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Abstract 

Insufficient reference database coverage is a widely recognized limitation of molecular ecology 

approaches which are reliant on database matches for assignment of function or identity. Here, 

we use data from 65 amplicon high-throughput sequencing (HTS) datasets targeting the internal 

transcribed spacer (ITS) region of fungal rDNA to identify substrates and geographic areas 

whose underrepresentation in the available reference databases could have meaningful impact on 

our ability to draw ecological conclusions. A total of 14 different substrates were investigated. 

Database representation was particularly poor for the fungal communities found in aquatic 

(freshwater and marine) and soil ecosystems. Aquatic ecosystems are identified as priority 

targets for the recovery of novel fungal lineages. A subset of the data representing soil samples 

with global distribution were used to identify geographic locations and terrestrial biomes with 

poor database representation. Database coverage was especially poor in tropical, subtropical, and 

Antarctic latitudes, and the Amazon, Southeast Asia, Australasia, and the Indian subcontinent are 

identified as priority areas for improving database coverage in fungi. 
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Introduction 

Fungi encompass one of the most functionally and ecologically diverse kingdoms of eukaryotes, 

maintaining ecosystem functioning on a global scale and playing fundamental roles as 

decomposers, mutualists and pathogens of animals and plants (Peay et al., 2016). Estimates of 

global fungal diversity range from 0.6 to 5.1 million species of fungi (Hawksworth, 2001, Bass 

& Richards, 2011, Blackwell, 2011, Hawksworth, 2012). However, to date, only a tiny fraction 

of them (ca. 140 000 species) have been classified, although some 1200 new fungal species are 

described each year (Kirk et al., 2008, Hibbett et al., 2011).  

The advent of massively parallel high-throughput sequencing (HTS) has enabled the 

exploration of fungal diversity on a previously impossible scale (Hibbett et al., 2009). As a 

result, fungal barcoding of environmental samples is increasingly driving the exploration of the 

processes structuring fungal diversity, the identification of ecosystem functions linked to fungal 

diversity and the discovery of novel fungal biodiversity, especially for understudied geographic 

regions and substrates (Schoch et al., 2012, Öpik et al., 2016). Fungal barcoding approaches 

largely focus on the internal transcribed spacer (ITS) region, which is the standard barcode for 

Fungi (Schoch et al., 2012). The establishment of large-scale public reference ITS databases is 

therefore crucial to allow reliable sequence-based identification of fungal species in HTS 

approaches (Coissac et al., 2016).  

Database-dependent HTS approaches suffer from several biases and limitations directly 

related to the quality and breadth of the databases. For example, there are only a relatively small 

fraction of reference database sequences for which a specimen or culture is readily available 

(Bridge et al., 2003) and consequently large proportions of environmental sequences typically 

are not represented in the sequence databases. In the case of Fungi, the three public repositories 
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in the International Nucleotide Sequence Database Collaboration (INSDC), namely the DNA 

Data Bank of Japan (DDBJ), European Nucleotide Archive (ENA) and GenBank, have become a 

default resource of taxonomic annotation for newly generated environmental sequences (Karsch-

Mizrachi et al., 2018). However, it has been reported that 10-21% of fungal sequences deposited 

in INSD can be either chimeric, of poor quality or contain incorrect and insufficient taxonomic 

information (Bridge et al., 2003, Nilsson et al., 2006). To improve the annotation of fungal ITS 

sequences from NCBI databases, the ITS RefSeq Targeted Loci project has been initiated to 

develop a separate, curated database representing sequences from type material and stored in 

public archives (Schoch et al., 2014, Robbertse et al., 2017). By contrast, UNITE (unite.ut.ee) 

provides highly filtered, curated ITS reference sequences for molecular identification of fungi 

(Kõljalg et al., 2013). The geographic representation in both databases is strongly skewed 

towards Europe, North America, China, and Japan (Ryberg et al., 2009, Kõljalg et al., 2013). As 

a result, satisfactory taxonomic assignment remains problematic in the kingdom Fungi due to the 

lack of reliable and correctly annotated reference sequences, and coverage related biases. 

Here, we assess the impact of unbalanced database representation by geographic locale and 

substrate on our ability to discern and identify the components of fungal communities using data 

from 65 amplicon HTS datasets targeting the ITS region of rDNA. We attempt to identify both 

substrates and geographic regions in which underrepresentation in the available fungal ITS 

databases could have meaningful impact on our interpretation of HTS amplicon sequencing data.  

 

Materials and Methods 

The data analysed represent 65 next generation ITS amplicon sequencing datasets from 14 

different substrates, including terrestrial, aquatic, and marine environments, as well as plant and 
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animal hosts (Table S1). Data were gleaned from published materials, through personal 

communication with the authors, or from public data archives (e.g. ENA or NCBI Sequence 

Read Archive (SRA)). Among these datasets, 30 were derived from soil substrates representing 

625 sites from 14 biomes with global distribution across all continents (Table S1, Table S2). 

Sites were assigned to biomes following the classification of the World Wildlife Foundation 

(http://worldwildlife.org) with the following modifications: (i) temperate deciduous forests in the 

Northern and Southern hemispheres were treated separately; (ii) montane forests were separated 

from lowland forests in the tropics; (iii) grasslands and shrublands were considered as a single 

unit globally, and (iv) vegetated subantarctic sites were differentiated from unvegetated maritime 

Antarctic sites. For all datasets, sequences were error-corrected and quality-filtered prior to 

clustering into operational taxonomic units (OTUs) at a 97% similarity threshold (Table S1). 

Although intraspecific ITS variability ranges from zero to 24.2% (Nilsson et al., 2008), the 97% 

threshold is widely used to delineate fungal OTUs at approximately species level (Hughes et al., 

2009, Ryberg, 2015), and the use of a single threshold across all datasets here allows for 

comparison across studies and geographic areas (Yahr et al., 2016). Global singletons were 

considered probable sequencing errors and removed (Quince et al., 2009, Kunin et al., 2010, 

Tedersoo et al., 2010), as were chimeric sequences. We limited analyses to only those OTUs 

with representative sequences > 99 nt in length, as suggested by Tedersoo et al. (2014). BLAST 

searches of the representative sequences of each OTU were made against the reference databases 

NCBI-nr/nt (v.2.2.29) (hereafter referred to as NCBI) and UNITE v. 7 (unite.ut.ee). An 

alternative taxonomic assignment method, the RDP Naïve Bayesian rRNA Classifier (v. 2.11), 

was used to query the representative sequences against a UNITE+INSD-based database, the 

Warcup Fungal ITS training set 2 (Deshpande et al., 2016). The method employs multiple 

http://worldwildlife.org/
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hierarchy models for several gene regions, including ITS, to bootstrap 8 nt k-mers of the query 

sequence against the reference dataset and calculate an assignment score for each taxonomic 

rank (Deshpande et al., 2016). OTUs were considered to be non-target and discarded if they 

either: (i) were identified as a non-fungal organism by any database or (ii) their best BLAST 

match to a fungal reference sequence had a query coverage of < 70%. In total 196 790 OTUs 

were analysed (Fig. S1, Appendix 1).  

The relative representation of environmental sequences in the NCBI, UNITE, and RDP 

Warcup databases was assessed across substrates, biomes, and geographic locations. OTUs were 

considered to be represented (i.e. to have a match) in the NCBI or UNITE databases if the 

representative sequence had a BLAST match of > 97% identity to a sequence in the reference 

database. OTUs classified with > 80% confidence at a given taxonomic level using the RDP 

classifier were considered to be successfully taxonomically assigned. We calculated the 

proportion of OTUs from each substrate that were represented in the NCBI and UNITE 

databases, as well as the proportion of OTUs that could be successfully assigned at the phylum 

and genus levels using the RDP classifier. Using only the soil-inhabiting OTUs from the dataset, 

we also calculated the proportion of OTUs from distinct biomes that were represented in the 

databases and could be successfully assigned to phylum and genus. Patterns in the proportion of 

soil-inhabiting OTUs represented in the databases and successfully assigned at the genus level 

relative to latitude and longitude were investigated by fitting up to third order polynomial 

functions and selecting best fit models on the basis of AICc values. To account for unequal 

sampling intensity, observations were weighted by sampling frequency within 0.1 degree 

latitudinal and longitudinal ranges. To further assess geographic patterns in successful 

assignment of soil inhabiting OTUs, inverse distance weighting (IDW) spatial interpolation of (i) 
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representation in the NCBI database, (ii) representation in the UNITE database and (iii) 

successful assignment at the genus level were used to estimate global database coverage. 

Confidence intervals for each interpolation were calculated using a jackknife estimator with 100 

permutations.  

 

Results and Discussion 

On average, more OTUs were represented in NCBI than in UNITE, which is unsurprising 

considering the substantial size difference in the two databases. However, it must be noted that 

representation only denotes the existence of a similar, previously deposited sequence in the 

database and does not guarantee successful assignment at a given taxonomic level (Fig. 1, Fig. 

S2-S3, Table S1). A substantial proportion of the OTUs of most datasets could be assigned at the 

phylum level (mean=0.80, range=0.43-0.95), but assignment success decreased substantially at 

lower taxonomic levels (i.e. genus: mean=0.42, range=0.24-0.57) (Fig. S4). Across all datasets, 

the most OTU-rich, and therefore presumably most speciose fungal phyla were Ascomycota 

(51%) and Basidiomycota (39%). These lineages were also more successfully assigned using the 

RDP’s ITS fungal training set 2, at both the phylum (Ascomycota: mean=0.88, range=0.66–0.97; 

Basidiomycota: mean=0.78, range=0.38–0.95) and genus levels (Ascomycota: mean=0.40, 

range=0.19–0.56; Basidiomycota: mean=0.49, range=0.30–0.64) (Fig. S5-S6). Better 

representation and assignment of Dikarya compared to basal fungal lineages can likely be 

attributed to both primer bias in the commonly used ITS barcoding primer pairs (Bokulich & 

Mills, 2013, Tedersoo & Lindahl, 2016) and the Dikarya-biased taxonomic composition of the 

reference databases. 

The proportions of OTUs represented in the databases and that could be successfully 
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taxonomically assigned varied across all substrates, but were comparatively low in aquatic 

environments and soil. Only 31-46% of OTUs in these substrates were represented in the 

NCBI/UNITE databases, and in marine and freshwater substrates in particular, only 

approximately half of the fungal OTUs could be successfully assigned at the phylum level (Fig. 

1, Fig. S4). The combined poor representation and lower degree of successful phylum level 

assignments may suggest that marine and aquatic environments host a higher proportion of 

novel, unclassified, and yet undescribed fungal lineages. In particular, it is thought that aquatic 

habitats represent a larger fraction of unknown fungal diversity than previously acknowledged 

(Richards et al., 2012). Despite overall low representation in the reference databases, soil had 

higher success rates of taxonomic assignment at the phylum level (66%; Fig. 1) than aquatic and 

marine environments. This likely reflects both a highly diverse fungal community from known 

lineages in soil (de Boer et al., 2005), as well as database related biases due to the large number 

of ‘unnamed environmental sequences’ deposited in both NCBI and UNITE that preclude 

taxonomic assignment (Hibbett et al., 2011). Improved database coverage in fungi will clearly 

require both novel lineage characterization and attempts to link environmental sequences with 

identified organisms.  

Although the exploration of fungal diversity across habitats worldwide has been greatly 

facilitated by the development of HTS approaches, the vast majority of fungal species and their 

distribution for most geographic regions remains unknown (Schoch et al., 2012). With the rise of 

molecular and HTS tools for biodiversity exploration, database breadth and quality have become 

integral in ensuring successful and meaningful data interpretation in these studies. In order to 

investigate database representation from a geographic perspective, we analysed a subset of the 

datasets representing soils from 625 sampling sites encompassing 14 terrestrial biomes 
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worldwide (Fig. 2 and 3, Appendix 2). Database representation (i.e. the proportion of OTUs with 

a high quality match to a pre-existing reference sequence) varied between biomes. This suggests 

that: (1) fungal diversity has not been consistently explored, inventoried, and databased across all 

biomes and (2) there accordingly will be biome-specific biases in our ability to extract reliable 

database related information about fungal communities including taxonomy, guild, and trait 

information. Boreal, temperate coniferous, temperate deciduous and tropical montane forests are 

the biomes with best database representation, while dunes, mangroves, savannas and the 

subantarctic are among the terrestrial biomes with the poorest database representation (Fig. 2). 

The proportion of OTUs successfully assigned to phylum was consistent across both latitude and 

biomes, with the exception of the moist tropical forests. This pattern would seem to suggest that 

those geographic areas underrepresented in the databases harbour additional diversity among 

known lineages, rather than a high proportion of novel lineages forming deep branches in the tree 

of Kingdom Fungi (Fig. 2). The best model explaining database representation in both NCBI and 

UNITE, and genus-level RDP assignment was in all cases a third order polynomial fit of latitude 

(R2= 0.60, R2= 0.34, R2= 0.20 respectively; Fig. 4) which exhibited a clear drop in database 

representation towards the equator and Antarctic. No models found significant fits for longitude 

as an explanatory variable (data not shown). Database representation was highest in temperate, 

northern hemisphere latitudes while the tropics and subtropics were most poorly represented 

(Fig. 3, Fig. S7-S9). This trend likely reflects a combined effect of the comparatively high 

richness of soil fungi in the tropics in combination with lower sampling effort compared to North 

America and Europe (Ryberg et al., 2009). IDW identified the Amazon, Australasia, Southeast 

Asia and the Indian subcontinent as being particularly underrepresented in existing databases, 

suggesting that these geographic areas should be prioritized to improve coverage in existing 
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databases.  

In conclusion, with the increasing use of database dependent HTS approaches to address 

questions in fungal biodiversity and ecology, reference database quality is becoming an 

increasingly pressing concern. Public databases are dynamic and their quality has consistently 

improved with time and concerted effort by both users and developers (Nilsson et al., 2014, 

O'Leary et al., 2015). We have identified both priority substrates and geographic regions to 

which efforts may be focused to most efficiently advance improvement in database coverage. 

The combined low database representation and high proportions of OTUs that cannot be 

classified at high taxonomic levels observed in freshwater and marine substrates suggests they 

are the most likely candidates for recovery of novel lineages representing deep branches within 

Kingdom Fungi. Northern and temperate biomes are best represented in the databases, and 

tropical regions, including the Amazon and Southeast Asia, are identified as priority areas for 

improving global database coverage. 
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Figure legends 

Figure 1. A barplot representing proportion of assigned fungal OTUs across 14 different 

substrates in NCBI (green), UNITE (orange) and RDP (phylum level: blue; genus level: purple) 

databases.  

Figure 2. A barplot representing proportion of assigned fungal OTUs across 14 different 

terrestrial biomes globally in NCBI (green), UNITE (orange) and RDP (phylum level: blue; 

genus level: purple) databases.  

Figure 3. Interpolated database representation worldwide using the IDW algorithm for the (A) 

NCBI, (B) UNITE databases and (C) genus-level RDP assignments. Dark colours represent areas 

with a higher proportion of OTUs represented in the reference database. Points represent the 411 

locations on which the interpolation is based.  

Figure 4. Predicted fits and 95% confidence intervals for the best models (third-degree 

polynomial fits of latitude) explaining database representation for both the NCBI and UNITE 

databases, and genus-level RDP assignments. 
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Supplementary Information

Fig. S1. A treemap of 196 790 fungal OTUs across 14 different substrates. The area is 

proportional to the number of fungal OTUs for each substrate. 

Fig. S2. A cross plot representing mean and standard deviation values of fungal OTUs for each 

substrate with a query coverage > 70% and sequence similarity > 70% in NCBI. Numbers in 

brackets indicate number of studies analysed for this substrate.

Fig. S3. A cross plot representing mean and standard deviation values of fungal OTUs for each 

substrate with a query coverage > 70% and sequence similarity > 70% in UNITE. Numbers in 

brackets indicate number of studies analysed for this substrate.

Fig. S4. A matplot representing a proportion of successfully assigned fungal OTUs across 14 

different substrates identified with > 80% confidence at a given taxonomic level using the RDP 

classifier.

Fig. S5. A matplot representing a proportion of successfully assigned Ascomycota OTUs across 

14 different substrates identified with > 80% confidence at a given taxonomic level using the 

RDP classifier.

Fig. S6. A matplot representing a proportion of successfully assigned Basidiomycota OTUs 

across 14 different substrates identified with > 80% confidence at a given taxonomic level using 

the RDP classifier.

Figure S7. 95% confidence interval plot for the IDW interpolation of database representation in 

the NCBI database.

Figure S8. 95% confidence interval plot for the IDW interpolation of database representation in 

the UNITE database.

Figure S9. 95% confidence interval plot for the IDW interpolation of successful taxonomic 
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assignment at the genus level using the RDP classifier and Warcup Fungal ITS training set 2.

Table S1. Overview of studies included in a global meta-analysis of fungal communities across 

14 different substrates.

Table S2. Site, project, citation, and bioinformatic processing data for all localities in the global 

soil dataset. 

Appendix 1. A total dataset of fungal OTUs across 14 different substrates used in the study.

Appendix 2. A subset of fungal OTUs from soil representing 14 different biomes globally.
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Table S1. Overview of studies included in a global meta-analysis of fungal communities across 14 different substrates. 

 

No. Project Substrate No. OTUs 

(> 99 nt) 

pident 

NCBI 

pident 

UNITE 

RDP 

phylum80 

RDP 

genus80 

Reference 

1 Aas_avenella_leaf Leaf 198 0.58 0.45 0.97 0.51 unpublished 

2 Aas_finse_root Root 339 0.69 0.53 0.86 0.42 unpublished 

3 Aas_finse_soil Soil 315 0.65 0.51 0.75 0.36 unpublished 

4 Adams_indoor_air Built environment 479 0.50 0.27 0.77 0.53 Adams et al. (2013a) 

5 Adams_outdoor_air Air 404 0.45 0.24 0.86 0.58 Adams et al. (2013a) 

6 Adams_skin Skin 718 0.94 0.68 0.80 0.48 Adams et al. (2013b) 

7 Arfi_new_caledonia_soil Soil 36 0.65 0.59 0.94 0.64 Arfi et al. (2012) 

8 Baerdsdatter_marine_fungi Marine 1602 0.63 0.90 0.10 0.07 unpublished 

9 Balint_meadow_soil Soil 1266 0.50 0.40 0.88 0.28 Bálint et al. (2014) 

10 Balint_poplar_leaf Leaf 182 0.82 0.64 0.98 0.75 Bálint et al. (2013) 

11 Barberan_panama_soil Soil 20613 0.17 0.44 0.37 0.08 Barberán et al. (2015) 

12 Bistorta_BioGeo Root 997 0.63 0.45 0.91 0.44 Blaalid et al. (2014) 

13 Blaalid_finse_soil Soil 270 0.71 0.58 0.75 0.40 Blaalid et al. (2013) 

14 Clemmensen_sweden_soil Soil 1617 0.70 0.51 0.85 0.38 Clemmensen et al. (2013) 

15 Cordier_beech_endophyte Leaf 1028 0.96 0.45 0.85 0.41 Cordier et al. (2012) 

16 Cox_antarctic_soil Soil 599 0.53 0.43 0.70 0.29 Cox et al. (2016) 

17 Davey_bryophyte_gradient Moss 1751 0.54 0.42 0.95 0.35 Davey et al. (2013) 

18 Davey_bryophyte_seasonal Moss 2610 0.44 0.41 0.91 0.41 Davey et al. (2012) 

19 De_Beeck_belgium_soil Soil 177 0.77 0.68 0.90 0.49 De Beeck et al. (2014) 

20 Duarte_leaf_litter Litter 1044 0.74 0.63 0.85 0.48 Duarte et al. (2015) 

21 Geml_netherlands_soil Soil 3021 0.56 0.43 0.70 0.35 Geml et al. (2014) 

22 Geml_arctic_alaska_soil Soil 5358 0.70 0.28 0.86 0.30 Geml et al. (2016) 
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No. Project Substrate No. OTUs 

(> 99 nt) 

pident 

NCBI 

pident 

UNITE 

RDP 

phylum80 

RDP 

genus80 

Reference 

23 Glacier_forefront_root Root 636 0.62 0.48 0.85 0.56 Davey et al. (2015) 

24 Ihrmark_sweden_soil Soil 282 0.77 0.59 0.87 0.37 Ihrmark et al. (2012) 

25 Jacobsen_insect Insect 3511 0.62 0.47 0.92 0.46 Jacobsen et al. (2017) 

26 Jeffries_marine_fungi Marine 5939 0.33 0.28 0.51 0.32 Jeffries et al. (2016) 

27 Jumpponen_usa_kansas_soil Soil 519 excluded 0.44 0.65 0.21 Jumpponen et al. (2010) 

28 Kadowaki_japan_soil Soil 287 0.46 0.32 0.66 0.30 Kadowaki et al. (2014) 

29 Kemler_eucalyptus_leaf Leaf 1143 0.30 0.28 0.94 0.66 Kemler et al. (2013) 

30 Kerfahi_borneo_soil Soil 3934 0.30 0.23 0.76 0.29 Kerfahi et al. (2014) 

31 Khomich_freshwater Freshwater 300 0.73 0.71 0.57 0.41 Khomich et al. (2017) 

32 Kostovcik_insect Insect 367 0.74 0.62 0.96 0.55 Kostovcik et al. (2015) 

33 Leff_global_grassland_soil Soil 1430 0.39 0.36 0.28 0.17 Leff et al. (2015) 

34 Li_marine_sediment Sediment 809 0.53 0.41 0.89 0.48 Li et al. (2016) 

35 Maestre_global_dryland_soil Soil 23336 0.23 0.15 0.84 0.27 Maestre et al. (2015) 

36 Mello_france_soil Soil 272 0.73 0.62 0.79 0.35 Mello et al. (2011) 

37 Miller_insect Insect 1323 0.62 0.50 0.90 0.42 Miller et al. (2016) 

38 Monard_sweden_soil Soil 137 excluded 0.70 0.88 0.47 Monard et al. (2013) 

39 Mueller_amazon_deforest_soil Soil 15283 0.44 0.46 0.31 0.03 Mueller et al. (2014) 

40 Mundra_root_spatial Root 710 0.46 0.37 0.92 0.49 Mundra et al. (2015a) 

41 Mundra_root_temporal Root 1263 0.70 0.41 0.96 0.62 Mundra et al. (2015b) 

42 Newsham_antarctic_soil Soil 1936 0.32 0.27 0.70 0.27 Newsham et al. (2016) 

43 Norden_air_spores Air 3471 0.61 0.44 0.97 0.40 unpublished 

44 Norden_wood_sawdust Wood 9299 0.47 0.34 0.90 0.34 unpublished 

45 Oliver_usa_georgia_soil Soil 21488 0.49 0.32 0.75 0.33 Oliver et al. (2015) 

46 Orgiazzi_italy_soil Soil 164 excluded 0.74 0.98 0.66 Orgiazzi et al. (2012) 
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No. Project Substrate No. OTUs 

(> 99 nt) 

pident 

NCBI 

pident 

UNITE 

RDP 

phylum80 

RDP 

genus80 

Reference 

47 Porter_canada_wetland_soil Soil 2433 0.48 0.37 0.64 0.41 Porter et al. (2016) 

48 Rama_driftwood Driftwood 767 0.45 0.35 0.84 0.33 Rämä et al. (2014) 

49 Shi_china_lat_gradient_soil Soil 1000 0.68 0.59 0.80 0.54 Shi et al. (2014) 

50 Siddique_beech_endophyte Leaf 412 0.67 0.45 0.79 0.51 Siddique &  Unterseher (2016) 

51 Song_freshwater_Biwa Freshwater 683 0.38 0.32 0.53 0.39 Song et al. (2017) 

52 Tao_Zhang_arctic_endophytes Leaf 250 0.54 0.36 0.95 0.39 Zhang &  Yao (2015) 

53 Tao_Zhang_arctic_freshwater Freshwater 635 0.40 0.25 0.52 0.25 Zhang et al. (2016a) 

54 Tao_Zhang_arctic_sediment Sediment 107 0.73 0.49 0.79 0.39 Zhang et al. (2015) 

55 Taylor_coast_marine_plankton Marine 615 0.64 0.57 0.45 0.34 Taylor &  Cunliffe (2016) 

56 Tedersoo_global_soil Soil 28908 0.36 0.26 0.81 0.36 Tedersoo et al. (2014) 

57 Toju_japan_soil Soil 1218 0.45 0.33 0.80 0.32 Toju et al. (2016) 

58 Tripathi_brunei_soil Soil 9206 0.13 0.30 0.39 0.08 Tripathi et al. (2016) 

59 Troll_Soil Soil 1006 0.57 0.33 0.52 0.26 unpublished 

60 Unterseher_leaf Leaf 1450 0.46 0.26 0.94 0.64 Unterseher et al. (2016) 

61 Urbina_puerto_rico_soil Soil 2354 0.28 0.24 0.79 0.25 Urbina et al. (2016) 

62 Voriskova_oak_leaf_litter Litter 628 0.55 0.38 0.84 0.44 Voříšková &  Baldrian (2013) 

63 X.Zhang_marine_sediment Sediment 694 0.70 0.56 0.87 0.50 Zhang et al. (2016b) 

64 Zifcakova_forest_litter Litter 1029 0.69 0.52 0.84 0.43 Žifčáková et al. (2016) 

65 Zifcakova_forest_soil Soil 932 0.74 0.60 0.80 0.47 Žifčáková et al. (2016) 

   196 790      
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