (Thompson, 2002).

The conservative approach for handling uncertainty in a systematic sample is to calculate the
variance using the estimators intended for simple random sampling (Milne, 1959; Cochran, 1977;
Wolter, 1984, 2007). This is usually a safe approach and will in certain situations be both acceptable
and commendable, but has a tendency to overestimate the variance (McRoberts et al., 2016). A
large number of alternative, more or less biased, variance estimation methods have been tested and
reported by various authors (Matèrn, 1947, 1960;Wolter, 2007; Gallego and Delincé, 2010; Aubry and
Debouzie, 2000; Dunn and Harrison, 1993; D’Orazio, 2003; Opsomer et al., 2012).

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. A population of 36 tiles divided into partitions for a sampling interval of d = 2 (every second tile in both cardinal
directions). The result is d2 = 22

= 4 partitions (A, B, C and D). The systematic random sampling approach is to randomly
choose one of these partitions.

Several of the estimators were compared in two papers by Aune-Lundberg and Strand (2014)
and McGarvey et al. (2016). The results from these two studies are inconclusive. Aune-Lundberg and
Strand (2014) found post-stratification using small strata to be the most efficient approach, while
McGarvey et al. (2016) found an estimator using a correction factor based on the measurement of
spatial autocorrelation to bemost efficient. Unfortunately, the two studies do not include each other’s
recommended estimator. Theywere also carried out in twodifferent environmentswith different data
qualities: Aune-Lundberg and Strand (2014) used real-world data covering an entire country while
McGarvey et al. (2016) used a large, synthetic dataset.

A recent addition to the literature on variance estimation methods for systematic spatial sampling
is (Brus and Saby, 2016) who compared five estimation methods. In their study, they found that the
method recommended by McGarvey et al. (2016) performed less well. Instead, they found that a
model-based prediction using values extracted from the semivariogram was the best approach. They
also found that post-stratification using amethod fairly similar, but not identical, to the one proposed
by Aune-Lundberg and Strand (2014) was a reasonable approximation, and in some situations also
better than the model-based approach.

The objective of the current study is to compare the three estimators recommended respectively
by Aune-Lundberg and Strand (2014), McGarvey et al. (2016) and Brus and Saby (2016). This is done
by applying all three estimators to samples drawn from a single, large dataset with known properties.

2. Material and methods

2.1. Material

The data used in the study were compiled from a detailed national land cover map of Norway. The
minimummapping unit is around 1.5 hectare with a geometric accuracy of 20m. Themap is available
on the internet (http://kilden.nibio.no—last accessed on June 23rd 2017). The study areawas the entire
Norwegian mainland, totally 324,099 km2. The study used a land cover classification with seven land
cover classes listed in Table 1.

The land coverwas partitioned into quadratic one square kilometer tiles based on the standardized
statistical grid for Norway provided by Statistics Norway (Strand and Bloch, 2009), resulting in a
population consisting of N = 350,514 regular tiles. By using a GIS overlay function, the acreage of
each land cover class was calculated for each tile (grid cell) as percent (%) of the tile. Since the entire
population was known, key statistics (mean and variance of the coverage per tile) could be computed
for every land cover class. The result is found in Table 1.
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Table 1
Descriptive statistics (sum, population mean and population variance) for the seven land use/land cover types in the gridded
version of the national land use/land cover map AR50. N = 350,514 grid cells.

Land cover class N Sum (km2) Mean µ (%) Variance σ 2

1 Built-up land 350,514 1,859.25 0.5304 21.049
2 Agriculture 350,514 12,658.59 3.6114 137.354
3 Forest 350,514 126,113.46 35.9796 1340.331
4 Open land 350,514 140,148.26 39.9836 1714.754
5 Mire 350,514 21,722.85 6.1974 161.123
6 Snow/Ice 350,514 3,038.19 0.8668 59.342
7 Water 350,514 18,559.31 5.2949 200.692

2.2. Method

Systematic sampling entails splitting the population elements (in this case tiles) into a number of
discontinuous partitions following a regular design as illustrated in Fig. 1. The number of partitions
depends on the sampling interval. A sampling interval of two will result in four partitions, each
containing every second tile in both cardinal directions (as in Fig. 1). A sampling interval of three
results in nine partitions etc. In general, a sampling interval of d results in k = d2 partitions. Systematic
sampling amounts to selecting one of the partitions and the sample itself consists of all the population
elements in the selected partition.

Since a complete dataset for the entire population was available, the three variance estimators
as well as other relevant parameters were calculated for every partition in the population. For each
sampling interval d, the population was subdivided into partitions by randomly choosing a block of
d by d tiles to initiate the partition. Each of the k = d2 tiles in this block was used as the starting
point for one partition, by including every dth grid cell in both cardinal directions from the initial tile.
Each partition is a possible systematic random sample, and the k partitions defined by the exercise
included all the possible partitions in the population (based on the standardized grid and a sampling
intensity using d as the sampling interval).

The study first compared variance estimators for all seven land cover classes at the sampling
interval 10 km. This is identical to the sampling interval used in Aune-Lundberg and Strand (2014).
The same variance estimatorswere also compared for one particular land cover class over all sampling
intervals in the range 2–20 sampling units (in this case representing distances from 2 up to 20 km).
The land cover class Mire and peat bog was used as the example for the latter part of the study. The
spatial distribution of the land cover class Mire and peat bog is shown as a thematic map in Fig. 2.

With seven land cover classes and d2 partitions for each sampling interval in the range 2–20 km,
the total number of partitions in the studywas 20,083. The k = d2 = 100 candidate partitions for each
land cover class at the sampling interval d = 10 km consisted of approximately 3505 tiles each. For
the land cover class Mire and peat bog in particular, all candidate partitions were used. This approach
gave

∑20
d=2d

2
= 2869 partitions of variable sizes for comparing the estimators at different sampling

intervals.
The (exact) systematic sample variance (VAR (x) SYS) for a certain land cover type at a certain

sampling interval was determined empirically from the k candidate partitions at that particular
sampling interval.

VAR (x) SYS =
1
k

∑k
j=1

(
x̂j − x

)2 where

x =
1
N

N∑
i=1

xi

x̂j =
1
nj

nj∑
i=1

xi.

N is the total number of tiles in the entire population, k is the number of candidate partitions and
nj is the number of tiles in partition j. The calculation is based on the assumption that x̂j is an unbiased
estimator of x. This assumption was verified empirically.
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Fig. 2. Distribution of the land cover class Mire and peat bog in Norway.

Several estimators of variance were calculated for every sample. The estimators were VAR (x) SRS,
VAR (x) ST4, VAR (x) V08 and VAR (x)MB. VAR (x) SRS is the naïve estimator calculated by treating the
sample as a simple random sample. This estimator was included as a reference. VAR (x) ST4 is the
estimator recommended by Aune-Lundberg and Strand (2014) and VAR (x) V08 is the estimator found
to be most efficient by McGarvey et al. (2016). VAR (x)MB is the model-based estimator proposed by
Brus and Saby (2016)

The naïve estimator was calculated as

VAR (x) SRS =
1
n
s2x =

1
n (n − 1)

n∑
i=1

(
xi − x̂

)2
where n is the sample size and

x̂ =
1
n

n∑
i=1

xi.
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This estimator is only correct when the observations are independent and identically distributed
(IID), an assumption often violated in spatial samples due to the presence of spatial autocorrelation.
The estimator was included in the study as a reference only.

VAR (x) ST4 is a local estimator calculated using non-overlapping strata where each stratum is
a two by two units neighborhood of sample tiles. The estimation method is the approach used in
stratified random sampling

VAR (x) ST4 =

b∑
j=1

w2
j

s2j
qj

(
Nj − kj

)
Nj

where b is the number of strata, qj is the number of cases in stratum j (mostly four) and s2j is the
observed variance inside stratum j calculated as

s2j =
1
qj

qj∑
i=1

(
xi − x̂j

)2
.

Notice that the divisor is set to qj (and not to qj − 1) since the objective is to calculate the actual
variance in the stratum, and not to find an unbiased estimate of the population variance. Furthermore,
Nj is the population size in stratum j (in our case always set to d2 × qj since each tile in the sample
‘‘represents’’ d2 tiles) and:

wj =
Nj

N
or (if N is unknown) wj =

qj
n

where N is the total number of tiles in the population and n is the sample size.
VAR (x) V08 is an estimator originally studied by Cochran (1946) and retrieved by McGarvey et al.

(2016) fromWolter (2007, p. 302) where it is called v8. The estimator is calculated as

VAR (x) V08 =
s2x (N − n)
n (N − 1)

[
1 +

2
ln

(
ρ̂d

) +
2(

ρ̂−1
d − 1

)]
if ρ̂d > 0

VAR (x) V08 =
s2x (N − n)
n (N − 1)

if ρ̂d ≤ 0

where s2x/n is the naïve estimator, identical to VAR (x) SRS above.
The parameter ρ̂d used in VAR (x) V08 is the estimated spatial autocorrelation at distance d.
Spatial autocorrelation is the phenomenon that observations taken close to each other tend to be

more similar than observations taken further apart (Legendre, 1993) and that this effect is a function
closely related to distance. A global (non-spatial) measurement of autocorrelation is the intra-class
correlation between all pairs of observations in a sample (or a population).

ρ =
1

n (n − 1) s2

n∑
i

n∑
j̸=i

(xi − x)
(
xj − x

)
.

The intra-class correlation is identical to the more familiar bivariate correlation coefficient, but
involves only one variable. The range is the same (from+1 to−1, with 0 representing no correlation).
Spatial autocorrelation is intra-class correlation calculated as a function of separation distance. The
intra-class correlation is, for this purpose, calculated for all the pairs of observations separated by the
sampling distance d orwith separation distancewithin a particular range h = {d1..d2}. In the last case,
h is called a lag.

ρh =
1

m (m − 1) s2x

m∑
i

m∑
j̸=i

(xi − x)
(
xj − x

)
where m is the number of pairs {xi, xj} separated by a distance within lag h. ρ̂h is the estimate of ρh
calculated using the available data from the sample.
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The spatial autocorrelation function is a graph showing ρh along the vertical axis, as a function
of the separation distance h (represented along the horizontal axis). This graph is known as a
correlogram, and was used to visualize the autocorrelation function. The empirical autocorrelation
ρ̂h was calculated for each sample using the sample data and used in the calculation of VAR (x) V08.

The variance estimator VAR (x)MB is explained in Brus and Saby (2016). It is a model-based
estimator calculated using values retrieved from the semivariogram (De Gruijter et al. 2006). The
semivariogram resembles the correlogram, but the autocorrelation ρ̂h is replaced by the semivariance
γ̂h. The semivariance of a pair of observations x1 and x2 is γ̂x1,x2 =

1
2 (x1 − x2)2 and the overall

semivariance at a particular distance (or range) h is themean semivariance of the pairs of observations
separated by that particular distance (or in that lag):

γh =
1
2m

m∑
i=1

(xi1 − xi2)2

where m is the number of pairs {xi1, xi2} separated by a distance falling within lag h. This empirical
semivariance γ̂h is considered to be an estimate of a theoretical semivariance γh, usually expressed as
a function of h. The empirical semivariogram is a graph showing γ̂h along the vertical axis and the
corresponding separation distance h along the horizontal axis. An example is found in Fig. 7. The
semivariogram was compiled for each land cover class, based on the available data for the entire
population.

The variance estimator VAR (x)MB for a particular land cover class and sampling distance was
calculated as

VAR (x)MB = γA − Ep [γSY ]

where γA is the mean semivariance between two random points inside the study area, irrespective of
separation distance, obtained by Monte Carlo simulation of a very large number of pairs of randomly
located points (located inside the study area). The semivariance for each pair was retrieved from the
semivariogram based on the distance between the points. The value γA was calculated as

γA =
1
M

M∑
i=1

γ̂i

whereM is the number of pairs in the simulation and γ̂i is the semivariance for the distance separating
the points in pair i.M has to be sufficiently large to allow γA to converge towards a stable value.

Ep [γSY ] is the ‘‘estimated p-expectation of the estimated mean semivariance within the sampling
grid’’ (Brus and Saby 2016, p. 79):

Ep [γSY ] =
1
k

k∑
i=1

1
n2
i

ni∑
a=1

ni∑
b=1

γ̂ab

where k = d2 is the number of partitions at sampling distance d and ni is the number of sample
points in partition i. γ̂ab is the semivariance for the distance separating observations a and b. When
the study area is irregular, as in this study, ni will vary somewhat from one sample to another. Clearly,
this approach requires that all the locations in the population are known, although the attribute value
of most of the locations remains unknown.

3. Results

The exact (SYS) and mean estimated (SRS, ST4, V08 and MB) variance of x̂ for seven land cover
classes at sampling interval 10 km are found in Table 2, summarizing the results from all the 100
partitions at this sampling interval. The table shows how SRS overestimate the true variance (SYS)
while ST4 yield results fairly close to SYS. The results from MB are also close to SYS. Both ST4 and
MB underestimated the variance for built-up and agricultural land. ST4 was in both cases the best
estimate of the two. For the five other land cover classes, both ST4 andMB overestimated the variance.
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Table 2
Exact (SYS) and mean estimated (SRS, ST4, V08 and MB) variance of x for seven land cover classes at sampling interval 10 km,
along with the (exact) spatial autocorrelation for this sampling interval.

Land cover class VAR (x) SYS VAR (x) SRS VAR (x) ST4 VAR (x) V08 VAR (x)MB ρ10

1 Built-up land 0.0050 0.0059 0.0041 0.0020 0.0034 0.1311
2 Agriculture 0.0213 0.0388 0.0235 0.0087 0.0180 0.2518
3 Forest 0.1217 0.3786 0.1737 0.0549 0.1813 0.4139
4 Open land 0.1440 0.4844 0.2148 0.0654 0.1835 0.4415
5 Mire 0.0186 0.0455 0.0262 0.0104 0.0236 0.2422
6 Snow/Ice 0.0062 0.0168 0.0096 0.0039 0.0124 0.2386
7 Water 0.0341 0.0567 0.0400 0.0229 0.0441 0.0685
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Fig. 3. Distribution of the variance of the mean coverage of Mire and peat bog, estimated with three methods (SRS, ST4 and
V08) from a population divided into 100 partitions by systematic sampling on a 10 by 10 km frame. The exact variance for the
mean of the 100 systematic samples (VAR (x) SYS) is shown as a reference line at 0.0186.

ST4 gave the best estimate for three of these land cover classes, while MB was best for the remaining
two classes. V08 underestimated the variance for all seven land cover classes.

A full comparison of the distribution of variance estimates for the 100 partitions at sampling
interval 10 km for the land cover typeMire and peat bogs is shown in Fig. 3. The exact variance for the
mean of the 100 systematic samples (VAR (x) SYS) is 0.0186. This value is shown as a dotted horizontal
line in the graph. The estimates using the SRS method return results in the range 0.04 to 0.05, well
above the correct value. The ST4method returns estimates in the range 0.02 to 0.03, slightly above the
correct value. The V08method returns estimates close to 0.01, which is below the correct value. MB is
not included in the graph, since MBwas calculated using the semivariogram for the entire population
and not individual semivariograms for each partition. The single estimate of MB fell inside the range
of ST4.

The variance estimates based on SRS, ST4 and V08 were standardized against SYS e.g.

VAR (x) SRSstandardized = 100 + (VAR (x) SRS − VAR (x) SYS) × 100/VAR (x) SYS

in order to facilitate comparison across the seven land cover classes. The result (Fig. 4) shows the
distribution of these three estimators relative to SYS for all seven land cover types and with sampling
distance 10 km. SYS is represented as the variance = 100 line. Each land cover class is representedwith
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Fig. 4. Distribution of the variance of themean coverage of seven different land cover types, each estimatedwith threemethods
(SRS, ST4 and V08) from a population divided into 100 partitions by systematic sampling on a 10 by 10 km frame. The estimates
are standardized against the exact variance for themean of the 100 systematic samples (VAR (x) SYS) set to 100. Each land cover
type is encircled with a dashed line.

a triplet of bar graphs, encircled with a dashed line. Each triplet has the same general interpretation
as the three bars in the bar graph in Fig. 3, explained above. The triplet representing Mire and peat
bog is number five from the left and is identical to the bar graph in Fig. 3, except that the variances
are standardized against VAR (x) SYS = 100.0.

Fig. 4 shows that V08 underestimated the variance for all seven land cover types, for this dataset
and at sampling interval 10 km. ST4 underestimated the variance for built-up land and occasionally
also for agricultural land. For built-up land, even SRS occasionally underestimated the variance from
systematic sampling in this dataset and at the sampling interval 10 km. In most situations, though,
ST4 slightly overestimated the variance, but less so than SRS. For six out of seven land cover classes,
ST4 was also a more accurate estimate than V08. The exception was the land cover class Ice and snow
where V08was the best estimate in terms of approximation of the true variance. Still, V08 did also for
this class lead to an underestimation of the true variance. MB was not included in Fig. 4.

The exact (SYS) and mean estimated (SRS, ST4, V08 and MB) variance of x̂ for the land cover
class Mire and peat bogs for sampling intervals over the whole range from 2 to 20 km are found
in Table 3. The table also includes the exact spatial autocorrelation for Mire and peat bogs at each
sampling distance calculated from the entire dataset. SRS usually returned the highest estimates,
generally overestimating the variance. V08 usually gave the lowest estimates,mostly underestimating
the variance. ST4 and MB gave the best estimates. At sampling distances less than 5 km, ST4 and MB
both overestimated the variance, and ST4 was the more precise of the two estimators. The pattern
was inconsistent at sampling distances above 5 km. Here, MB usually gave slightly lower estimates
than ST4 (but not always), but none of the two estimators were consistently better than the other.

(Notice that the column MPB in Table 3 refers to an alternative to V08 explained in the Discussion
below. The column has been included in Table 3 in order to avoid an extra table in the paper.)

Part of the data from Table 3 is visualized in Fig. 5 where the exact variance (SYS) is drawn as
a thick, solid line. The line shows how the empirically determined variance of systematic sampling
is increasing with increasing sampling distance (and the samples correspondingly include a smaller
part of the population). The naïve estimator, SRS, is systematically overestimating the variance of the
systematic sample, and more so as the distance is increasing. SRS is seen as a dotted line marked
with small squares well above the other lines in the graph. V08, on the other hand, systematically
underestimates the variance. V08 is seen as a dotted line marked with small ‘+’ symbols well below
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Table 3
Exact (SYS) and mean estimated (SRS, ST4, V08 and MB) variance of x for the land cover class Mire and peat bogs at sampling
intervals ranging from 2 to 20 km, along with the (exact) spatial autocorrelation for the sampling intervals. There is no sam-
pling at 1 km intervals since the sampling units are 1 km2 plots. MPB is a variance estimate using the same general method
as V08, but with a correction factor calculated from the empirical correlogram.

Sampling interval
(km)

VAR (x) SYS VAR (x) SRS VAR (x) ST4 VAR (x) V08 VAR (x)MB VAR (x)MPB ρd

0 1.000
1 0.707
2 0.0002 0.0014 0.0005 0.0001 0.0021 0.0000 0.526
3 0.0006 0.0037 0.0016 0.0005 0.0044 0.0002 0.440
4 0.0028 0.0069 0.0034 0.0011 0.0040 0.0009 0.386
5 0.0051 0.0110 0.0057 0.0019 0.0067 0.0020 0.346
6 0.0109 0.0161 0.0085 0.0030 0.0094 0.0038 0.315
7 0.0091 0.0221 0.0121 0.0044 0.0108 0.0063 0.291
8 0.0138 0.0290 0.0161 0.0062 0.0130 0.0095 0.270
9 0.0158 0.0368 0.0209 0.0082 0.0158 0.0135 0.254

10 0.0186 0.0455 0.0262 0.0104 0.0236 0.0184 0.242
11 0.0326 0.0552 0.0326 0.0130 0.0242 0.0239 0.232
12 0.0420 0.0657 0.0390 0.0159 0.0343 0.0302 0.224
13 0.0421 0.0772 0.0468 0.0191 0.0358 0.0373 0.216
14 0.0444 0.0897 0.0533 0.0227 0.0497 0.0453 0.208
15 0.0607 0.1030 0.0605 0.0265 0.0493 0.0542 0.202
16 0.0687 0.1173 0.0702 0.0308 0.0602 0.0640 0.196
17 0.0746 0.1325 0.0791 0.0351 0.0702 0.0747 0.193
18 0.0920 0.1485 0.0899 0.0399 0.0780 0.0856 0.189
19 0.1368 0.1656 0.1028 0.0450 0.0979 0.0977 0.185
20 0.1257 0.1835 0.1076 0.0504 0.1225 0.1107 0.182

the other lines in the graph. ST4 seems to represent a fairly good approximation to SYS over thewhole
range of different sampling distances. ST4 is represented by the dotted line close to the SYS line, and
marked with small triangles. (Notice that Fig. 5 also includes a graphical line called MPB and marked
with small circles. MPB refers to an alternative to V08which is explained in the Discussion below. The
graphics has been included in Fig. 5 in order to avoid an extra figure in the paper.)

The spatial autocorrelation reported in Tables 2 and 3 are exact figures calculated from the entire
population. These will not be available in a sampling survey where only part of the population is
known. The calculation of V08 relies on an estimate of the spatial autocorrelation calculated from the
observations included in the sample. All calculations of V08 in this study are done that way, using a
spatial autocorrelation calculated from the sample itself. Clearly, this approach is using an estimate
of the spatial autocorrelation which itself involves some uncertainty. This uncertainty is visualized
in Fig. 6 where the distribution of the estimated spatial autocorrelation for Mire and peat bog at
each sampling interval is shown as a boxplot. The figure illustrates how the uncertainty of the spatial
autocorrelation estimate is increasing as the spatial autocorrelation itself is decreasingwith increasing
sampling distance.

4. Discussion

The efficiency and accuracy of a spatial sampling method and the associated statistical inference
are determined by the properties of the population, the sampling strategy and the estimator that is
used (Wang et al., 2013). The properties of the population are therefore of particular interest in spatial
sampling and statistical inference. The properties of a population can be independent and identically
distributed (i.i.d.), spatially autocorrelated or characterized by spatially stratified heterogeneity.

The data used in the present study are not iid. This is demonstrated by the autocorrelation
coefficients (as in Tables 2 and 3) and the semivariograms (as in the example in Fig. 7).

Systematic sampling is expected to be more efficient than simple random sampling when auto-
correlation is present. The data used in this study therefore represents a situation where systematic
sampling is suitable. The relative advantage of the systematic sampling approach is related to the size
(and probably also the range) of the autocorrelation effect.
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Fig. 5. Variance of the estimated mean coverage of Mire and peat bog from systematic sampling with sampling intervals in
the range 2 to 20 km. The exact variance (SYS) is shown as a solid line, together with estimated variance using four different
methods (STS, ST4, V08 and MPB) explained in the text.
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Fig. 6. Spatial autocorrelation for Mire and peat bog estimated using the available systematic samples at sampling intervals
ranging from 2 to 20 km. Box plots are used to visualize the distribution of the estimates at each sampling distance. Spatial
autocorrelation for neighboring samples (separation 1 km) is calculated from the entire population.

The semivariogram (an example is found in Fig. 7) for all seven land cover types in this study
are rather complex. They exhibit signs of drift and periodicity. This impression is supported by
maps showing the regional distribution of the land cover types (an example is found in Fig. 2). The
explanation may be related to spatially stratified heterogeneity, since it is reasonable to expect that
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Fig. 7. Empirical semivariogram for the land cover class Mire and peat bog.

the distribution of land cover types is closely related to (e.g.) elevation above sea level, distance from
the coast, latitude and climatic regions, resulting in spatially stratified heterogeneity.

Wang et al. (2016) have devised a method to measure spatially stratified heterogeneity, which
could be used to gain more profound insight into the spatial properties of the data. The objective of
the present study is, however, to compare variance estimation methods. In depth descriptions of the
properties of the population falls outside the scope of the paper and is therefore not elaborated, but
should still be considered when the results are interpreted.

The previous study by McGarvey et al. (2016) did not compare ST4 and V08, but found V08 to be a
fairly precise estimator of the variance of a systematic sample when compared to a large number of
other estimators. V08did, however, not accomplishwell in the present study. This is also in accordance
with results reported by Brus and Saby (2016), who found that V08 (referred to as Moran in their
paper) underestimated the variance.

The explanation for the divergence between results of the present study and the results reported
by McGarvey et al. (2016) is probably related to the datasets used in the two studies. McGarvey et al.
(2016) used synthetic datasets with strict control of how the population was generated. The present
study is carried out with empirical data retrieved from a national geospatial database, entailing data
with an irregular and erratic behavior.

Table 3 lists the true spatial autocorrelation at each sampling interval, calculated using the entire
population. These figures will not be available in a sampling situation, where an estimated value for
the spatial autocorrelation has to be computed from the sample alone. The result is seen in Fig. 6
where the distribution of the estimated spatial autocorrelation at each sampling interval are shown as
boxplots. The estimated spatial autocorrelation is often different from the true spatial autocorrelation,
and more likely to be so as the sampling interval is increasing. The correction factor arising from the
spatial autocorrelation will vary accordingly: An estimated spatial autocorrelation of 0.3 results in a
correction factor close to 0.20 while an estimated spatial autocorrelation of 0.2 results in a correction
factor close to 0.26.

A second and possibly more serious source of differences between the results obtained with V08
here and in McGarvey et al. (2016) is the fact that the correction factor proposed by Cochran (1946)
and used in V08 is based on the assumption that the spatial autocorrelation function has the form
ρd = e−λd. As seen in Fig. 6, this is not the case here. The shape of the spatial autocorrelation function
for Mire and peat bog in Norway is closer to ρd = d−0.6 There is actually no reason to expect the
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correction factor based on the explicit assumption of a particular exponential spatial autocorrelation
function to work in situations where this assumption is violated. It is therefore reasonable to assume
that V08 produced good results in the study carried out by McGarvey et al. (2016) – as well as in
the older studies by Osborne (1942) and Matèrn (1947) – because the assumption about the spatial
autocorrelation function was correct for the data used in those studies.

It is possible to construct an adjusted V08 by using a new correction factor based on the spatial
autocorrelation function ρd = d−0.6. Starting from the relationship VAR(x)SYS

VAR(x)SRS = f (ρd), simple curve
estimation using SPSS R⃝ shows that for Mire and peat bog f (ρd) = 1.4e−4.07ρ̂d and an alternative
to V08 for Mire and peat bog is thus VAR (x)MPB =

1.4
n s2xe

−4.07ρ̂d . The mean VAR (x)MPB for each
sampling distance is listed in Table 3 and showngraphically as a linemarkedwith small circles in Fig. 5.
VAR (x)MPB slightly underestimates VAR (x) SYS, but is fairly similar to VAR (x) ST4 at small sampling
distances (where the spatial autocorrelation is high) and slightly more conservative than VAR (x) ST4
at larger sampling distances, where the latter tends to underestimate the variance. VAR (x)MPB
always provides better estimates than VAR (x) V08. The problem is, however, that VAR (x)MPB relies
on detailed knowledge of the population and is only valid for this particular survey of Mire and peat
bog in Norway.

The conclusion with respect to V08 is that this estimator, and similar estimates using the auto-
correlation itself as a correction parameter, depends on the shape of the autocorrelation function.
This function is unknown in most situations where a systematic sampling strategy is used. Without
sufficient knowledge about the particular autocorrelation function for the dataset at hand, V08 cannot
be usedwithout risking underestimation of the true variance. Evenwhen the autocorrelation function
is known, it is not sufficient to calculate the autocorrelation value for the sampling interval and plug
it into V08. The entire correction function has to be adjusted in order to fit the actual shape of the
autocorrelation function.

The model-based estimator MB did well in this study, even with very complex semivariograms for
all seven land cover classes. An example is the semivariogram for the land cover class Mire and peat
bog shown in Fig. 7. The semivariogram exhibits signs of autocorrelation, but also drift and periodicity.

The function for distances h in the range 0–50 km is γ (h) = e
(
4.9− 0.8

h

)
but other functions have to be

fitted for other parts of the graph.
The number of random pairs that had to be drawn in order to stabilize the value of γA for use in the

prediction of MB was very large. The requirement may be lower with a less complex semivariogram,
but it is in any case necessary to ensure that the estimated γA is converging towards a stable value.
MB may therefore be quite demanding with respect to computational power.

The study was carried out with a single semivariogram for each land cover class, compiled using
the entire population. This approach does not document how the MB estimate will vary when the
semivariogram is determined by using data from the sample instead of the entire population. Figs. 3
and 4 show how the ST4 estimate varies between samples. The estimated MB was close to the mean
estimated ST4, but the study does not document how much MB itself can vary. Further studies are
recommended in order to shed light on this issue.

Brus and Saby (2016) found that MB could be approximated using post-stratification, with an
estimator (STSI) resembling ST4. The difference between STSI and ST4 is that the post-stratification
in ST4 is carried out with fixed segments of up to four sample units, while the post-stratification in
STSI relies on k-means partitioning to divide the available observations into even smaller strata of
two sample units each. The k-means partitioning is available in the R-package spcosa (Walvoort et al.,
2010). The fact that MB can be approximated with a post-stratification estimator fairly similar to ST4
supports the impression that MB and ST4 are comparable and interchangeable as estimators of the
variance in systematic samples.

5. Conclusion

This study has compared three estimators of the variance of parameters (e.g. mean value) de-
termined using systematic random sampling: One estimator was based on post-stratification of the
data (ST4), one was using a correction factor based on the observed spatial autocorrelation (V08) and
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one was model-based using data retrieved from the semivariogram (MB). All three estimators have
recently been tested and recommended in peer-reviewed and published papers (Aune-Lundberg and
Strand, 2014; McGarvey et al., 2016; Brus and Saby, 2016). The contribution of the present study is
that the estimators are compared using the same data.

In the present study, ST4 turned out to be fairly accurate or slightly conservative while V08
consistently underestimated the variance. The most likely explanation of the difference between the
stratification approach (ST4) and V08 is that V08 relies on assumptions about the spatial autocor-
relation function that is violated by the empirical data used in the experiment. The testbed was a
real, national dataset retrieved from the Norwegian geospatial data infrastructure. The results do not
disprove V08 as possibly the best estimator when the assumption about the spatial autocorrelation
function having the form ρd = e−λd is satisfied, but this assumption cannot be taken for granted.
ST4 and MB are both better choices than V08 when the assumption about the shape of the spatial
autocorrelation function is violated. The safe approach is therefore to use ST4 or MB.

The results obtained from MB and ST4 were quite similar. It is, however, not known how much
MB will vary when the semivariogram is compiled from the sample instead of the population. A new
study where MB is calculated using a semivariogram compiled from the sample itself, is therefore
recommended in order to examine how sensitive MB is to inaccuracies in the autocorrelation model.

The conclusion of the current study is that ST4 and MB both can be recommended as variance
estimators for systematic spatial samples. Themain difference is that ST4 can be usedwhen the spatial
autocorrelation structure is unknown, while MB requires that a sufficiently accurate semivariogram
is available.
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