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Abstract 12 

Whole-tree-harvesting (WTH) is gaining support as a means to obtain more bioenergy from forests. One 13 

aspect that is scarcely addressed is its impact on the chemical quality of post-harvest plant growth, which 14 

may initiate ecological cascade effects through, e.g., altered patterns of herbivory and decomposition. We 15 

measured C: N ratios and phenolic compounds in foliage from birch Betula spp. that had grown naturally 16 

after WTH and conventional harvest (CH) on two boreal sites in inland and more coastal Norway, three or 17 

five years after harvest. We found that carbon concentrations were higher after WTH compared to CH on the 18 

near-coastal site in spring and summer, but not on the inland site. The only observed change in nitrogen 19 

concentration after WTH was that it was lower compared to CH on the near-coastal site in autumn. In line 20 

with these changes, the C: N ratio was higher with WTH throughout the season on the near-coastal site, 21 

ostensibly favouring production or accumulation of plant defence metabolites. Expectedly, we observed 22 

altered concentrations of several phenolic compounds with WTH, particularly at the near-coastal site. Further 23 

studies are needed to clarify patterns, but our data strongly suggest that sustainability assessments of WTH 24 

should not ignore impact on plant chemical quality, and its potential consequences for trophic interactions. 25 
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Introduction 28 

Boreal forests have a substantial bioenergy potential (Ericsson & Nilsson 2006; Bostedt et al. 2015) and 29 

consequently, whole-tree-harvesting (WTH) is gaining support. Studies on the ecological effects of such 30 

intensified biomass removal are accumulating (Berger et al. 2013). Yet, one aspect that is scarcely addressed 31 

is its impact on the chemical quality of plants left or regenerated after harvesting. One major group of 32 

interest is phenolic compounds, which are carbon-based secondary metabolites ubiquitous in terrestrial plants 33 

and serving functional roles as diverse as herbivory deterrents (e.g., Bryant et al. 1983; Coley et al. 1985), 34 

antioxidants (Iason & Hester 1993; Close & McArthur 2002), pathogen protection (Witzell & Martín 2008; 35 

Tomova et al. 2005), UV-filtration (Lois 1994), frost hardiness and drought resistance (Samanta et al. 2011), 36 

chemical- (Mandal et al. 2010), visual- or aromatic signalling (Samanta et al. 2011) and allelopathy (Inderjit 37 

1996). Phenolic compounds may also affect decomposition rates (Kraus et al. 2003; Asplund et al. 2013; 38 

Smolander et al. 2012).  39 

In this study, we measured C: N ratios and phenolic compounds in foliage from birch Betula spp. plants 40 

grown naturally after WTH and conventional stem-only harvest (CH) on two boreal sites; one inland and one 41 

more coastal. Based on principal theories of element turnover, we postulated that:  42 

1) Plant foliage in forest plots recently subjected to WTH would have lower nitrogen compared to foliage in 43 

CH plots, due to lack of a soil nitrate flush from decomposed harvest residue (Mattson 1980), and 44 

possibly, reduced wet deposition of atmospheric N caused by lower infiltration on more bare land 45 

(Prescott 2002). Plant carbon would not be noticeably affected by WTH, as terrestrial plants assimilate 46 

more than 95% of their carbon from aerial CO2 (Livingstone & Beall 1934). 47 

2) Thus, plant foliage in WTH plots would have a higher C: N ratio. As boreal plants are normally N-limited 48 

(Vitousek & Howarth 1991), this should favour the allocation of surplus carbon to phenolic compounds, 49 

in accordance with the growth-differentiation (Loomis 1932), the carbon: nutrient (Bryant et al. 1983) 50 

and the protein competition (Jones & Hartley 1999) hypotheses. 51 

3) Due to higher impact of rainfall near the coast, differences between WTH and CH would be more 52 

pronounced coastally than inland, as water access strongly influences plant allocation of resources 53 

(Lambers et al. 1998). 54 
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Materials and methods 55 

Study area and plant sampling 56 

The study was conducted in two semi-natural boreal forests dominated by Norway spruce (Picea abies (L.) 57 

Karst.) on intermediate to high Site Index (H40 scale: G14, G17 and G20, Tveite 1977). The inland site 58 

(Gaupen) and the near-coastal site (Vindberg) had similar latitude (60°51′45″N vs 60°35’18″ N), mean 59 

annual temperature (3.2 vs 4.3˚C) and quaternary geology (moraine), but different annual precipitation (585 60 

vs 1550 mm) and sun exposure (slope 9° W-SW vs 23° N-NW). 61 

Controlled WTH was conducted at Gaupen on frozen, snow-covered ground in Mar 2009 (6 plots with 62 

adjacent CH controls, each 30x30 m with 5 m buffer zone between plots) and at Vindberg in Jan 2011 (5 63 

plots 20x20 m, 4 m buffer). Norway spruce trunks were removed after clear-cutting from both WTH and CH 64 

plots, using harvesters and forwarders. Other tree species were not intentionally removed, and harvesting was 65 

carried out in accordance with the PEFC standards for Norway. In WTH plots, harvest residue was piled for 66 

6-8 months to allow needles to fall off before being removed (in September 2009 at Gaupen and October 67 

2011 at Vindberg). Thus, during these months there were areas on the WTH plots where the residues were 68 

piled and other areas from which the residues had been removed. We estimate that we managed to pile 62-69 

63% of the residue on the WTH plots. After harvesting, new vegetation, including our sampling birch plants, 70 

regenerated on the sites. 71 

During the growth season 2014, we repeatedly (spring = late May, summer = early July, autumn = late 72 

August) collected leaves from upper crown shoots (defoliating the outer 15-20 cm, avoiding the apical shoot) 73 

of five individually marked birches in each WTH and CH plot, >5 m from former residue piles (on three 74 

plots less than five suitable birches were available). Each tree was sampled on each of the three sampling 75 

occasions. We chose birch as our focal species because it dominates regrowth on clearcuts in much of the 76 

boreal forests (Renecker & Schwartz 1998), and is staple forage for large herbivores in these forests (e.g., 77 

Wam & Hjeljord 2010). We sampled the first and subsequently available target tree upon entering the plot. A 78 

target tree had to have a height of approximately 150±30 cm, and approximately 20-30% of shoots damaged 79 

by herbivory, and spaces at least 5 feet away from other target trees. Leaves were collected in paper bags, 80 

placed in a portable cooler in the field and later forced-air dried at 30°C for 48 hours.  81 

 82 

 83 

This is an Accepted Manuscript of an article published by Taylor & Francis in Scandinavian Journal of Forest Research 
 on 09 Feb 2016, available online: http://www.tandfonline.com/10.1080/02827581.2016.1141231



4 
 
Chemical analyses 84 

We determined total N and C with a Micro Cube (Elementar Analysen, Hanau, Germany). We conducted 85 

low molecular phenolic analysis of the birch foliage according to Nybakken et al. (2012) (compounds listed 86 

in Table A1). Briefly, we ground the leaf samples, conducted four series of cold-methanol extractions and 87 

then ran the samples through High Pressure Liquid Chromatography (HPLC, 1100 series, Agilent USA). We 88 

quantified phenolic acids and flavonoids at 320 nm. We calculated individual compound concentrations 89 

based on available commercial standards. To reduce extraction time and solvent use, we analyzed condensed 90 

tannins from the HPLC-extract (MeOH-soluble fraction) and from the dried residue after phenolic 91 

extractions (MeOH-insoluble fraction) with the acid butanol assay (Hagerman 2002).  Purified condensed  92 

tannins (according to Hagerman 2002) from Betula nana (dwarf birch) leaves were used as standards to 93 

calculate these concentrations. We chose not to proceed with more specific analyses of hydrolysable tannins, 94 

as there were no signs of such compounds (pentagalloylglucose or related compounds) in the HPLC 95 

chromatograms. 96 

    97 

Statistical analyses 98 

We analysed contents of carbon, nitrogen and phenolic compounds as responses in a mixed effects setting (R 99 

version 2.15.3, R Core Team, 2013), with site, time of season and treatment as categorical fixed predictors. 100 

For condensed tannins, 16 samples were omitted due to technical lab failure. Homogeneity of variances 101 

across each predictor was investigated by graphical inspection (Zuur et al. 2007). Exploratory modelling 102 

suggested Gaussian distributions were appropriate, which is not uncommon for proportional data 103 

(McCullagh & Nelder 1989). As there were only a few marginal cases of heterogeneity, we applied a linear 104 

model (‘lme’ in nlme package) for all responses. TreeID was kept as a random intercept in all models 105 

(optimal random structure verified by AIC from ‘anova’, REML estimation). We determined the least 106 

parsimonious fixed structure by AIC (ML estimation) (Table S1). Best subset models were validated by lack 107 

of patterns in plots of residuals against fitted values and QQ plots of standardized residuals.108 
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Results 109 

Plant contents of carbon were higher after whole-tree-harvesting (WTH) compared to conventional harvest 110 

(CH) at the near-coastal site (Tables 1 and A1). The same applied to nitrogen, but only during autumn. The 111 

C: N ratio and several phenolic compounds were also higher with WTH than CH at the near-coastal site (Fig. 112 

1). The concentrations of MeOH-insoluble tannins were related to WTH both at the inland and the near-113 

coastal site, but the direction of the relationship varied with season. Mainly, these condensed tannins were 114 

lower with WTH compared to CH in spring, but higher with WTH compared to CH in autumn. Practically all 115 

phenolic compounds significantly related to WTH were also associated with an interaction term between 116 

WTH and time or place (Table A1, supplementary material), underpinning the complexity of the topic. 117 

 118 

Discussion 119 

The removal of logging residues by WTH influenced both C: N ratios and phenolic contents of birch foliage, 120 

but not always through the predicted pathways. As postulated, we found higher C: N ratios in plants growing 121 

at WTH plots at the near-coastal site, but this seemed to be partly due to variation in carbon concentrations 122 

rather than a general decrease in the contents of nitrogen. A likely explanation for the lack of a clear 123 

reduction in nitrogen concentrations (only observed at the near-coastal site in autumn) is the time lapse of 3 124 

and 5 years from harvesting until we sampled plants. The nitrate flush in the soil normally starts within one 125 

year of forest harvesting (Kreutzwizer et al. 2008) and is suggested to last for only 3-5 years (Prescott 2002). 126 

In addition, nitrate on the WTH plots could have originated from needles shed by the piles before their 127 

removal.  128 

A plausible explanation for the inconsistent changes in carbon concentrations between study sites is the 129 

impact of harvesting method on water stress. With more of the ground being exposed, as is the case with 130 

WTH compared to CH, plants are more likely to be water constrained due to increased run-off and 131 

evaporation from the bare ground (Lambers et al. 1998). However, the opposite can also occur because 132 

residue litter may actually limit water infiltration to the soil (Prescott 2002), possibly explaining the higher 133 

carbon concentrations with WTH compared to CH at the near-coastal site. Either way, water constraint 134 

induces stomatal closure and subsequently lower CO2 assimilation, and this is more likely to occur later in 135 

summer as stored winter precipitation in the soil diminishes (Mahli et al. 1999). This is in line with our 136 

study, where significant WTH vs CH differences in carbon concentrations were only observed in spring and 137 

This is an Accepted Manuscript of an article published by Taylor & Francis in Scandinavian Journal of Forest Research 
 on 09 Feb 2016, available online: http://www.tandfonline.com/10.1080/02827581.2016.1141231



6 
 
summer. Interestingly, the lower nitrogen concentration with WTH at the near-coastal site in autumn was not 138 

accompanied by a higher carbon concentration. More studies are needed to elucidate these patterns. 139 

The altered C: N ratios were accompanied by increased levels of several individual phenolic compounds 140 

as well as in condensed tannins in foliage from the WTH plots, but again mainly on the near-coastal site. The 141 

ecological functions of most individual compounds are poorly known (but see Barbehenn & Kochmanski 142 

2013), but phenolic compounds in general have been shown to serve several protective functions in plants 143 

(see introduction). For example, tannins normally reduce the available nutritional value of plant protein to 144 

large herbivores (Hagerman & Robbins 1993), which is relevant to our findings. Because these herbivores 145 

are nearly always N-limited, at least in parts of the season (Parker et al. 2009), increased levels of tannins 146 

may act as a bottom-up constraint (McArt et al. 2009, but see also Adamczyk et al. 2013), changing large-147 

scale browsing patterns. Such perturbations may subsequently contribute to modify the ecosystem 148 

community assembly. The latter may also occur if a phenolic component slows decomposer activity (e.g., 149 

Kraus et al. 2003; Asplund et al. 2013), and in that way perturbs the element turnover through, e.g., altered 150 

litter quality and soil C: N ratios. 151 

In conclusion, sustainability assessments of WTH should not ignore its impact on the chemical quality 152 

of post-harvest plant growth. More studies are needed to clarify the relevant patterns, and potentially 153 

cascading effects, across environmental gradients.  154 
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Table 1. Coefficient estimates (mg/g dry matter ± 95% REML estimated confidence intervals) in best subset model (‘lme’, TreeID as random intercept) of birch 228 

Betula spp. chemical responses (per dry matter) to whole-tree-harvesting (WTH) vs conventional harvest in boreal forest in inland and more coastal Norway (N=98 229 

trees resampled three times during growth season). More responses given in Table A1. Sequential coefficient contrasted against reference level = inland, spring, 230 

conventional. The most influential coefficients in bold (as indicated by approximated Wald statistics). Note that coefficients should be interpreted in conjunction 231 

with both the reference level (the intercept) and other coefficients in the subset (e.g., a negative coefficient may be outweighed by a positive interaction). 232 

Fixed terms Carbon Nitrogen C: N 
MeOH-soluble 

condensed tannins 
MeOH-Insoluble 

condensed tannins Chlorogenic acid Apigenin 
Intercept 45.2 [44.4,46.0] 3.2 [3.0,3.3] 14.6 [13.4,15.8] 16.8 [14.9,18.7] 19.7 [17.8,21.7] 1.9 [1.4,2.5] 3.9 [3.3,4.5] 

Time (ref. level: spring)        
summer 1.8 [0.9,2.7] -1.4 [-1.5,-1.2] 12.2 [11.1,13.3] 8.9 [6.7,11.2] -4.9 [-7.5,-2.3] 0.3 [-0.2,0.7] -0.7 [-1.2,-0.1] 
autumn -1.3 [-2.2,-0.5] -1.1 [-1.3,-1.0] 7.4 [6.4,8.5] 6.5 [4.2,8.8] -2.5 [-5.1,0.1] 0.1 [-0.4,0.5] -0.5 [-1.1,0.1] 

Place (ref. level: inland)        
coastal -0.3 [-1.7,1.0] -0.4 [-0.6,-0.1] 0.7 [-1.3,2.7] 4.0 [0.8,7.1] -6.6 [-9.0,-4.2] 5.1 [4.2,6.1] -0.1 [-1.0,0.9] 

Treatment (ref. level: CH)        
WTH -0.4 [-1.3,0.5] 0.1 [-0.1,0.3] -0.8 [-2.2,0.7] - -2.0 [-4.4,0.3] -0.2 [-1.0,0.6] -0.1 [-0.8,0.5] 

Time*Place        
summer near-coastal -2.0 [-3.4,-0.5] 0.3 [0.0,0.6] -1.2 [-2.9,0.6] -13.0 [-16.7,-9.4] 5.0 [1.8,8.2] 0.9 [0.2,1.7] -1.0 [-2.0,-0.1] 
autumn near-coastal -1.2 [-2.6,0.2] 0.7 [0.4,1.0] -3.1 [-4.9,-1.4] -3.8 [-7.5,-1.3] -0.3 [-3.6,3.0] -1.0 [-1.8,1.7] 0.4 [-0.5,1.4] 

Time*Treatment        
summer WTH - -0.1 [-0.3,0.1] - - 1.6 [-1.5,4.8] 0.1 [-0.5,0.7] - 
autumn WTH - -0.0 [-0.2,0.2] - - 4.0 [0.8,7.2] -0.1 [-1.0,0.6] - 

Place*Treatment        
coastal WTH 1.4 [0.0,2.9] -0.0 [-0.3,0.3] 2.7 [0.3,5.0] - - -1.8 [-3.1,-0.5] 1.2 [0.1,2.3] 

Time*Place*Treatment        
summer near-coastal WTH - -0.0 [-0.4,0.3] - - - -0.4 [-1.5,0.6] - 
autumn near-coastal WTH - -0.4 [-0.8,-0.0] - - - 1.0 [-0.1,2.0] - 
 

233 
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Figure 1. Contents (median, quartiles with 1.5 cut-off) of carbon, nitrogen and phenolic compounds in birch 234 

leaves in relation to whole-tree-harvesting vs conventional harvest in two boreal forests; near-coastal (C) and 235 

inland (I) Norway. Individual trees were resampled in spring (1), summer (2) and autumn (3).  236 

237 
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Table A1. Three best subsets of candidate models for plant responses to whole-tree-harvesting (WTH) vs 238 

conventional harvest (CH) in boreal forest on two experimental sites in Norway; one near-coastal and one 239 

inland (measured in spring, summer and autumn). Mixed effect setting (‘lme’, ML estimation) with treID as 240 

random intercept. Single terms are not shown, but were included whenever involved in a significant 241 

interaction term. 242 

Response 
 Fixed terms     

Time*Place Time*Treatm Place*Treatm 3-way AIC (weights) AICc (weights) 
Carbon x  x  -1288.2 (0.44) -1287.4 (0.43) 
 x    -1288.0 (0.39) -1287.5 (0.44) 
 x x x  -1284.7 (0.08) -1283.6 (0.06) 
Nitrogen x x x x -2442.5 (0.35) -2441.0 (0.26) 
 x    -2442.5 (0.34) -2442.0 (0.43) 
 x  x  -2440.2 (0.11) -2439.2 (0.12) 
C: N ratio x  x  -1576.8 (0.50) -1577.6 (0.51) 
 x    -1578.2 (0.25) -1578.7 (0.29) 
 x x x  -1579.7 (0.12) -1580.8 (0.10) 
Soluble tannins x    -697.2 (0.62) -696.7 (0.67) 
 x  x  -695.2 (0.22) -694.4 (0.21) 
 x x   -692.7 (0.07) -691.8 (0.06) 
Insoluble tannins x x   -795.9 (0.42) -794.9 (0.39) 
 x    -795.5 (0.35) -795.0 (0.41) 
 x x x  -793.9 (0.16) -792.7 (0.13) 
Chlorogenetic acid x x x x -1639.2 (0.57) -1637.5 (0.48) 
 x  x  -1638.0 (0.31) -1637.1 (0.39) 
 x x x  -1635.9 (0.11) -1634.7 (0.11) 
Naringenins x x x x -2007.8 (0.28) -2006.2 (0.20) 
 x    -2007.8 (0.28) -2007.2 (0.35) 
 x  x  -2007.1 (0.20) -2006.3 (0.22) 
Kampferols x    -2057.6 (0.58) -2057.0 (0.66) 
 x x x x -2054.8 (0.15) -2053.2 (0.10) 
 x x   -2054.7 (0.14) -2053.7 (0.12) 
Quercetins x    -1080.1 (0.72) -1079.5 (0.76) 
 x  x  -1077.2 (0.17) -1076.4 (0.16) 
 x x   -1075.5 (0.07) -1074.5 (0.06) 
HPCA x    -2077.4 (0.77) -2076.9 (0.80) 
 x  x  -2073.5 (0.11) -2072.7 (0.10) 
 x x   -2073.0 (0.09) -2072.0 (0.07) 
Myricitrins x    -950.4 (0.76) -949.9 (0.79) 
 x  x  -947.3 (0.16) -946.5 (0.14) 
 x x   -945.2 (0.05) -944.2 (0.05) 
Flavonoids x    -745.3 (0.51) -744.7 (0.56) 
 x  x  -744.6 (0.37) -743.8 (0.35) 
 x x x  -741.0 (0.06) -739.8 (0.05) 
Apigenin x  x  -1443.2 (0.37) -1442.3 (0.40) 
 x x x  -1442.9 (0.32) -1441.7 (0.29) 
 x    -1440.9 (0.12) -1440.3 (0.15) 
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