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Abstract

This article considers the use of a hybrid instrument to regulate

fisheries, comparing this instrument with quantity control and linear

taxation in regards to economic yields and the risk of resource deple-

tion. Hybrid instruments have shown to be central in studies with

static models but have hardly ever been explored in the context of dy-

namic fisheries. A numerical example concerned with a single-species

demersal fishery where the stock estimate is uncertain indicates that

a combination of price and quantity control in the form of a strictly

convex tax on landings is clearly superior to quantity control. When

cost uncertainty is involved, it can also prove more effi cient than the

price instrument.

JEL classification: D82, H21, Q22

Keywords: Fisheries management; Asymmetric information; Uncer-

tainty; Quotas; Taxes; Hybrid instruments; Dynamic optimization

1 Introduction

Due to the presence of uncertainty and asymmetric information, the man-

agers of fisheries struggle, in practice and theory, with how to secure ef-

ficiency. Decisive for the biological and economic outcome is the choice

of control instruments. While direct quantity regulation is most common,

economists often prefer to indirectly control quantities using prices (Jensen,

2008). The issue of comparing linear landing fees with quotas in fisheries

management has been addressed in earlier studies (Koenig, 1984a, 1984b;

Anderson, 1986; Androkovich and Stollery ,1991, 1994). Of current interest
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in this debate is a paper by Weitzman (2002) where he proves the superiority

of landing fees over quantity controls when decisions must be made in the

face of inaccurate stock estimates. One of Weitzman’s major points is that

greater ecological uncertainty seems to enhance the relative performance of

the price instrument.

This paper adds to Weitzman’s (2002) study by also incorporating eco-

nomic uncertainty. When Jensen and Vestergaard (2003) undertook a similar

investigation, they aimed to generalize Weitzman’s (1974) propositions about

"Prices vs. Quantities" to dynamic fisheries. They found Weitzman’s ana-

lytical method to be applicable for schooling fisheries where the costs are

additively separable in catches and stock size.1 For demersal instances, how-

ever, where harvesting costs are stock dependent, Jensen and Vestergaard

(2003) found an analytical approach intractable.2 Consequently, when Han-

nesson and Kennedy (2005) investigated this case, they used simulations to

generate results. They showed that either instrument can prove superior over

the other depending on the parameter values of the fishery model.

I want to extend the study of how various instruments compare for de-

mersal fisheries. Apart from considering price and quantity control, I will

examine a third alternative for the management of dynamic fisheries: the

hybrid of these two controls or, more precisely, a strictly convex tax on

landed fish. My emphasis on investigating a hybrid instrument is motivated

by the fact that such regulation tools have shown to be central in studies with

static models (e.g., Roberts and Spence, 1976; Weitzman, 1978; Kaplow and

Shavell, 2002; Pizer, 2002). More importantly, a recent paper by Berglann

(2012) shows that a strictly convex tax on total quantity can be shared among

parties in a way that relieves them from strategic considerations by incor-

porating a share quota parameter in the tax function. In a fishery context,

and in the view of the planner, this share quota parameter is interpreted as

the expected number of catches by a vessel divided by the total number of

expected catches in the fishing industry. Because the total tax bill for each

1See also Hansen’s (2008) comments on Jensen and Vestergaard’s (2003) article.
2McGough et al. (2009) found analytical results for a dynamic stochastic fishery in

this case by linearizing the model around the deterministic steady-state. Thus, the model
can not for instance be used to determine corner solutions.
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vessel becomes a strictly decreasing function of the individual share of the

quota, these shares are wanted and tradable. Then, by employing a market

with a fixed supply of shares, competitive behavior will ensure an ex post

equilibrium where fishers acquire optimal share holdings. For a given tax

function, the distribution of tax payments will therefore be optimal.3

An additional motivating factor for considering hybrid instruments is the

appeal they have in the control of multispecies fisheries. Here, flexibility

is often demanded because fishers targeting certain species frequently face

the dilemma that they have insuffi cient quotas to cover other jointly caught

species.4 For instance, the "deemed value" system employed by the New

Zealand authorities to manage (multispecies) fisheries is a hybrid quota-tax

system that allows each vessel to land catches above its quota for a species if

the owner pays a fee for each unit of catch in excess of his quota holding. For

each species this per-unit charge increases in 20% increments for each 20% by

which a skipper’s catch exceeds his quota holding (Holland and Herrera, 2006;

Sanchirico et al., 2006; Marchal et al., 2009a, 2009b). Embedding a strictly

convex tax on landings with a quota parameter, as proposed by Berglann

(2012), and doing this for each species constitutes a multispecies fishery

control regime that can be viewed as a refinement of the "deemed value"

system. By taxing the total quantity of catches landed by a fisherman (and

not only catches in excess of his quota holdings), he may find it profitable

to stop fishing before his quota is reached for one type of species, while for

another species he may choose to exceed the quota holding. Another fisher

may make the decision to stop with a totally different and opposite final

catch composition. Thus, with an industry comprising of a large number of

vessels, the aggregate of landings at the end of the year might be closer to

the TAC (or the expected harvest in this tax context) for each species, at

least in comparison to the biased outcome that may occur by employing the

“deemed value”method.
3The given tax function, however, is second-best because the fishery authority has to

ex-ante estimate the best tax function parameters under uncertainty.
4In the long run, dilemmas like these might jeopardize the legitimacy and effectiveness

of a regulatory system as a whole (Spence, 2001). Among other things because of the
economic incentive to discard unintended catches.
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For simplicity, this article employs a single species model and ignores de-

tails about individual vessels by focusing on the expected aggregate catches

of the fishing industry. As the vehicle for comparison I use dynamic pro-

gramming to compute the optimal expected present value over an infinite

time horizon, for each instrument. Out of concerns for safety (or ecological

resilience), I also investigate each scheme’s ability to prevent resource extinc-

tion (Roughgarden and Smith, 1996; Sethi et al., 2005; Kramer, 2009). Of

particular interest is a comparison of proportional taxation with the hybrid

scheme proposed here, with the quantity control serving as the benchmark.

The dynamic model is based on the work of Reed (1979).

As in Clark and Kirkwood (1986) andWeitzman (2002), I assume that the

stock size is known only up to probability for the manager when he specifies

the considered instrument. I also assume that the manager faces economic

uncertainty. Such uncertainty may have several sources, for instance regard-

ing to the price fishermen get for landed catches, to the effi ciency of various

fishing gear and search tools, differences in fishermen skills and experience,

and weather and local conditions at sea. To ease computation economic un-

certainty should be limited to comprise of one stochastic variable. For this

purpose I select that variable to be the cost per unit of fishing effort.

The present paper is organized as follows: Section 2 spells out the di-

verse regulation schemes. Section 3 describes the dynamic model and the

information flow, while Section 4 shows how dynamic programming serves to

optimize the instrument parameters. In Section 5, my numerical example is

introduced and results are presented that compare optimal yields under the

various regimes when stock estimates are uncertain and cost uncertainty may

prevail. Also included are results for a deterministic case. Section 6 includes

the investigation of how the instruments fare in terms of the probability of

extinction and Section 7 concludes.

2 Regulatory Instrument Specifications

Consider a fishing industry comprising a large fixed number of identical ves-

sels. These exploit one species. Time is discrete and all parameters and
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variables are non-negative. Total harvest in an arbitrary period is denoted h

and the first-hand price p for landed fish is constant. Costs per unit harvest

depends on current stock x̃ as follows: C (x̃) := c/x̃ where c is a constant

common to all parties. All skippers are profit maximizers with a time per-

spective restricted to the current period. They have all perfect knowledge of

c and current stock size x̃.

Absent regulation and capacity constraints, the fishing industry solves

the problem

max
h

{
ph−

∫ x

x−h
C (x̃) dx̃

}
= max

h

{
ph− c ln

(
x

x− h

)}
(1)

where x denotes the stock size in the beginning of the period. The necessary

(and suffi cient) condition for an interior solution of problem (1) is expressed

by the function HOA (Open Access) defined by

hOA = HOA (x, c) := x− c

p
. (2)

It is well known that outcome (2) might cause overfishing, the chief reason

being absence of intertemporal concerns. Suppose some central agent is be-

stowed with the authority to avoid the ”tragedy of commons”by regulating

the fishery. In doing so the agent must cope with blurred information on

the cost parameter c and the stock size x at the beginning of the period. I

consider three control instruments in the hands of the said authority:

• quantity limitation, denoted a Fixed Quota (FQ);

• price control, denoted a Linear Tax (LT);

• strictly convex taxation, denoted an Expected Quota (EQ).

We now define how fishermen comply with these schemes:
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2.1 The Fixed Quota (FQ) Instrument

The regulator specifies a non-negative total quota q (TAC) for the period.

The fishing industry solves the same problem as in the case with no regulation

(1) except that the quantity restriction is binding when q ≤ HOA (x, c). Thus

fishermen, regulated by the FQ instrument, select a harvest hFQ equal to

hFQ = HFQ (x, c, q) := max
(
0,min

(
HOA (x, c) , q

))
. (3)

2.2 The Linear Tax (LT) Instrument

In this scenario the regulator specifies a linear tax b on catches in the period.

With reference to (1) the industry, in this case, solve the problem

max
h

{
(p− b)h− c ln

(
x

x− h

)}
(4)

subject to the condition 0 ≤ h ≤ x. This yields a harvest hLT equal to

hLT = HLT (x, c, b) := max

(
0,min

(
x, x− c

p− b

))
. (5)

2.3 The Expected Quota (EQ) Instrument

A second order approximation of a generic strictly convex tax (without a

lump sum part) levied on the industry’s total harvest in the period is given

by

t := βh+
γ

2
(h)2 (6)

where β ≥ 0 and γ > 0 are parameters that the regulator can choose for the

period. The problem for the industry is

max
h

{
ph− t− c ln

(
x

x− h

)}
(7)
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The necessary (and suffi cient) condition for an interior solution of (7) is

p− β − γh− c

x− h = 0. (8)

The solution of (8) with respect to h yields two roots. Using the root that

ensures h < x and the condition h ≥ 0 yields a harvest hEQ given by

hEQ = HEQ (x, c, β, γ) (9)

:= max

(
0,

1

2γ

(
p− β + γx−

√
(β − p+ γx)2 + 4γc

))
.

I have now determined how fishermen comply under the various regulating

regimes. Let henceforth the integer k refer to time. For the purpose of simple

notation I hereby symbolize control parameter(s) in period k under regime

R ∈ {FQ,LT,EQ} as

uRk :=


qk in case R = FQ

bk in case R = LT

βk, γk in case R = EQ

.

Correspondingly, the harvest in period k is expressed by hRk = HRk
(
xk, c, u

R
k

)
.

Within each regime the task of the regulator amounts to find a ”best value”of

uRk under an infinite time horizon perspective. To elaborate on his problem,

I must first specify the dynamic model and tell how information is updated.

3 The Model and the Information Flow

The information flow, which is illustrated in Figure 1, resembles that assumed

by Weitzman (2002), and Clark and Kirkwood (1986). It comprises in every

period two stages and is described as follows: The exact escapement level
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sk−1 (being the stock remaining at the end of stage k− 1 after harvesting) is

common knowledge. From the end of stage k − 1 to the beginning of stage

k, breeding takes place. Breeding is accounted for by the discrete resource

model proposed by Reed (1979) given by

xk = zk−1G (sk−1) (10)

where the commonly known average stock-recruitment relationship G (·) is
multiplied by the random factor zk−1. From (10) stock size xk emerges at

the beginning of stage k. The regulator cannot however, "see" xk since zk−1
has not yet been disclosed for him.

The random variables zk−1 for all k are assumed independent and identi-

cally distributed with probability density function f (zk) = f (z) with mean

z = 1. For the regulator, the cost parameter c is uncertain, but has a known

probability density function θ (c) with mean c. Based on such statistical

information for xk and c, the manager must decide a ”best” value of the

parameter(s) uRk of his control instrument R.

Period k k+1k

sk1
Escapement
commonly
known.

 time

Breeding
zk1G(sk1). xk

Realized stochastic
variable zk1 and
thereby arriving
stock xk observed
only by fishermen.

Manager decides regulatory
parameter(s) uk

R in face of
uncertainty about xk and c.

Fishermen choose
harvest hk

R under
perfect information.

Breeding
zkG(sk).

takes
place

sk = xk  hk
R

xk+1

Figure 1. Informational sequence
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There is an information asymmetry. The fishermen are better informed.

They know the realization of zk−1 and thereby the arriving stock xk. Being

aware of costs and of current stock, they respond to the prevailing uRk during

the year by choosing their most economical level of effort and thereby a

flow of catches that at the end yields the profit maximizing harvest hRk =

HRk
(
xk, c, u

R
k

)
for that year. The escapement becomes

sk = xk − hRk , (11)

which eventually, at the end of the year k, for instance through reports on

catch and effort data, also is revealed for the regulator such that sk becomes

common knowledge. Then next period follows.

4 Optimal Management over Time

Due to the stationarity of the stochastic variables z and c, the dynamic

problem that must be solved by the manager using regime R is the same for
every period k. So without loss of generality, I can in the following consider

the regulator’s problem at the beginning of period k = 1 when s0 is known.

Stationarity implies that the problem is expressed by the Bellman equation

V R (s0) = max
uR1

E
{

Π1

(
x1, c, h

R
1

)
+ ρV R

(
x1 − hR1

)
|s0
}

(12)

where V R (·) is the optimal expected present value function, ρ ∈ (0, 1) de-

notes the discount factor and harvest is hR1 = HR1
(
x1, c, u

R
1

)
. The function

Π1 (·) is the current social economic value of the fishery for year 1, given by5

Π1

(
x1, c, h

R
1

)
:= phR1 − c ln

(
x1

x1 − hR1

)
. (13)

The expectation operator E {·} in this paper stands for the expected value
5This expression is equivalent to fishermen’s profit function under open access (1).
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of whatever is contained within the brackets. In the Bellman equation (12)

the operator pertains to x1 given s0 that has the probability density function

g (x1) :=
1

G (s0)
f

(
x1

G (s0)

)
(14)

and to the cost parameter c with probability density function θ (c).

As customary the functional equation (12) is solvable through successive

approximations and the result V R (·) is unique6.

5 Numerical Example

In my numerical example fish commands price p = 1, and the discount factor

ρ = 0.9. The stock-recruitment model that Clark and Kirkwood (1986) used

in their numerical example is given by (1− exp (−2s)). Since extinction

probabilities are of great interest and concern (see next section), I want to

extend that example to include the possibility of resource collapse. Hence, I

specify the model as

G (s) = (1− exp (−2s)) (1− exp (−10s)) . (15)

The deterministic model thus has a stable natural equilibrium at x = 0.796,

but also an unstable equilibrium point at x = 0.0776.7 Thus, the population

is doomed to extinction if the stock ever falls below the critical depensation

level given by the unstable equilibrium point.

The stochastic variables z and c are both assumed lognormally distrib-

uted. While the probability density distribution f (z) has standard deviation

σz = 0.4, and as already stated, a mean z = 1, the corresponding parameters

for the c distribution θ (c) are σc = 0.1 and c = 0.1, respectively. The follow-

ing diagrams are parametric plots with s0 as the varying parameter. They

6For s0 high enough is Π1

(
x1, c, h

R
1

)
concave. Under these circumstances the solution

is unique (Weitzman, 2002).
7These natural equilibrium points are determined by setting x = s (i.e. no harvesting),

and the equation becomes x = G (x).
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use expected recruitment E {x1} as the abscissa function, given by

E {x1} = E {x1| s0} = E {z0G (s0)} = zG (s0) = G (s0) . (16)

Figures 2, 3 and 5 displays solutions of the functional equation (12) given

in last section. The legends of these figures (and the figures that follow as

well) indicate to which system the various curves belong, ranked after the

ordinate value at the end of the abscissa axis. Figure 2 shows the optimal

expected present value function V R (s0) of the fishery for all systems R and
under the statistical parameter values I have picked out. Known costs for the

EQ and LT system, stands for that costs are given by its mean value c. The

deterministic system is equivalent to an FQ system where the value of z0 is

known and given by its mean value z = 1. The according optimal policies

appear in Figure 3. These policies are displayed in the form of targets for the

optimal expected escapement levels denoted E
{
sR∗1 |s0

}
for regime R and

calculated by

E
{
sR∗1 |s0

}
= E

{
max

(
0, x1 −HR1

(
x1, c, u

R∗
1 (s0)

))
|s0
}

(17)

where uR∗1 (s0) is the obtained optimal argument functions that are depicted

in Figure 5 and defined as

uR∗1 (s0) :=


q∗1 (s0) in case R = FQ

b∗1 (s0) in case R = LT

β∗1 (s0) , γ
∗
1 (s0) in case R = EQ

.

In addition, Table 1 and 2 list the optimal expected present value V R
(
E
{
sR∗∞
})

and the expected recruitment level G
(
E
{
sR∗∞
})
at the stationary optimal ex-

pected escapement level (defined implicitly asE
{
sR∗∞
}

:= E
{
sR∗∞

∣∣E {sR∗∞ }})
for all of my choices.
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Figure 2. Expected value vs expected recruitment.

Table 1: Expected present value at the stationary expected escapement level, V R
(
E
{
sR∗∞
})
.

Deter- FQ FQ LT / EQ LT EQ

ministic σc=0. σc=0.1 σc=0. σc=0.1 σc=0.1

1.096 0.7197 0.7438 1.105 0.9051 0.9430
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Figure 3. Expected escapement vs expected recruitment.

Table 2: Expected recruitment at the stationary expected escapement level,G
(
E
{
sR∗∞
})
.

Deter- FQ FQ LT / EQ LT EQ

ministic σc=0. σc=0.1 σc=0. σc=0.1 σc=0.1

0.5273 0.5719 0.5668 0.5186 0.5620 0.5533

Notice in Figure 3 how the constant escapement policy emerges for the

deterministic case. No harvest takes place when x1 (= E {x1}) is lower than
a specific value; when x1 (= E {x1}) is above this point, optimality dictates
that all stock in excess of the specified escapement level should be harvested.

For the two FQ cases (with uncertain x1; with and without cost uncer-

tainty), the optimal escapement diagrammed in Figure 3 are non-constant

feedback solutions, which yields quota settings q1 = q∗1 (s0) (Figure 5) depen-
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dent on the result of stock surveys. Not shown in any of these figures is that

these quota settings are slightly higher than the harvest being expected by

the manager, a gap that increases with the value of E {x1} and becomes more
dominant in the cost uncertainty case. The gap is caused by that the quota

q1 will not always be binding because the open access solution in some cases

can take over as the catch boundary. This limitation is favorable because it

happens in instances when the stock happens to be low and can then save the

stock from extinction. A high cost by itself means a low value of the fishery.

Even though, under cost uncertainty is a cost level above mean costs c more

honored because the mentioned harvest limitation is more likely to be active

than if costs are correspondingly below c. As seen in Figure 3 and Table 1,

this asymmetry in cost appreciation (from the manager’s side) is the reason

why the FQ case with cost uncertainty has a higher expected present value

than in the known cost case.
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Figure 4. Expected escapement vs expected recruitment. Close-up of Figure 3.

In Figure 4, a close-up of Figure 3, we see better the result remarked

by Clark and Kirkwood (1986): the FQ (known costs) optimal policy is not

uniformly cautious. The threshold for E {x1}, when the FQ curve leaves the
line where the optimal harvest is zero, is lower with stock uncertainty than

with exact knowledge. Clark and Kirkwood found this effect to increase with

the stock uncertainty level. The reason is that the optimal harvest, on the

boundary when the threshold is exceeded, will be low. The harvest is then

safe in the sense that the effect on the value due to the danger of extinction is

minimal. Since stock uncertainty means the possibility of the stock becoming

larger than the optimal deterministic threshold, it is optimal with a lower

threshold level than that found in the deterministic case. My result indicates

that adding cost uncertainty has the same influence on the threshold level as

increased stock uncertainty.
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With linear landing fees and known costs, the similar threshold for when

harvesting should be allowed is, as we see in Figure 3 and 4, very low. The

low threshold is caused by the possibility to instill the price in such a manner

that it will block harvesting when the stock happens to be slightly lower than

the favored value. Then, as I demonstrate in the next section, harvesting can

take place with a risk of resource collapse that approximates the chance at no

harvest. With these features it is diffi cult to perform better. Not surprisingly,

I therefore find EQ regulation to approximate LT control in this known costs

case: β1 ≈ b1 and γ1 ≈ 0 for all s0.

Figure 5. Optimal instrument parameter values vs expected recruitment.

Another observation is in Figure 5: the optimal landing fee is indepen-

dent of E {x1}8. Weitzman (2002) finds an analytical expression for such a
8For E {x1} below the treshold level is zero harvest the optimal policy. This closed

18



constant landing tax by assuming that the regulator knows recruitment x1.

He can assume common information of x1 because he predicts ahead that

the tax is equal for all x1 (= E {x1}) and then regulator does not need any
stock size estimate. I, however, must neglect that approach to make the out-

come comparable to my other cases where the optimal tax might depend on

E {x1}. Then I find (numerically) that the tax should be higher than in the
Weitzman case and furthermore, a higher expected present value.

The effect that ”only knowing x1 up to probability”makes the fishery

more valuable is peculiar but comparable to what I found above for the FQ

system where cost uncertainty made the fishery more prized. The explanation

is asymmetry in the appreciation of the uncertainty; the chance of a high

stock level is weighted more than the loss of value, due to the corresponding

chance of a lower stock level. As we see in Figure 2 for high values of E {x1}
and in Table 1, the uncertain costs case considered here even dominates the

deterministic instance.

While it is the other way round for the FQ regime the entrance of cost

uncertainty when regulating with the LT and EQ systems decreases the ex-

pected present value of the fishery. As we see in figure 5, for the LT system,

the optimal b1 control is no longer constant with respect to s0. It decreases

with expected recruitment and it is higher (which reflects a more cautious

policy) than its ”known costs” counterpart. Furthermore, contrary to FQ

regulation, the threshold for when the fishery should open increases with the

cost uncertainty level.

For the EQ instrument under cost uncertainty, the extra degree of freedom

of having one more parameter to adjust to reach an optimum is now put to

use. Figure 5 shows clearly at which E {x1}-value an initially closed fishery
should be opened up. A fishery in a closed state (which can be achieved by

many β1, γ1 combinations) is indicated here by that the γ1-value has jumped

out of the diagram to a very high (or infinite) value while the β1 parameter

value is arbitrary. We see in Figure 4 that the E {x1} threshold value falls
together with the threshold for the LT regime with identical cost uncertainty.

Returning to Figure 5 we observe, for the fishery in the open state, that the

state of the fishery is achieved with any tax choice equal to or above the constant value.
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β1 parameter decreases with expected recruitment while the γ1- parameter

first increase, and then reach a maximum level before it decreases again. A

main finding is that the EQ system is superior to the LT system. This is for

instance reflected in Figure 2 and by that the stationary expected present

value (in Table 1) is higher for the EQ system. Both the LT and EQ regimes,

however, significantly outperform the FQ system.

So far I have compared the systems in the context of the optimal expected

present value. Some of these optimal policies can be very risky with respect

to keeping the fish stock alive. As Clark and Kirkwood (1986) say about

their own findings for the FQ system: ”The counterintuitive nature of these

results may in part be a consequence of our assumption of risk neutrality,

or more precisely, of the assumption that there is no intrinsic ’preservation

value’associated with the resource stock.”

Such a ”preservation value”would have been given a higher weight in

above calculations if the discount factor had been assumed to be closer to

one. My investigation focus on how instruments fare in terms of extinction

probabilities.

6 The Probability for Extinction

The resource model (15) allows for the possibility of critical depensation.

More precisely, if the next period stock x2 falls below the unstable equilib-

rium point, the population will eventually die out. Let ψ (x2) denote the

probability density function for x2 after harvesting. Then the probability for

extinction for each initial escapement level s0, is calculated as the cumulative

distribution function Ψ (x2) for the stock to be below x2:

Pr (x2 ≤ x2) = Ψ (x2) := 1−
∫ ∞
x2

ψ (x2) dx2 (18)

where x2 = 0.0776 is the unstable equilibrium point of the model.

The probability distribution function for x2 when c is fixed, is written as
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ψ (x2 |c) =

∫ ∞
0

ψ (x2 |x1, c) g (x1) dx1 (19)

where g (x1) is the probability density function for x1 for a given s0, as defined

in (14) and

ψ (x2 |x1, c) :=
dz1 (x1, x2, c)

dx2
f (z1 (x1, x2, c)) (20)

is the probability distribution for x2 for given values of x1 and c. The function

f (·) is the probability distribution for z and the function z1 (x1, x2, c) is given

by

z1 (x1, x2, c) =
x2

G (x1 −HR1 (x1, c, uR))
(21)

whereHR1
(
x1, c, u

R) is the harvest under regulation systemR ∈ {FQ,LT,EQ}.
The wanted probability distribution function for x2 when allowing the cost

parameter c to be uncertain is now determined by

ψ (x2) =

∫ ∞
0

ψ (x2 |c) θ (c) dc (22)

where θ (c) is the probability density function for c.
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Figure 6. Probability for extinction after optimal harvesting for each system, respectively.
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Figure 7. Probability for extinction after optimal harvesting for each system, respectively.

Figures 6 and 7 show the probability of extinction on a logarithmic scale

as a function of expected recruitment E {x1} when respective optimal policies
are employed. Comparison between the two upper curves in Figure 6 reveals

that the higher expected present value I found in last section for the fishery

due to cost uncertainty in the FQ case presents itself at the expense of an

increased extinction probability.

As mentioned can the LT (and the approximately equivalent EQ) regime

with known costs be very effectively instilled. Optimal parameter settings

will block the harvest if the stock size is slightly below the optimal level,

and as we see in the lower part in Figure 6 the result is an extinction risk

Pr (x2 ≤ x2) that is only meagerly higher than the risk associated with no

harvesting at all. The distinctness is only recognizable in the figure for high

values of E {x1}. Still in Figure 6, we see that the FQ system expose the
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fish stock for a significantly higher extinction risk even though the harvest

outcome of its optimal policy is considerably lower.

Figure 8. Probability for extinction after optimal harvesting for FQ with σz=0.4

Regarding fair comparison between the various systems: A ceteris paribus

condition for a comparison would emerge when the expected harvest out-

comes are equal. For the EQ regime there will in this case be many combina-

tions of its two parameters that yield the same expected harvest. So for this

system I determine which combination of β1 and γ1 that for a given expected

harvest gives the minimum extinction probability. Today, regulation in fish-

eries is largely implemented by the FQ system. Then the intrinsic value of an

eventual diminished extinction probability is a direct measure of the Pareto

improvement (free lunch) when changing to an LT or an EQ regime.
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Figure 8 shows curves for the systems under cost uncertainty when the

expected harvest in all instances is the optimal harvest for the FQ system

when σz = 0.4. The curve for this case is displayed in all the figures 6, 7 and 8.

First, (in Figure 8) pay attention to the LT and EQ curves labeled σz = 0.4:

The EQ regime gives the lowest extinction probability. Its superiority over

the FQ system increases with E {x1} and the extinction probability is about
60% less for the highest abscissa values. Also the LT system is inferior to

the EQ regime. For a small range of middle values of E {x1} the extinction
probability for the LT regime is even higher than for the FQ system.

Now let us turn to all curves in Figure 8 labeled σz = 0.5. We know

from Weitzman (2002) (although he did not include cost uncertainty) that

the advantage of price compared to quantity control may increase along with

ecological uncertainty. Thus, with cost uncertainty held fixed, and with

a higher stock uncertainty, the LT regime should perform better; at least

compared to the FQ system. We see, as predicted by Weitzman, that the

performance of the LT system is now markedly better than that of the FQ

regime. The increased extinction probability associated with the increased

stock uncertainty is minimal for the LT regime (on the logarithmic scale),

and while the EQ system still dominates, its comparable advantage over LT

regulation is much less.

7 Concluding Remarks

This paper compares various tools for managing fisheries using a numerical

example. The two most important factors in the example are: (a) unit har-

vesting costs depend on fish abundance (as is typical in a demersal fishery),

and (b) instrument parameters are assigned a "best value" based on statis-

tical knowledge. I assume that the fish stock survey has a 40% standard

deviation from its mean, and that uncertainty regarding fishermen’s costs on

unit fishing effort has a 100% standard deviation from its mean.

I consider three instruments: quantity control (FQ), linear taxes (LT),

and expected quotas (EQ). The name of the latter instrument denotes the

amount of catches expected by the planner when fishers are levied a strictly
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convex tax on catches. The most commonly used tool is quantity con-

trol. Chu (2009) estimated that several hundred stocks in eighteen countries

around the world are regulated through the individual transferable quota

(ITQ) regime, in which shares of TAC are effi ciently distributed among fish-

ermen by trades in a competitive share market. The purpose of privatizing

the right to catch a fixed quota (FQ) is that the incentive to race for fish

for strategic reasons may vanish. A linear landing tax (LT) is an alternative

proposed by Weitzman (2002), among others. In a general discrete model

where the fish stock is a function of the last period escapement, Weitzman

shows that such a control is unambiguously superior to quotas under pure

ecological uncertainty.

The alternative manager instrument (EQ) presented in this paper is based

on levying fishermen a strictly convex tax on landing. The results in my

example show that the EQ system significantly Pareto dominates the practice

of quota regulation. This domination is expressed both in terms of a higher

optimal expected present value for the fishery and, under circumstances of an

equivalent expected harvest outcome, in terms of a smaller stock extinction

probability. When cost uncertainty is present, strictly convex taxation also

dominates the linear landing fee approach, but, as conjectured by Weitzman

(2002), to a lesser extent when ecological variance increases.

As Berglann (2012) shows, the scheme may be as potentially easy to im-

plement as an individual transferable quota (ITQ) regime. The individual

quota in the ITQ regime will then correspond to an individual transferable

expected quota (ITEQ) in the hybrid regime. The flexibility of that lat-

ter quota notion might, as mentioned in the introduction, be particularly

valuable in managing a multispecies fishery. Total (expected) quotas, each

indirectly specified by tax parameters, could be set for each regulated species.

The tax amount saved by landing less than the quota for one species will be

used to cover the extra tax amount levied for exceeding the expected quota

of another species.

Vessel owners in an ITQ managed fishery that already possess quotas or

are accustomed to getting them for free will of course oppose the transition to

a regime where they suddenly are levied an extra tax. However, as Berglann
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(2012) also demonstrates, the proposed system can easily be adjusted to re-

distribute the tax gained by the government by giving the individual skipper

a rebate that ensures that his tax expenses is nullified if he happens reach

the expected quantity exactly. In this way the transition from ITQ based

management to the proposed scheme might be smoothly carried out.
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