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SUMMARY  

The objective of the current experiment was to compare the effects of supplementing mid-lactation 

dairy cows with all-rac-α-tocopheryl acetate (SyntvE), RRR-α-tocopheryl acetate (NatvE) or 

seaweed meal (seaweed) in the presence of a control group (no supplemental vitamin E or seaweed) 

on the concentration of α-tocopherol in plasma and milk, and antibody response following 

immunization. The hypothesis was that supplementation of dairy cows with vitamin E, regardless 
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of its form, would increase plasma and milk α-tocopherol compared to the control diet and this 

incremental response would be bigger with NatvE than SyntvE. Furthermore, it was hypothesized 

that vitamin E, regardless of its form, will provide an improved adaptive immune response to 

immunization than the control diet, and cows supplemented with seaweed meal would produce 

better adaptive immune response following immunization than cows in the control group. Twenty 

four Norwegian Red (NR) dairy cows in their mid-lactation were allocated randomly to the four 

treatments in a replicated Latin square design. The cows were fed on a basal diet of silage and 

concentrate on top of which the experimental supplements were provided. Plasma and milk α-

tocopherol concentrations were higher in NatvE and SyntvE groups than in the other two groups. 

The RRR-α-tocopherol stereoisomer was the predominant form (> 0.86), in both plasma and milk, 

whereas the remaining part was largely made up of the other three 2R stereoisomers (RRS, RSR 

and RSS). In cows fed the Control, seaweed and NatvE, the proportion of the RRR-α-tocopherol 

stereoisomer in plasma and milk constituted < 0.97 of the total α-tocopherol. Mid-lactation NR 

dairy cows had higher than adequate levels of plasma α-tocopherol (9.99 mg/l) even when not 

supplemented with external source of vitamin E, suggesting that with a good quality silage these 

cows may not be at risk of vitamin E deficiency. Furthermore, the study shows that dairy cows in 

mid to late lactation have preferential uptake of RRR stereoisomer of α-tocopherol compared to 

other stereoisomers. All cows responded well to immunization with different antigens, but there 

were no significant group effects of the diet on the immune response measured. 

 

INTRODUCTION 

Self-sufficiency and recirculation of nutrients within the farm are central elements in the organic 

principles (European Commission 1991; IFOAM 2007). As such, necessary supplements such as 

vitamins for farm animals under organic settings should be of natural sources if possible  (European 
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Commision 1999).  When deemed to be insufficient, extra vitamin E is supplemented in animal 

feeds as an antioxidant and also because of its diverse physiological roles (Dersjant-Li & Peisker 

2010). Some of the functions of vitamin E are effects against testicular degeneration, muscle 

dystrophy, resorption of foetus and lipid peroxidation (Bouwstra et al. 2008; Jensen & Lauridsen 

2007). Vitamin E is also important for ruminant meat and milk quality to protect membrane lipids 

and myoglobin from oxidation (Liu et al. 1995; Lee et al. 2003; Al Mabruk et al. 2004). 

Dairy cow diets contain different levels of vitamin E depending on type of feed and the 

proportion of ingredients in the diet (Beeckman et al. 2010; NRC 2001). Therefore, supplemental 

sources are mandatory when the levels are below what is required by animals for a given 

production. The additives exist mainly in two commercially available forms of vitamin E; namely, 

RRR-α-tocopheryl acetate (natural, derived from vegetable oil) and all-rac-α-tocopheryl acetate 

(synthetic, α-tocopherol produced by chemical synthesis) (Dersjant-Li & Peisker 2010). It is well 

established that RRR-α-tocopheryl acetate has higher bioavailability than all-rac-α-tocopheryl 

acetate in peri-parturient dairy cows (Meglia et al. 2006; Weiss et al. 2009), but less is known 

about the availability of the tocopherol-isomers in mid and late lactating cows. Still, the 

recommended intake of total (supplemental plus feedstuff origin) vitamin E, i.e. 2.6 IU/kg of body 

weight (NRC 2001), is the same for cows during late gestation and in lactation. 

Recent surveys and experiments have indicated that the diets of organic winter-fed dairy 

cows have varying α-tocopherol contents and that cows, particularly during peripartum, have low 

plasma vitamin E concentration ( Govasmark et al. 2005; Sivertsen et al. 2005; Beeckman et al. 

2010; Lindqvist et al. 2011; Mogensen et al. 2012). As such, it is recommended that diets of dairy 

cows on organic farms should be supplemented with vitamin E. However, in organic farming, all 

necessary supplementation to the basic diets should ideally be of natural origin (European 

Commission 1999). As there are few or no alternatives, the Nordic countries have a present 
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derogation from the EU regulations and may use synthetic vitamin A, D and E (European 

Commission 2005). Thus, it is deemed important to look for natural anti-oxidant sources to replace 

the synthetic ones. 

Recent work has suggested that supplementation with a meal prepared from the macro algae 

Ascophyllum nodosum, a seaweed, or treatment of endophyte-infested pasture with A. nodosum 

product had positive effects on product quality (improved beef shelf-life) and stress tolerance 

(improved immune function) (Allen et al. 2001). Alginates containing high proportions of 

mannuronic acid polymers, such as A. nodosum, have been documented to be non-specific 

immunostimulants, through stimulation of the cytokine production by human monocytes (Otterlei 

et al. 1991) and by increasing the superoxide production in macrophages from fish in vitro (Rokstad 

et al. 1996) and in vivo (Skjermo & Bergh 2004). Historically, A. nodosum has been used as 

supplementary feed for ruminants in Norway and is currently harvested, dried and milled 

commercially and sold as a feed supplement. A dairy cow experiment in the late 1960s 

demonstrated improved performance (+ 6 % in total milk yield) when lactating dairy cows were 

supplemented daily with 160 g A. nodosum (Jensen et al. 1968). However, the effects of A. 

nodosum supplementation in mid-lactation dairy cows on the adaptive immune response has so far 

remained elusive. 

The objective of the current study was to test the consequences of feeding two different 

sources (forms) of supplemental vitamin E (RRR-α-tocopheryl acetate = NatvE or all-rac-α-

tocopheryl acetate = SyntvE) on α-tocopherol and its stereoisomer content of plasma and milk and 

also on immune response of mid-lactation dairy cows relative to seaweed meal and control. The 

hypotheses were that supplementation of dairy cows with vitamin E, regardless of its form, would 

increase plasma and milk α-tocopherol compared to the non-supplemented cows and this increment 

would be bigger with NatvE than SyntvE. Furthermore, supplementation with vitamin E, regardless 
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of its form, would provide an improved adaptive immune response to immunization compared to 

the control group, and cows given the seaweed meal supplementation would produce better 

adaptive immune response following immunization than cows in the control group. 

 

MATERIALS AND METHODS 

Animals, treatments and experimental design 

The experiment was conducted from 22 August 2011 to 9 December 2011 with 24 (16 primiparous 

and 8 multiparous) Norwegian Red cows (NR) in their mid-lactation period at the start of the 

experiment (164 d in milk, SD = 30; BW=511 kg, SD=64 kg) at the Animal Production 

Experimental Centre, Norwegian University of Life Sciences, facility at Aas, Norway. The 

experiment was carried out in a 4 × 4 Latin square design (four groups over four periods) with six 

replicates (squares). During each of the experimental period that lasted for 4 weeks, the first 3 

weeks were used for adaptation and the last week was used for sampling. Cows within each of the 

six squares were matched for age, stage of lactation and level of production. 

The experiment was carried out according to the laws and regulations controlling 

experiments on live animals in Norway, the Norwegian Animal Research Authority, Oslo, Norway. 

 

Feeds and chemical composition of feeds 

Cows grazed a summer pasture before the commencement of the experiment and were provided 

with supplements of silage and concentrates produced for the experiment in the last week of grazing 

as an adaptation. Mineral and vitamin supplements were also given during the adaptation week. 

 

Basal feed 
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During the experimental period the cows were fed on silage and concentrates that were produced 

according to standards for organic production (European Commission 1991). The silage was 

prepared from the first and second cut of a grass/clover ley preserved in round bales and fed ad 

libitum as an equal mixture of the two cuts through individual feeding gates, and the concentrate 

was given at a flat rate of about 3.0 kg/cow per day through computerized dispensers. Silage 

samples were taken for analysis each day of the sampling week by hand collection of representative 

amount immediately after offering. 

 

Experimental supplements 

In addition to the basal feed, the cows in each group were fed one of the following four 

experimental supplements: NatvE (vitamin E added as RRR-α-tocopheryl acetate, Vitfoss A/S, 

DK-6300 Gråsten, Denmark), SyntvE (vitamin E added as all-rac-α-tocopheryl acetate, Zhejiang 

138 Medicine Co Ltd, Zhejiang, China), seaweed (commercially available dried and ground macro 

algae A. nodosum, AlgeaFeed 3.5, Algea AS, Lødingen, Norway) and control (with no added 

vitamin E or macro algae). The control, NatvE and syntE consisted (g/g DM) of barley (0.74), 

molasses (0.04) and a premix of minerals and vitamin A and D (0.21) supplied by Normin AS 

(Hønefoss, Norway) (Table 1). The seaweed was a mixture of macro algae (0.30), barley (0.52), 

molasses (0.04) and minerals (0.14) to achieve recommended supplementations of some important 

minerals in order to be similar to the other treatments with respect to total mineral supplementation. 

The NatvE and SyntvE supplements were formulated to provide 3800 mg α-tocopheryl acetate/kg 

supplement and an extra supply of 2275 mg α-tocopherol per cow daily. The control, NatvE and 

SyntvE supplements were offered at a daily rate of 0.7 kg/cow and the seaweed supplement at a 

rate of 0.8 kg/cow in order maintain iso-energetic levels, assuming that the A. nodosum meal had 

a net energy content of 3.9 MJ/kg DM (Jensen et al. 1968). 
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The amount of seaweed meal per cow per day was approximately the same amount as was 

given in a previous experiment by Jensen et al. (1968), where Black Sided Trønderfe and 

Nordlandsfe (STN) cows were given c. 160 g seaweed per day. This corresponded to c. 0.35 g 

seaweed meal per kg body weight. An NR cow weighed between 550 and 650 kg, and therefore 

was given c. 200 g of seaweed meal daily to provide the same amount in relation to body weight 

as in the experiment by Jensen et al. (1968).  

The experimental supplements were fed at milking hours, mixed manually with 

concentrates in the parlour to avoid discriminating refusal by cows. However, any feed refusal 

(concentrate + experimental supplements) was collected and weighed. The cows had free access to 

drinking water. 

Feed samples were collected daily during the sampling week and mixed to one sample for 

each feed and period. The samples were stored at –20 ºC, freeze dried (Christ LCM-2, Beta 1-16 

and Christ LOC-1m, Alpha 1-4, Martin Christ, Osterode am Harz, Germany; Hetosicc, Birkerød, 

Denmark), milled (1.0 mm screen) (Retsch SM 100, Retsch GmbH, Haan, Germany) and stored at 

–20 ºC in plastic bags prior to analysis of chemical constituents. The samples were then analysed 

at Eurofins Food and Agro Testing, Moss, Norway, for dry matter (DM) (European Commission 

2009), ash (European Commission 2009), crude protein (CP) (European Commission 2009), and 

neutral detergent fibre (NDF) was determined with an ANKOM220 fibre analyser (ANKOM 

Technology, Fairport, NY, USA) according to (Mertens 2002) using sodium sulphite, alpha 

amylase and ash correction (aNDFom). Undried silage samples (10 g) were homogenized and 

diluted with 40 ml of deionized water and stored at 4°C for 24 h before pH was measured with a 

Termo Orion 420A+ pH-meter with Orion 9107BN electrode (Thermo Scientific, Beverly, MA, 

USA). Ammonia nitrogen was analysed with MAN-TECH PC-titrate (Guelph, ON, Canada) using 

an Orion ion analyser 901. Silage samples (20 g) were homogenized and diluted with 40 ml 
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deionized water and stored frozen, then thawed and filtered before analysing organic acids and 

ethanol by HPLC using a VA 300 ∕ 7.8 Nucleogel Ion 300 OA column (Machery-Nagel) at 50°C 

(mobile phase, 0.010 M H2SO4 at 0.6 ml/min) with an UV spectrophotometric detector for lactic 

acid and a refractive index detector for other acids and ethanol. 

For analysis of fatty acids (FA), fat was extracted in a mixture of chloroform and methanol 

according to Bligh & Dyer (1959) after acidification by boiling in 3 mol/l hydrochloric acid (HCl) 

for 60 min (Jensen 2008). The FA was analysed as FA methyl esters as described by Jensen & 

Nielsen (1996) by gas chromatography (Hewlett Packard 6890 series, Agilent Technologies, Palo 

Alto, CA) equipped with an automatic on-column injector (Hewlett Packard 7673) (Split ratio 

4.325:1); a capillary column of 30 m x 320 µm inner diameter; 0.25 µm film thickness (Omegawax, 

Supelco 4-293-415, Sigma-Aldrich, St. Louis, MO), and a flame ionization detector using C17:0 

as an external standard.  

For α-tocopherol analysis, 2 g dried material was suspended in 70 ml ethanol, 30 ml 

methanol, 30 ml ascorbic acid in water (200 g/l) and 20 ml potassium hydroxide (KOH)-water (1:1 

w/v). This mixture was saponified for 30 min at 80 °C in the dark and cooled in cold water. Exactly 

2 ml of the saponified mixture was diluted in 1 ml water after which tocopherol was extracted twice 

using 5 ml heptane and analysed by HPLC (Perkin Elmer HS-5-Silica column, 4.0 x 125 mm, 

Waltham, MA) as described by Jensen & Nielsen (1996) and Jensen et al. (1998). Stereoisomers 

of α-tocopherol were analysed by HPLC as follows: The remaining heptane extract was evaporated 

to constant dry matter under a stream of nitrogen at 50 °C and 50 µl ethylene glycol dimethyl ether 

and 25 µl KOK were added to the dried samples. Thereafter the tubes were filled with argon and 

45 µl dimethyl sulphate was added. The samples were shaken for 1 h (IKA-VIBRAX-VXR, Janke 

& Kenkel, Germany), evaporated and 100 μl water and 1.5 ml heptane added. The samples were 

then vortexed and centrifuged for 10 min at 3000 rpm. The supernatant were transferred to cap 
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tubes and the stereoisomers determined according to Jensen & Lauridsen (2007). 

 

Response to immunization 

All cows were injected subcutaneously with 1mg each of human serum albumin (HSA; Sigma-

Aldrich, lot no: 035K7566), ovalbumin (OVA; Sigma-Aldrich, lot no: 120K1201), equine serum 

albumin (EQSA; BIOWORLD, lot no:ESA62-887) and canine serum albumin (CSA; 

BIOWORLD, lot no:CASA62-1076) mixed each with Aluminum Hydroxide Gel Adjuvant 

(Brenntag Biosector, Alhydrogel, lot no: 4601) (1:4) in saline, 6 days before the start of the feeding 

experiment. Blood was collected from a vein at the tail into five EDTA-tubes from each cow, just 

before immunization and on day 24 of the first period. Two samples were spun on site and the 

supernatant plasma was taken and stored frozen at –20 °C for later analysis of α-tocopherol.  Whole 

blood for serum collection was sampled at the same time. The serum samples were stored at –20 

°C until assayed.  

The production of antigen-specific antibodies to HAS, OVA, EQSA and CSA was assayed 

in blood samples in the beginning of the experiment and 24 days following immunization using an 

enzyme-linked immunosorbent assay (ELISA). Antigen (5 µg/ml) diluted in 0.05 M carbonate 

buffer, pH 9.6, was used for coating of polystyrene microtiter plates (Immunoplates II, Nalge Nunc 

International, Denmark) by adding 0.2 ml antigen to each well. The plates were sealed, incubated 

for 3 days at 4 °C and washed five times (Microwash II, Skatron, Norway) with phosphate buffered 

saline (PBS) containing 0.05% Tween 20 (PBS-Tween). One percent skimmed milk (powder, 

Merck, Germany) in PBS-Tween, 0.2 ml/well, was used to prevent non-specific binding, and the 

plates were washed five times with PBS-Tween. All test samples were diluted at least 1:100 and 

further diluted 2-fold in PBS-Tween containing 1% bovine serum albumin (BSA), and 100 µl of 
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the samples were placed in each well. The plates were sealed and incubated overnight at 4 °C. After 

incubation, the plates were washed again five times with PBS-Tween, and 100 µl of a 1:5000 

dilution (in PBS-Tween with 1% rabbit serum) of a horseradish peroxidase-linked rabbit anti 

bovine IgG (Sigma, Lot no: 070M4857) was added to each well. The plates were then incubated 

for 1 h at 37 °C, and washed five times with PBS-Tween. Then 100 µl of the enzyme substrate, 

ABTS (2,2'–azinobis (3-ethylbenzthiazolinesulfonic acid; Sigma-Aldrich, Lot no: 050M1502V)) 

was added to each well. The reaction was stopped after 45 min at 37 °C by adding 20 µl sodium 

azide (NaN3, 1 mg/ml) and measured immediately with a Titertek Multiskan Plus ELISA reader 

(Labsystems, Finland; wavelength 405 nm). The final titer was defined as the reciprocal (log2) of 

the highest dilution of serum showing positive reaction, i.e. at least 0.1 OD405 which exceeded by 

more than a factor of two of the average OD405 of the mean normal control samples in the same test 

plate. 

 

Milk yield, milk and plasma sampling and chemical analysis 

Cows were milked twice daily in a milking parlour, and the amount of milk was recorded 

automatically at each milking.  

Aliquot milk samples were taken during the sampling period from morning and evening 

milk from each cow four times a week (Monday and Tuesday on each of the two milking times: 

morning and night). Milk samples intended for analysis of α-tocopherol concentration and FA 

composition were frozen (–20 °C) immediately. Milk samples intended for analysis of fat and 

protein were preserved with 2-bromo-2-nitropropane-1,3-diol (Bronopol, D&F Inc., Dublin, CA) 

and analysed by a Fourier Transformed Infrared Spectroscopy milk analyser (MilkoScan 6000 

FTIR, Foss, Hillerød, Denmark). 
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Before extraction of α-tocopherol, milk and plasma samples were thawed, and milk samples 

were heated at 40 °C for 20 min and mixed thoroughly prior to analysis. The extraction procedure 

was as follows: 1 ml of milk, or 500 μl of plasma, was diluted with 1.0 ml ascorbic acid solution 

(200 g/l), 0.5 ml methanol, 2.0 ml ethanol, and 0.3 ml KOH-water (1:1 w/v). Saponification was 

carried out at 80 °C for 20 min. After cooling, tocopherol was extracted twice using 5 ml heptane 

per occasion. Stereoisomers of α-tocopherol in plasma and milk were determined as described for 

feed. 

 

Statistical analysis 

The data for feed intake, milk and plasma content of α-tocopherol were analysed using the PROC 

MIXED procedure of SAS (SAS for windows, version 9.2, SAS ltd.) with treatment, period and 

their interaction as fixed effects and square and cow within a square as random effects. The optimal 

covariance structure was modelled using an analysis of repeated measures specifying that measures 

taken on the same cow in subsequent periods are correlated. Satterthwaite’s method was used for 

computing the denominator degrees of freedom. 

Antibody titers to the immunization agents were transformed to reciprocal log2 units before 

statistical analysis. Analyses of variance of the response to immunization was performed on 

specific antibody levels (absorbance) and antibody titers using dietary treatment as fixed effect, the 

pre-immunization value as covariate and replicate and cow within a replicate as random effects. 

Multiple mean comparison was made using Tukey Test at a significance level of 5%. Whilst 

full P-values are presented in the body of the text, only P-values below 0.1 are presented in the 

tables, for clarity and judgment by the reader. 
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RESULTS 

Feed chemical composition and dry matter intake 

Chemical composition of the four experimental supplements and the basal feeds are presented in 

Table 2. Basal feeds (concentrate and silage) were similar for all treatment groups. The chemical 

composition of the experimental supplements was similar with respect to CP and fat content, but 

the seaweed supplement had 68 % higher aNDFom content than the other supplements. The 

concentration of α-tocopherol was 1052 and 993 mg/kg DM in the NatvE and SyntvE supplements, 

respectively, which was about 60–70 % less than originally planned, probably due to high 

temperature during the pelleting process of the supplements (Weiss, unpublished as reported in 

(NRC 2001)). The content of α-tocopherol in the control supplement was higher than expected and 

it contained also synthetic isomers, which was likely due to contamination from the production of 

feed previous to the production of the control (Dag Henning Edvardsen, Normin AS, pers. 

comm.).The silage was well fermented with low concentrations of volatile FA and low proportion 

of ammonia, and contained 39 mg α-tocopherol/kg DM.  

Dry matter intake (DMI, kg/d) is presented in Table 3. There was no difference in total 

daily DMI among treatment groups (mean ± SE: 18.1±0.47). However, mean intake of concentrates 

did differ (P = 0.021) among the treatments due to refusals. Intake of experimental supplements 

differed among treatments according to design. As such, cows in the seaweed group consumed 

more of the concentrates compared to the SyntvE group.  

 

Milk yield and milk fat 

Average daily milk production among the treatment groups was not different from each other 

(Table 4).  The control group had higher (P < 0.05) mean milk fat content (42.7 g/kg) than either 
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the SyntvE (41.1 g/kg) or the seaweed group (41.2 g/kg). Milk fat content from the NatvE treatment 

was intermediate and not significantly different from the other treatments.  

 

Alpha-tocopherol intake and its stereoisomers in feed, plasma and milk 

Total mean daily α-tocopherol intake (g/d) was highest in the NatvE group (1146), intermediate in 

the SyntvE (1070) and lowest in the Control (636) and seaweed (591) groups (Table 3). The latter 

two groups were not significantly different from each other. As expected, α-tocopherol intake from 

silage was similar among treatments whilst it was different among treatments based on concentrates 

source (P = 0.004) and based on the experimental supplements (P < 0.001) (Table 3).  

At the stereoisomer level, the RRR intake was highest in the NatvE group, with intermediate 

and similar intake in the SyntvE and Control group, whilst the seaweed group had the lowest 

calculated intake.  Intake of the rest of the 2R stereoisomers (RRS, RSR and RSS) was also different 

(P < 0.001) among treatments: as such, dairy cows in the SyntvE group had the highest intake whilst 

cows in the NatvE group had intermediate and cows in the control and seaweed groups had the 

lowest intake (Table 3). Similarly, the 2S stereoisomer intake was highest (P < 0.001) in the SyntvE 

group being c. 0.23 of total α-tocopherol intake. The cows in the NatvE group had very low level 

intake of 2S stereoisomer (~ 0.028 of total α-tocopherol intake) compared to the SyntvE group. The 

Control and seaweed groups had, on average, the lowest intake of the 2S stereoisomers, which was 

< 0.01 of their total α-tocopherol intake.  

Compared to the combined mean of Control and seaweed groups, cows in the NatvE and 

SyntvE groups had 31 and 12% more (P < 0.001) plasma α-tocopherol, respectively (Table 4). 

Plasma concentration of the natural RRR isomer was 30% higher in the NatvE fed cows than the 

average of the other treatments, whilst cows fed SyntvE had on average eight times higher plasma 
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concentration of the synthetic isomers than cows on the other treatments. Almost all of the α-

tocopherol in plasma was in the 2R stereoisomer form, and > 0.86 of the total was the RRR isomers 

on all treatments (Table 5). Despite 0.23 of total α-tocopherol intake being 2S, only c. 0.01 was in 

the 2S form in the plasma of the SyntvE group. Cows in the Control, NatvE and seaweed groups 

had plasma α-tocopherol stereoisomers from the synthetic derivative at very low yet measurable 

levels. 

Milk and milk fat α-tocopherol concentration was affected (P < 0.001) by the treatments 

(Table 4). Cows in the NatvE group had 25% higher milk α-tocopherol concentration than the 

Control, while the α-tocopherol content in milk from for cows fed SyntvE and seaweed did not 

differ significantly from that of the Control. As in plasma, > 0.85 of the α-tocopherol of milk was 

in the form of RRR on SyntvE diet and this value was observed to be > 0.97 on the other diets 

(Table 5). 

 

Bioavailability of α-tocopherol and its stereoisomer ratios 

The concentration of α-tocopherol in plasma and milk in cows offered NatvE was only slightly 

greater (1.09 and 1.06 times, respectively) than for cows fed SyntvE when adjusted to account for 

the differences in α-tocopherol intake (Table 6). However, the increase in plasma and milk α-

tocopherol concentration relative (adjusted) to the control treatment was approximately twice as 

high on NatvE than on SyntvE. The concentration of α-tocopherol in plasma and milk per unit of 

2R α-tocopherol consumed in cows fed NatvE supplement was 0.87 and 0.84 times that of cows 

fed SyntvE and was approximately the same ( ≈ 1) when calculated as the relative increase from 

the cows fed the control diet.  
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Antibody response to immunization  

The summary of antibody titers (log2) is provided in Table 7. There was no effect of vitamin E 

supplementation on immunization response to the specific antigens with the exception of EQSA 

which showed a slight tendency (P = 0.088) to be lower under the NatvE group. 

 

DISCUSSION 

The present experiment was conducted to test the effects of feeding supplemental sources of 

vitamin E (RRR- α-tocopheryl acetate or all-rac-α-tocopheryl acetate) relative to seaweed and 

control diet on the vitamin E and its stereoisomers content of plasma and milk, and the adaptive 

immune response to immunization of mid-lactation dairy cows fed a basal feed of silage augmented 

with concentrates.  

 

Plasma and milk α-tocopherol 

The observed differences in α-tocopherol from concentrate intake were attributed to differences in 

the amount of concentrate DMI, whereas the difference from experimental supplements was due 

to the concentration of α-tocopherol in the supplements as designed. In addition to the SyntvE 

group, cows in the remaining three treatment groups yielded plasma and milk α-tocopherol 

stereoisomers of the SyntvE derivative at very low yet measurable levels. There are some possible 

reasons for this. Firstly, it could be due to the fact that a limited amount of the α-tocopherol stored 

in liver and other tissues from previous periods could be circulating at the background and hence 

available in the plasma and milk. A good example comes from the works of Weiser et al (1996), 

where control rats fed a vitamin E free diet for 4 months (pre-experimental period) and devoid of 

α-tocopherol for an extra 90 days (experimental period) showed traceable levels of α-tocopherol in 
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different tissues and plasma. Secondly, chemical analysis on the experimental supplements fed to 

the cows, except for the seaweed one, showed traceable levels of stereoisomers of the SyntvE 

derivatives suggesting that there might have been cross-contamination whilst sampling or feeding. 

However, the levels were very small and would not have altered the outcome of the treatments and, 

hence, our hypotheses. That said, the current study confirms that natural α-tocopherol is the pre-

dominating form in blood and milk of dairy cows, irrespective of dietary sources (Meglia et al. 

2006; Weiss et al. 2009). The observed pattern of mean plasma and milk α-tocopherol 

concentration in the current study was in agreement with previous reports (Meglia et al. 2006; 

Weiss et al. 2009) where periparturient cows were fed either a control diet, supplemented with 

different forms of vitamin E and plasma concentration of α-tocopherol was measured. Indeed, in 

absolute terms, the values observed in the current paper are much higher than in previous works, 

but this was understandable considering the differences in terms of stage of lactation of the cows, 

type and quality of basal feed and also level of vitamin E supplementation. 

Even though the intake of Vitamin E on the control diet was much lower than the 

recommended value, i.e. 2.6 IU/kg BW (NRC 2001) for late gestation and during lactation, the 

observed plasma α-tocopherol concentration is more than adequate. As such, the mean plasma α-

tocopherol for control group (9.99 mg/l) was well above what is considered the minimum level (3–

3.5 mg/l) to avoid health risks with periparturient dairy cows (Weiss et al. 1997). Furthermore, the 

value is  also far higher than that reported for Swedish Holstein dairy cows in their mid-lactation 

and fed on organic rations (Lindqvist et al. 2011) and Norwegian dairy cows (6.9 mg/l) under 

winter feeding conditions (Sivertsen et al. 2005). Concentrations were, as per the hypothesis, 

lowest for cows in the control and seaweed group, intermediate for cows supplemented with 

SyntvE, and highest for cows fed supplemented with NatvE. This followed the trends of the 

concentrations in the diet consumed by the respective group.  
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Concentrations of α-tocopherol in plasma, milk and milk fat were about 1.2 times higher in 

the group supplemented with NatvE than in the SyntvE (Table 6). This agrees well with previous 

work with periparturient dairy cows (Meglia et al. 2006) using different sources of vitamin E. The 

milk α-tocopherol concentration falls a bit short of the results from Weiss et al. (2009) where the 

relative concentration was reported to be 1.24 to 1.43 times higher for cows supplemented with 

NatvE than for SyntvE with periparturient dairy cows. This could be due mainly to the elevated 

intake of α-tocopherol from basal feeds (silage and concentrates), in light of the observed values 

for the control group, where additional supplementation would have yielded less of an effect 

because of saturation.  

Whilst comparing the Control group with the seaweed group, these two groups showed 

similar values from total α-tocopherol intake to its concentration in plasma and milk. However, 

there are other things which have not been looked into; for example, the incidence of mastitis, long 

term reproductive performance and milk iodine content. The latter, for example, was superior in 

seaweed meal fed group compared to standard mineral mixture fed Norwegian cows as reported 

by Jensen et al. (1968). 

 

Plasma and milk α-tocopherol stereoisomers 

The stereoisomer composition in milk followed similar pattern to those observed in plasma within 

each treatment. This is in agreement with other works on dairy cows and suggests either lack of 

preferential uptake of stereoisomers by mammary cells once in the blood (Meglia et al. 2006) or 

the limited availability of these stereoisomers in blood plasma (Jensen & Lauridsen 2007). 

Furthermore, in support of Meglia et al. (2006) and Weiss et al. (2009), the bioavailability of the 

RRR-stereoisomer in the current study was greater compared to the other stereoisomer forms of α-
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tocopherol, irrespective of the source of supplementation, as indicated by the enrichment of the 

RRR stereoisomer in milk to > 0.86 of the total concentration. 

Among the cows supplemented with SyntvE the relative enrichment of stereoisomers in 

plasma and milk was such that > 0.98 was in the 2R forms, whilst a very small proportion (c. 0.01–

0.015) was in the 2S forms. Furthermore, within the 2R stereoisomers, the RRS, RSR and RSS 

stereoisomers were in a considerably lower concentration than the RRR form. The observed 

proportion of 2R vs. 2S was a big contrast to the proportion of these stereoisomers (0.77 and 0.23, 

respectively) in the feed fed to the cows. With periparturient cows fed daily with 917 mg all‐rac‐

α‐tocopheryl acetate on top of the intake from basal ration (300–525 mg RRR‐α‐tocopherol), 

Meglia et al. (2006) reported similar values. Likewise, Jensen et al. (2005) as described in Jensen 

& Lauridsen (2007), fed cows a daily dose of 3000 mg all‐rac‐α-tocopheryl acetate in addition to 

the 450 mg RRR‐α‐tocopherol occurring naturally in the basal ration for 16 days and reported 

comparable values in the plasma of cows. Furthermore, with sows fed on synthetic forms of vitamin 

E,  Jensen & Lauridsen (2007) indicated that the 2R stereoisomers in total contributed c. 0.92–0.94 

of the stereoisomers in milk whereas the 2S forms put together contributed the remaining small 

part (0.06–0.08). However, the same authors also reported differences in stereoisomer proportions 

in calf and lamb plasma compared to cows.  

The preferential enrichment of the 2R form over the 2S form was suggested to be due to 

the action of hepatic α-tocopherol transport protein (α-TPP) that transfers liver α-tocopherol into 

plasma lipoproteins for extra-hepatic tissue delivery (Traber et al. 2008).  

 

Responses to immunizations 

Specific antibody titer values to immunization with EQSA antigen showed a tendency for dairy 
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cows in the NatvE group to be lower compared to other groups. This was unexpected but at the 

level of α-tocopherol intake and its plasma concentration observed in the current experiment, it can 

only be speculated that this could have been due to increased level of α-tocopherol radicals 

(Rietjens et al. 2002; Nwose et al. 2008). Such was the case with increased mastitis incidence in 

dairy cows that alluded to the absence of balance between vitamin E and scavenging molecules for 

vitamin E radicals (Bouwstra et al. 2010a, b). In human subjects with diabetes, Nwose et al. (2008) 

cautioned that vitamin E supplementation should be justified when the vitamin E regeneration 

system, which is responsible for balancing the outcome, is adequate. Rietjens et al. (2002) suggest 

that supplementation with vitamin E may not always exert the protective effect  aimed for, as the 

effects may depend on the subtle redox equilibrium within the cells and the balance within the 

complete cellular antioxidant network.  

The lack of anticpated difference of the effect of supplementation with seaweed on antibody 

titres warrants further investigation. However, a progression of specific antibody development has 

been observed in each group from pre-immunization values, as anticipated. The clear and elevetaed 

response to immunization suggests that the animals were at least not immunocompromised. 

 

Conclusions 

As hypothesized, supplementation of dairy cows with vitamin E, regardless of its form, increased 

total plasma and milk α-tocopherol compared to non-supplemented cows. This increment was 

bigger with NatvE than SyntvE supplementation. The lack of effects of vitamin E supplementation 

to elicit adaptive immune response against immunizations could be due to the fact that intake of 

vitamin E from the basal diets was not limiting.  Therefore, based on our observation, it can be 

concluded that with good quality silage the need for supplemental vitamin E is not critical even 
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during the winter period with mid-lactation dairy cows.  
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Table 1. Ingredient composition of the four experimental supplements prepared with no added 

vitamin E (Control), RRR-α-tocopheryl acetate (NatvE), all-rac-α-tocopheryl acetate (SyntvE) and 

seaweed and fed to cows in their mid-lactation as a source of α-tocopherol on top of the basal feed 

Ingredient (in mg/kg, unless stated) Control NatvE SyntvE seaweed 

Barley (g/kg) 749 740 744 515 

seaweed meal (g/kg) 0 0 0 305 

Molasses (g/kg)  42 42 42 36 

Vitamin E* 0 12589 7591 0 

Calcium carbonate (CaCO3) (g/kg) 52.1 51.4 51.6 40.7 

Monocalcium phosphate (Ca(H2PO4)2 .H2O ) (g/kg) 15.6 15.3 15.4 15.9 

Magnesium phosphate (MgHPO4.H2O) (g/kg) 75.9 74.8 75.2 59.4 

Sodium chloride (NaCl) (g/kg) 53.3 52.6 52.8 23.3 

Sodium selenite (Na2SeO3) 153 150 151 130 

Zinc sulphate (ZnSO4.H2O) 2633 2596 2608 2200 

Manganese sulphate (MnSO4.H2O) 2153 2122 2132 1810 

Calcium iodate (Ca(IO3)2 ) 54 54 54 0 

Cobalt carbonate (2CoCO3.3Co(OH)2.H2O) 46 45 46 39 

Copper sulphate (CuSO4) 836 824 828 0 

Vitamin A (retinyl acetate) 184 181 182 0 

Vitamin D3 (cholecalciferol)  54 54 54 0 

*SyntvE: 500000 mg All-rac-α-tocopherylacetate/kg vitamin E-product, i.e. 3800 mg α-tocopherylacetate/kg 
supplement 
RRR: 301000 mg RRR-α-tocopherylacetate/kg vitamin E-produc, i.e. 3800 mg α-tocopherylacetate/kg supplement 
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Table 2. Chemical composition of the four experimental supplements [no added vitamin E 

(Control), RRR-α-tocopheryl acetate (NatvE), all-rac-α-tocopheryl acetate (SyntvE) and seaweed] 

and basal feeds (silage and concentrate), and proportions (of total) of α-tocopherol stereoisomers. 

Values in brackets are standard deviations (n=4) 

 Experimental supplements  Basal feeds 

Item Control NatvE SyntvE seaweed  Silage Concentrate 

DM (g/kg) 880 (3.5) 892 (4.6) 879 (5.4) 865 (5.4)  283 (1.5) 875 (2.4) 

CP (g/kg DM) 86 (1.0) 85 (2.0) 88 (1.2) 89 (1.2)  123 (3.9) 163 (4.1) 

aNDFom (g/kg DM) 137 (3.8) 133 (7.9)  137 (1.8) 228 (5.4)  487(12.0) 287 (5.7) 

Fat (g/kg DM) 29 (3.1) 28 (1.6) 31 (6.3) 27 (2.1)  52 (3.7) 81 (3.4) 

Silage fermentation products (g/kg DM)      

Ammonia N (g/kg N)     53 (5.5)  

Ethanol      6 (2.3)  

Lactic acid      46 (3.6)  

Volatile fatty acids     15 (1.3)  

α-Tocopherol        

Total (mg/kg DM) 79.3(10.3) 1052 (243) 930 (227) 4.4 (1.8)  39.0 (2.4) 7.9 (0.50) 

RRR 0.73 (0.054) 0.89 (0.013) 0.12 (0.003) ND  1.00 (0.0) ND 

RSS  0.03 (0.011) 0.005 (0.001) 0.13 (0.003) ND  0 (0.0) ND 

RRS  0.04 (0.020) 0.04 (0.005) 0.13 (0.002) ND  0 (0.0) ND 

RSR 0.03 (0.010) 0.006 (0.002) 0.12 (0.005) ND  0 (0.0) ND 

2S  0.18 (0.026) 0.06 (0.007) 0.51 (0.009) ND  0 (0.0) ND 

Fatty acids (g/kg DM)        

C14:0 0.1 (0.0) 0.1 (0.0) 0.1 (0.01) 1.1 (0.04)  0.2 (0.04) 0.1 (0.0) 

C16:0 4.9 (0.11) 4.9 (0.07) 5.0 (0.08) 4.3 (0.05)  2.7 (0.05) 9.9 (0.07) 

C18:0 0.2 (0.00) 0.2 (0.00) 0.3 (0.01) 0.3 (0.01)  0.3 (0.02) 1.45 (0.04) 

c9-C18:1 2.0 (0.04) 1.9 (0.05) 2.1 (0.06) 5.3 (0.16)  0.7 (0.07) 28.4 (1.50) 

C18:2n6 6.5 (0.38) 5.8 (0.38) 6.3 (0.23) 6.6 (0.12)  3.3 (0.10) 25.1 (0.36) 

C18:3n3 0.5 (0.04) 0.5 (0.03) 0.5 (0.03) 0.9 (0.01)  8.8 (0.14) 2.1 (0.19) 

Total 14.7(0.60) 14.0 (0.48) 14.9 (0.29) 21.1 (0.35)  16.9 (0.11) 70.0 (2.27) 

ND: Not detectable  
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Table 3. Daily DM and α-tocopherol intake by dairy cows in their mid-lactation fed one of the four 

different experimental supplements: no added vitamin E (Control), RRR-α-tocopheryl acetate 

(NatvE), all-rac-α-tocopheryl acetate (SyntvE) and seaweed (n=24) 

Description 
Treatment group 

S.E.M. D.F. P 
Control NatvE SyntvE seaweed 

DM intake (kg/d)  

Silage 14.6 14.7 14.6 14.4 0.51 7.9 NS 

Concentrate 2.92 2.87 2.86 2.99 0.047 11.8 0.021 

Experimental supplements 0.55 0.52 0.51 0.63 0.016 - - 

Total intake 18.1 18.1 18.0 18.1 0.47 8.4 NS 

Refuse  0.17 0.24 0.26 0.06 0.063 31.9 0.001 

α-tocopherol intake (mg/d) by source  

Silage 570 574 571 566 19.9 7.9 NS 

Concentrate 23.0 22.7 22.6 23.6 0.38 32.8 0.004 

Experimental supplements 43.5 549 477 2.8 13.48 19.4 <0.001 

Total 636 1146 1070 590 16.8 49.4 <0.001 

α-tocopherol intake (mg/d) by stereoisomer category  

RRR  624 1086 649 591 16.3 13.3 <0.001 

Sum other 2R (RSS, RRS, RSR) 4 28 117 0 2.8 27.5 <0.001 

Sum 2S 8 32 244 0 3.8 26.9 <0.001 

Vitamin E intake        

Total IU/d 948 1707 1360 880 24.1 50.5 <0.001 

IU/kg LW 1.71 3.02 2.43 1.56 0.055 39.8 <0.001 

D.F. = Satterthwaite's approximation for degrees of freedom 
S.E.M. = Standard error of the mean 
NS, not significant 
IU of vitamin E was calculated as 1.49 x mg of α-tocopherol from feedstuffs and for NatvE supplement and 1 x mg 
of α-tocopherol for the SyntvE supplement   
LW = Live weight  



29 

 

Table 4. Daily milk yield, milk fat content, milk and plasma α-tocopherol concentration in dairy 

cows in their mid-lactation (n = 24) fed daily supplements of no added vitamin E (Control), RRR-

α-tocopheryl acetate (NatvE), all-rac-α-tocopheryl acetate (SyntvE) and seaweed 

Description 
Treatment group 

S.E.M. D.F. P 
Control NatvE SyntvE seaweed 

Milk yield (kg/d) 15.7 15.9 16.3 16.0 0.64 2.4 NS 

Milk fat (g/kg) 42.7 42.5 41.1 41.2 1.23 6.6 0.047 

 

α-Tocopherol in plasma (mg/l) 

    

Total  9.99 13.17 11.27 10.13 0.593 8.2 <0.001 

RRR 9.83 12.82 9.69 10.05 0.544 8.5 <0.001 

Sum other 2R  0.15 0.33 1.47 0.07 0.076 22.0 <0.001 

Sum 2S 0.01 0.02 0.11 0.01 0.005 78.7 <0.001 

 

α-Tocopherol in milk 

       

Total (mg/kg fat) 28.0 35.3 30.5 27.6 1.18 29.3 <0.001 

Total (mg/l) 1.20 1.50 1.25 1.14 0.052 35.4 <0.001 

RRR (mg/l) 1.20 1.47 1.09 1.14 0.050 33.9 <0.001 

Sum other 2R (mg/l) 0.00 0.03 0.14 0.00 0.008 23.2 <0.001 

Sum 2S (mg/l) 0.001 0.005 0.019 0.001 0.0011 77.9 <0.001 

D.F. = Satterthwaite's approximation for degrees of freedom 
S.E.M. = Standard error of the mean 
NS, not significant   
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Table 5. Relative proportions of α-tocopherol stereoisomers in the diets, plasma and milk samples 

from dairy cows in their mid-lactation fed on no added vitamin E (Control), RRR-α-tocopheryl 

acetate (NatvE), all-rac-α-tocopheryl acetate (SyntvE) and seaweed 

Description 
Treatment group    

Control NatvE SyntvE seaweed S.E.M D.F. P- value 

Diet        

RRR 0.981 0.947 0.607 1.000 0.0063 14.8 <0.001 

RSS 0.002 0.002 0.056 0.000 0.0008 17.0 <0.001 

RRS 0.002 0.019 0.056 0.000 0.0010 12.3 <0.001 

RSR 0.002 0.003 0.054 0.000 0.0008 16.8 <0.001 

Sum 2S 0.012 0.028 0.228 0.000 0.0036 14.8 <0.001 

 

Plasma  

       

RRR 0.984 0.974 0.866 0.992 0.0045 76.3 <0.001 

RSS 0.004 0.008 0.041 0.002 0.0014 40.3 <0.001 

RRS 0.007 0.011 0.048 0.003 0.0017 76.0 <0.001 

RSR 0.004 0.006 0.036 0.002 0.0013 27.9 <0.001 

Sum 2S 0.001 0.001 0.010 0.001 0.0004 76.8 <0.001 

        

Milk         

RRR 0.994 0.979 0.874 0.996 0.0060 23.0 <0.001 

RSS 0.001 0.004 0.034 0.001 0.0015 26.9 <0.001 

RRS 0.002 0.007 0.039 0.001 0.0021 26.5 <0.001 

RSR 0.002 0.007 0.038 0.001 0.0021 20.3 <0.001 

Sum 2S 0.001 0.003 0.015 0.001 0.0008 71.0 <0.001 

D.F. = Satterthwaite's approximation for degrees of freedom 
S.E.M. = Standard error of the mean 
NS, not significant   
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Table 6. Ratios of relative intakes of α-tocopherol and relative concentrations of α-tocopherol in 

plasma and milk from cows fed NatvE or SyntvE supplement 

Ratios 
NatvE/SyntvE* 

Intake adjusted NatvE/SyntvE 

 α-tocopherol† 2R‡ 

Intakes    

α-Tocopherol, total 1.07 - - 

2R Tocopherol 1.35 - - 

RRR Tocopherol 1.67   

Intake incremental relative to:    

Control, total 1.18 - - 

seaweed, total 1.16 - - 

Control, 2R 2.45 - - 

Plasma α-tocopherol 1.17 1.09 0.87 

Plasma α-tocopherol increment relative to 

value from control group 

2.48 2.11 1.01 

Milk α-tocopherol 1.14 1.06 0.84 

Milk α-tocopherol increment relative to 

value from control group 

2.33 1.98 0.95 

*NatvE/SyntvE ratio = mean intake, concentration and increments relative to control and seaweed for NatvE 
treatment divided by mean of SyntvE treatment (see Tables 3 and 4 for original data).  
† [(α-tocopherol concentration in NatvE/α-tocopherol concentration in SyntvE treatment)/(α-tocopherol intake by 
NatvE/α-tocopherol intake by SyntvE treatment)]. 
‡ [(α-tocopherol concentration in NatvE/α-tocopherol concentration in SyntvE treatment)/(2R α-tocopherol intake by 
NatvE /2R α-tocopherol intake by SyntvE treatment)].   
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Table 7. Antibody titers (log2) to human serum albumin (HSA), ovalbumin (OVA), equine serum 

albumin (EQSA) and canine serum albumin (CSA) from dairy cows (n=6) fed on basal feeds of 

silage and concentrate, and supplemented with no added vitamin E (Control), RRR-α-tocopheryl 

acetate (NatvE), all-rac-α-tocopheryl acetate (SyntvE) and seaweed 

 Treatment group 
S.E.M. D.F. P  

Control NatvE SyntvE seaweed 

Pre-vaccination  values (SD)      

HSA 9.6 (0.52) 9.5 (0.41) 9.8 (0.84) 9.5 (0.41) 
  

 

OVA 9.6 (0.82) 9.3 (0.0) 9.3 (0.0) 10.0 (1.21) 
  

 

EQSA 9.5 (0.0) 9.3 (0.0) 9.3 (0.0) 9.3 (0.0) 
  

 

CSA 9.3 (0.0) 9.3 (0.0) 9.3 (0.0) 9.3 (0.0) 
  

 

        

Response to immunization  

HSA 12.8 12.5 13.1 12.6 0.35 18.8 NS 

OVA 12.6 12.1 12.3 12.8 0.25 20.0 NS 

EQSA 13.5 12.3 13.1 13.0 0.30 20.0 0.086 

CSA 12.1 11.0 11.8 11.3 0.36 19.5 NS 

D.F. = Satterthwaite's approximation for degrees of freedom 
S.E.M. = Standard error of the mean 
NS, not significant  




