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In the economic literature of the last few decades, 
performance analysis in agriculture, involving both 
cross-sectional and panel data, has attracted consider-
able attention (Battese and Coelli 1988; Kumbhakar 
et al. 2014; Filippini and Greene 2016). Measuring 
the performance of the farm has been pivotal for the 
development of the agricultural sector and applica-
tion of the econometric models of frontier functions 
(Battese and Coelli 1992).

The standard neoclassical frontier function applied 
in empirical efficiency models entails an assumption 
that all farms are fully efficient. Aigner et al. (1977) 
and Meeusen and van den Broeck (1977) proposed a 
stochastic frontier (SF) model for cross-sectional data, 
which diverges from the standard neoclassical produc-
tion function model by including two distinct error 
components. One of the error components captures 
random noise that is beyond the control of the producer 
and can affect the output such as weather, disease, 
and pest infestation, which should not be considered 
as farm inefficiency. The second component captures 
inefficiency as reflected in the difference between 
the actual output and the maximal potential output, 

which is individual specific (i.e. the farm-effect) and 
is interpreted as one-sided inefficiency.

Since the introduction of one-sided inefficiency 
within the context of SF panel-data models, there 
has been considerable research to extend and ap-
ply the model to generate consistent and unbiased 
estimates. Several SF models have been developed 
based on assumptions about the temporal behaviour 
of the inefficiency, the specifications of the model, 
distributional assumptions and estimation techniques. 
For detail review of SF models, see, e.g. Kumbhakar 
and Lovell (2000), and Kumbhakar et al. (2015). 
Consequently, selecting SF models for performance 
measurement is not straightforward since none has 
an absolute advantage over the others. The choice is 
made more complicated by the fact that the models 
are not nested within one another, which implies that 
there are no statical criteria to discriminate among 
them (Karagiannis and Tzouvelekas 2009).

A few studies have been conducted that compare the 
performance of SF panel-data models using the same 
dataset. For instance, Karagiannis and Tzouvelekas 
(2009) estimated ten short-run/time-varying SF mod-
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els for the Greek olive oil sector. Abdulai and Tietje 
(2007) estimated technical efficiency using seven SF 
panel data models for the northern German dairy 
farms. Kumbhakar et al. (2014) estimated six SF panel 
data models for the Norwegian grain farming. These 
studies found that efficiency results were sensitive 
to how the inefficiency is modeled and interpreted.

What is missing in all these studies is an estima-
tion of the competitive SF panel models, allowing the 
multi-input and multi-output technologies. That is, 
the previous study estimations were based on a single-
output technology specification which is not appropri-
ate, as the construction of a single index of outputs 
can lead to aggregation problems (Kumbhakar et al. 
2008). This study uses a cost function approach and 
estimates seven competitive SF panel data models 
within a multi-input output framework. To the best 
of our knowledge, no previous comparison has been 
undertaken for agricultural production data1 within 
a multi-output technologies framework. Moreover, 
we estimate the long-run (persistent or time-invariant) 
and short-run (transient or time-varying) inefficien-
cies of crop-producing farms in Norway using a cost 
function framework.

APPROACHES TO MEASURING EFFICIENCY

There are two main approaches to measuring farm 
performance using panel data: a parametric (econo-
metric) methods, such as that involving SF models, 
and non-parametric methods, such as data envelop-
ment analysis (DEA). In both cases, the methods are 
based on the radial contraction/expansion connec-
tion of observed inefficiency points with reference 
points on the frontier (unobserved). Each approach 
owns pros and cons in measuring of the performance 
of a farm (Kumbhakar et al. 2015). The treatment 
of measurement error is the curtail distinction between 
the two approaches. SF models can accommodate 
stochastic noise, such as measurement errors due 
to weather, disease, and pest infestation that are likely 
to be significant in farming. The non-parametric 
(DEA) approach is sensitive to outliers since the model 
ignores the measurement error (Coelli et al. 2005).

Since crop-producing farms in our study are sensi-
tive to the external random shocks, we have selected 
the SF approach to estimate the cost efficiency score. 

From the cost point of view, the SF approach assumes 
that those farms identified as cost-efficient are the 
best practice farms and all the other farms operate 
inefficiently above the cost frontier (the minimum 
cost estimated). The basic panel-data cost function 
of the SF model is expressed logarithmically as:

ln cit = β0 + h(yit, wit; β) + vit + ui	 (1)

where cit is the total cost incurred by the farm i in year t; 
wit denotes the vector of input price of farm i in pe-
riod t; yit denotes the vector of output; β is the vector 
of the parameters to be estimated; and h(yit, wit; β) 
is the cost function that represents the (dual) farm 
technology. Finally, vit is the noise term, and ui ≥ is 
the long-run/persistent inefficiency. Different models 
have been developed based on the assumption of the 
inefficiency terms. In this study, we estimated seven 
SF panel models grouped into four categories accord-
ing to the assumptions connected to the inefficiency 
behaviour (Table 1). The following chapters review 
four categories of panel-data models commonly used 
in the literature.

We begin with the first category, which is the most 
restrictive in terms of the assumed behaviour of in-
efficiency (Models 1.1 and 1.2). Pitt and Lee (1981) 
developed the means of capturing the persistent 
(time-invariant) part of inefficiency and then inter-
preted the random effects of the panel data as inef-
ficiency. In the persistent models, it is assumed that 
the inefficiency in Equation 1 is constant through 
time, that is, ui = ui1 = ui2 = ... = uiT. In this category, 
we estimated the random-effect model (Schmidt and 
Sickles 1984) for Model 1.1 and the truncated normal  
distribution model with time-invariant inefficiency 
(Battese and Coelli 1988) for Model 1.2.

The assumption of the long-run inefficiency might 
be reasonable in short panels; this might also be the 
case in some situations, such as where inefficiency 
is associated with managerial ability, and there is 
no change in the farm management for any of the 
farms during the study period (Kumbhakar et al. 
2014). The main disadvantage of the first category 
models is that identification of inefficiency and in-
dividual heterogeneity are not considered separately. 
The inefficacy score over time is constant, and it is 
restrictive in a competitive economic environment 
especially when the number of the period is large. 

1Filippini and Greene (2016) estimated the efficiency of a sample of Swiss railway companies using four SF models and 
a cost function framework.
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Table 1. Detail specification of seven fitted panel data models

Model specifications Assumption
on inefficiency*

Estimation 
method Inefficiency
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number distributional 
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FGLS
long-run/persistent 

inefficiency
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Model 1.2 
Battese and 
Coelli (1988)

 0ln =β , ;it it it it ic h y w v u  β  

ε =it it iv u  

time-invariant
2~ μ,σi uu N      
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long-run/persistent 

inefficiency
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Model 2.1 
Kumbhakar 
(1990)

 0ln βit it it it itc = + h y ,w + v +; u  β  

 =it iu G t u  
G is a function for time 

time-varying
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Model 2.2 
Battese and 
Coelli (1992)

 ln αit it it it it itc = + h y , + v  +w ; uβ  

ε =it it itv u  
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G is a function for time
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2~ μ,σi uu N      

2~ 0,σit vv N     
ML

short-run/transient 
inefficiency

 E  |it it itu v u  

Model 3.1 
Greene 
(2005) TFE 

 ln α εit i it it itc = + h y ,w ; +  β  
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 α = α μi i  
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ML***
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Model 3.2 
Greene 
(2005) TRE
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ε =it it itv u  
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1
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SML
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inefficiency
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Model 4 
Kumbhakar 
et al. (2014)

 0ln α ε αit it it it ic = + h y ,w ; + β  

εit it itv u   

α μ τi i i   
μi is the firm specific effect

time-varying and -invariant
2~ 0,σit uu N      

2  ~ 0,σit vv N     
2μ ~ 0,σi μN     

2τ ~ 0,σi τN      
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long-run/persistent 
inefficiency

 E  τ |i it itv u  

short-run/transient 
inefficiency

 E  |it it itu v u  

FGLS – feasible generalized least square; ML – maximum likelihood; SML – simulated maximum likelihood; MME – method of moments 
estimator; *all models assume individual specific effect; **Cornwell et al. (1990) follow a quadratic pattern over time (αi = αit = α0i + α1it + 
+ α2it

2) and it is estimated using a modified-least square dummy variable method without specifying the distribution assumption of inef-
ficiency; ***it can be estimated using adding dummy variable to the model to accommodate μi, we estimated by ML based on Chen et al. 
(2014); ****economic literature proposed different methods to estimate Model 4 – Colombi et al. (2014) used a full maximum likelihood 
method (FML) and Filippini and Greene (2016) showed that it is possible to estimate Model 4 using SML estimation recently; for further 
explanations of variables see chapter Empirical model

Source: author’s own elaboration based on economics literature

We expect that farm management is dynamic and 
that farmers can learn from their own experience, 

and agricultural extension, to improve their man-
agement over time.
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The second category represent Models 2.1 and 2.2, for 
which we assume the inefficiency effect to be individual-
specific and time-varying (short-run or transient). 
Short-run inefficiency models allow the likelihood 
that the inefficiency changes over time, uit = ui f(t) 
in Equation 1. Various models were developed based 
on this general specification. We used the method of 
Kumbhakar (1990) for Model 2.1 and Battese and Coelli 
(1992) for Model 2.2. The main drawback of Models 2.1 
and 2.2 is that the unobserved factors are assumed to 
be random over time. This implies that time-invariant 
factors such as soil type and quality are confounded 
into the inefficiency, and so the performance of the 
farm is underestimated (Greene 2005).

The third category consists of the Model 3.1 and 
Model 3.2, for which the error term is split into three 
components to separate latent heterogeneity (farm-
effect) from the inefficiency effect that is the er-
ror term, the farm effect, and the inefficiency term. 
The first component captures a random noise, the 
second component time-invariant unmeasured and 
unobserved heterogeneity, and the third component 
a farm-specific inefficiency term. We have estimated 
Greene’s (2005) ‘true’ fixed effect (TFE) in Model 3.1 
and the ‘true’ random effect (TRE) in Model 3.2.

The SF models estimate either long-run or short-
run part of the farm efficiency; however, being able 
to estimate both levels of inefficiency is important. 
Fortunately, a four-component error-term SF mod-
el (Model 4) developed by Colombi et al. (2014), 
Kumbhakar et al. (2014), and Kumbhakar and Tsionas 
(2014) is the latest model in the efficiency literature; 
it allows the estimation of the persistent and transient 
parts of inefficiency simultaneously from the same data. 
The first component captures the random shocks that 
are out of the control of the farm manager (weather, 
disease, and pest infestation). The second component 
captures latent heterogeneity, which is distinguished 
from the inefficiency (Greene 2005). The third com-
ponent captures long run inefficiency, for instance, 

quality of the land or farm management rigidity within 
a farm organisation and production process. The last 
component captures short-run inefficiency. Even 
in the presence of farm management rigidity in the 
production processes, a farm could be able to improve 
performance in the short-run (Kumbhakar et al. 2014; 
Filippini and Greene 2016). Both the first and fourth 
components vary across the farms and over time 
(i.e., observation specific).

EMPIRICAL MODEL

As the models in categories one to three above 
are similar to Model 4, though less comprehensive, 
we firstly describe Model 4 and then show how the 
other models are related to Model 4. Model 4 is speci-
fied as translog cost function with a three-output and 
four-input as in Equation 2.
In Equation 2, cit stands for the total cost incurred 
by farm i in year t; wj represents the price of inputs j; 
and ym is the quantity of output m. The error terms 
εit and αi are split into four components, namely, 
εit it itv u   and αi = μi + τi. As discussed in chapter 
Empirical model, the uit component captures tran-
sient cost inefficiency2; vit is the idiosyncratic error 
term capturing random shocks; μi captures latent 
heterogeneity; and the τi component captures per-
sistent inefficiency. All Greek letters are parameter 
estimates. The trend variable t, introduced to capture 
the effect of technological change, starts at t = 1 for 
1991 and increases by one annually.

By inserting μi and uit in Equation 2, we can estimate 
the persistent inefficiency models (the first category 
models), such as those of Schmidt and Sickles (1984) 
and Pitt and Lee (1981). By inserting μi in Equation 2, 
we can estimate transient inefficiency models (the 
second category models), such as those of Cornwell 
et al. (1990), Kumbhakar (1990), and Lee and Schmidt 
(1993). Finally, it is possible to estimate the Greene 

2There is a confusion in the economics literature in using terms cost effectiveness and cost efficiency (Farsi and Filippini 
2009). Cost-effectiveness (pareto efficiency) is a technique for defying the least cost option for meeting specific objec-
tives or outcome (Balana et al. 2011). However, consistent with the economics literature on production theory (Farrel 
1957), in this article the term cost efficiency is a relative concept, which measures relative to the best performance 
defined by the production technology, for detail review refer to Kumbhakar and Lovell (2000) and Coelli et al. (2005).
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(2005) TRE and TFE transient inefficiency models (the 
third category models) by inserting τi in Equation 2.    

Economic theory requires the imposition of price 
homogeneity and symmetry restrictions to the pa-
rameters. Symmetry restrictions require that βnj = βjn 
and βmn = βnm. The cost function is homogeneous 
of degree 1 in input prices, so the following restric-
tions apply:

1
  β 1 and β β 0J

j jn mjj j j
     .

An easier way to impose price homogeneity is to 
divide the quantity of all input prices and cost by an 
arbitrarily selected input price. Thus, in Equation 2, 
the left-hand side is redefined as:

 ln ln jc c w  , and all input prices are redefined as:

 ln lnj j Jw w w  ,

that is, we divided all input prices and the total cost 
by wages before estimating the translog cost function. 
The wage coefficient can be obtained by subtracting 
the estimated input price coefficient from 1.

Equation 2 can be estimated using a single-stage 
simulated maximum likelihood (ML) estimator based 
on Filippini and Greene (2016) or using a multi-step 
method of moments estimators following Kumbhakar 
et al. (2014). We use the latter method and estimate 
the model in three steps. In the first step, the standard 
random-effect panel regression is used to estimate 
parameters and predict ε̂it  and α̂i  . In the second step, 
we use ε̂it   as a regressor in an SF model and estimate 
the transient inefficiency   exp  ̂ itu  , which is the 
Jondrow et al. (1982) estimator of uit (Model 4-T). 
In the final step we use α̂i   as a regressor in an SF 
model and estimate the  exp  τi   persistent com-
ponent  following a procedure similar to the second 
step (Model 4-P). The overall efficiency (reported as 
Model 4-OE) is a product of Model 4-P and Model 4-T. 
Equation 2 is specified in logs so that the inefficiency 
terms can be interpreted as the percentage deviations 
of the observed performance.

Data and the definition of variables

The data used in this study is a farm-level unbal-
anced panel dataset for the period 1991–2013 with 

a total of 3 885 observations from 455 farms spe-
cialising in the production of grain and forage crops. 
The dataset includes production and economic data 
collected annually by NIBIO. To accommodate panel 
features in the estimation, we included only those 
farms for which at least three consecutive years 
of data were available. Most farms that are engaged 
in crop production are located in the eastern and 
central regions of Norway. The 2012 statistics show 
that 286 000 hectares of land are under cultivation. 
Of this, 81% is located in the eastern region and 17% 
in the central areas (Statistics Norway 2013). Thus, 
to obtain a homogenous group of farms, only farms 
from the eastern and central regions of Norway 
specialising in crop production that had reported 
their accounting data for the 1991–2013 period were 
selected.

The outputs are grain production in kilograms, 
adjusted for quality to indicate feed units milk (FUm)3 
(y1), forage production in FUm (y2), and the value 
of other crop outputs in Norwegian Kronor (y3). Grain 
output is an aggregate of four principal species: barley, 
wheat, oats, and oilseed species. The cost function 
in Equation 2 is specified by means of the four input 
prices described below (wj). Land prices are based 
on the market price for land in terms of rent paid for 
land at the farm level. The price of labour is the wage 
for hired labour. We computed the implicit prices 
(opportunity costs) of owned land and family labour 
based on data for farm-level rent and wages provided 
by NIBIO. The prices of other variable inputs and the 
price of capital costs are constructed as Laspeyres in-
dices, based on figures provided by NIBIO (BFJ 2016). 
All prices are deflated to 2013 levels using agricultural 
price index data provided by NIBIO.

EMPIRICAL RESULTS 

Testing model specification 

Table 2 presents the estimated coefficients of the 
translog cost function for seven SF panel data models. 
A series of hypotheses about the nature of the frontier 
model and the consistency of the cost function along 
with its properties were tested using likelihood ratios 
(LRs). The goodness of fit, which measures the log 

3A feed unit milk (FUm) is a measure of physical output adjusted for differences in the quality of output. FUm is defined 
as 1 kg of grain with 15% water content. Thus, the output measure is a quality-adjusted yield of all crops in kilograms 
per year.
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of the likelihood function (for model category 2–3), 
is satisfactory.

Empirical model specification 

The test of skewness returned a p-value of less than 
0.001, showing that the null hypothesis of no skew-
ness can be rejected with confidence. Hence, we have 
found support for a right-skewed error distribution, 
and obtained evidence for the SF specification of the 
model. This implies that the null hypothesis of an 
ordinary least squares (OLS) specification is rejected 
at the 0.01% significance level. Hence, we estimate the 
model with the parametric distributional assumptions 
of αi and uit. Table 3 shows that a simplification of the 
translog to Cobb-Douglas is rejected.

The second step concerns the distribution of the 
inefficiency effects using the null hypothesis H0: μ = 0. 
Table 2 shows that the coefficient of μ is statically 
different from zero, which implies that models as-
suming the truncated normal distribution are more 
appropriate than models assuming the half-normal 
distribution. The other component we consider is the 
value of eta (η). If η is both significant and non-zero, 
then cost efficiency can be said to vary over time. Since 

we estimate a cost function when η < 0, the degree 
of inefficiency increases over time; while when η > 0, 
the degree of inefficiency decreases over time. In our 
analysis, time-varying models are preferred. The value 
of η is a negative sign and is significant at the 1% level, 
thus cost inefficiency increases from 1991 to 2013. 
In Table 2, the estimate of η is approximately 0.01, 
which suggests that, on average, cost inefficiency 
increases at a rate of 1% per year.

The other parameter considered is the value 
of theta (θ), which shows the farm-specific het-
erogeneity (the unobserved heterogeneity). In our 
estimate, θ is statically significant and different from 
zero, which implies that Greene’s (2005) models are 
preferred among time-varying models. The Hausman 
test is the common tool used to assist researchers 
to select which model (Model 3.1 – fixed effect; 
Model 3.2 – random effect) suits to our data bet-
ter. The results in Table 4 show that the chi-square 
is considerable. Therefore, we can reject the null 
hypothesis, the random-effect (RE) models, in favour 
of the fixed-effect model. That is to say that the 
assumption of orthogonality in RE does not work. 
We also tested the characteristics of the technology, 
with the result that a Cobb-Douglas technology 
specification is rejected. The farm’s inefficiency is 

Table 2. Estimates of parameters in the translog cost function (TL) for seven models (number of observations = 3 885)

Elasticities Model 1.1 Model 1.2 Model 2.1 Model 2.2 Model 3.1 Model 3.2 Model 4
y1

 	 0.16***	(0.01) 	 0.14***	(0.01) 	 0.14***	(0.02) 	 0.15***	(0.01) 	 0.09***	(0.13) 	 0.14***	(0.01) 	 0.09***	(0.01)
y2 	 0.13***	(0.02) 	 0.13***	(0.01) 	 0.13***	(0.02) 	 0.13***	(0.01) 	 0.10***	(0.02) 	 0.13***	(0.01) 	 0.10***	(0.02)
y3 	 0.23***	(0.02) 	 0.22***	(0.01) 	 0.22***	(0.03) 	 0.23***	(0.01) 	 0.17***	(0.03) 	 0.22***	(0.01) 	 0.17***	(0.01)
w2 	 0.04**	 (0.02) 	 0.03**	 (0.01) 	 0.03*	 (0.01) 	 0.03**	 (0.01) 	 0.03	 (0.02) 	 0.03***	(0.01) 	 0.02**	 (0.01)
w3 	 0.35***	(0.13) 	 0.37***	(0.13) 	 0.49***	(0.14) 	 0.38***	(0.13) 	 0.40***	(0.13) 	 0.36**	 (0.13) 	 0.43***	(0.13)
w4 	 0.55***	(0.14) 	 0.54***	(0.13) 	 0.41***	(0.15) 	 0.53***	(0.13) 	 0.51***	(0.19) 	 0.54***	(0.13) 	 0.48***	(0.13)
Gamma (γ)	 0.57 	 0.72 	 0.76 	 0.76 	 0.96 	 0.34 	 0.66
Eta (η) – – – 	 –0.01***	(0.00) – – –
Mu (µ) – 	 0.67***	 (0.08) 	 0.61***	(0.04) –111.67*** (6.15) – –
Theta (θ) – – – – – 	 0.26***	(0.01) –
R2 – 1 035 977 1 047 2 006 1 041 0.76

statistically significant at *, **, *** p < 0.05, 0.01, 0.001, respectively; standard errors in parentheses; y1 = grain output, 
y2 = forage output, and y3 = other crop output; w2 = rent, w3 = price of variable inputs, and w4 = price of capital inputs, all 
in log form ; R2 – log likelihood/adjusted R-square; Model 1.1 and Model 1.2 – Schmidt and Sickles (1984) random-effect 
and Battese and Coelli (1988) models, respectively; Model 2.1 – Kumbhakar (1990); Model 2.2 – Battese and Coelli (1992); 
Model 3.1 and Model 3.2 – ‘true’ fixed effect (TFE) and ‘true’ random effect (TRE) models of Greene (2005), respectively; 
Model 4 – Kumbhakar et al. (2014); the second-order parameter in the translog cost function is not reported, but available 
from the author on request

Source: own calculation based on farm level data
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estimated using the conditional mean of the cost-
inefficiency term proposed by Jondrow et al. (1982) 
and is discussed in detail in the next sub-section.

Cost efficiency score

The estimates of cost efficiency scores of the farms 
for each model specification are presented in Table 4. 
The results indicate that there is a significant variation 
in estimating mean cost efficiency scores ranging from 
53–95%. The analysis shows that cost efficiency results 
are sensitive to how the inefficiency is modelled and 
interpreted. Karagiannis and Tzouvelekas (2009) and 
Kumbhakar et al. (2014) support this finding in their 
efficiency score studies.

Comparing the estimated models, the average cost-
efficiency score was about 53 % of the long-run fixed-
effect model (Model 1.2). The average cost efficiency 
scores of short-run models only (0.66 for Model 2.1 
and 0.57 for Model 2.2) were relatively greater com-
pared to the estimated the long-run models only 
(Model 1.1 and Model 1.2). The average estimated cost 
efficiency scores for Greene ‘true’ fixed and random 
effect model (Model 3.1 and Model 3.1) were 93% and 
94%, respectively. This coincides with our expectation, 
with regard to which, as discussed above, the model 
separates some of the time-invariant heterogeneities 
(farm-effect) from the inefficiency term. However, 
the model overestimates the performance of the farm 
because the model could not separate time-invariant 
heterogeneity from time-invariant (persistent) inef-

Table 3. Properties of grain and forage production technology

Restrictions Parametric restrictions Wald test statistics 

CD technology H0: all interaction terms are zero 8.64
Breusch and Pagan Lagrangian  
(multiplier test for random effects) test: variance inefficiency term = 0 5 034.68

Normality test/test return of skewness Schmidt and Lin (1984) 11 850.97

Hausman test fixed and random effect chi2 (33) 273.86

Log likelihood ratio (LR) LR test for random effects 39 235.22

p-value – 0.00

Source: own calculation based on farm level data

Table 4. Cost efficiency scores of farms for each model specification for the seven models (number of observations = 3 885)

Modela,b Mean Standard deviation Minimum Maximum
Model 1.1 0.55** 0.13 0.30 1.00
Model 1.2 0.53** 0.13 0.25 0.95
Model 2.1 0.66*** 0.15 0.31 0.99
Model 2.2 0.57** 0.14 0.28 0.97
Model 3.1 0.93*** 0.04 0.51 0.98
Model 3.2 0.94*** 0.05 0.51 0.99
Model 4-T 0.94*** 0.01 0.83 0.99
Model 4-P 0.95*** 0.00 0.93 0.96
Model 4-OE 0.89*** 0.01 0.79 0.94

statistically significant at *,**,*** p < 0.05, 0.01, 0.001, respectively; aModel 1.1 and Model 1.2 – Schmidt and Sickles (1984) 
random-effect and Battese and Coelli (1988) models, respectively; Model 2.1 – Kumbhakar (1990); Model 2.2 – Battese and 
Coelli (1992); Model 3.1 and Model 3.2 – ‘true’ fixed effect (TFE) and ‘true’ random effect (TRE) models of Greene (2005), re-
spectively; Model 4 – Kumbhakar et al. (2014); bModel 4-T, Model 4-P, and Model 4-OE show mean short–run (time-varying/
transient), long-run (time-invariant/ persistent), and overall efficiency for Model 4 in Kumbhakar et al. (2014) multi-stage 
estimation, respectively

Source: own calculation based on farm level data
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ficiency. Similar results were reported in Kumbhakar 
et al. (2014).

Model 4 shows that the mean persistent (Model 4-P) 
and transit efficiency (Model 4-T) scores were 
0.95 and 0.94, respectively (Table 4). In terms of the 
persistent cost inefficiency, an average crop producing 
farm incurred costs that are about 5% ((1/0.95) – 1) 
above the minimum cost defined by the frontier. The 
implication is that the average actual cost could be 
reduced by 5%, without reducing the output, if persis-
tent (time-invariant) inefficiency could be removed. 
On the other hand, the actual costs could be reduced 
by 6% if transient (time-varying) inefficiency could be 
removed. The overall efficiency estimate for Model 4 
(Model 4-OE), which is the interaction of persistent 
and transit efficiency was 0.89. The implication is that 
the average actual cost could be reduced by 11%, 
without reducing the output, if both inefficiencies 
could be removed in the Norwegian crop production.

CONCLUSION

We estimated seven alternative SFA panel data 
models grouped into four categories based on the 
assumptions applying to the inefficiency compo-
nent. The empirical results show that the mean cost-
efficiency score varied from 53% to 95%. The range 
found shows that the cost-efficiency score is sensitive 
to how the inefficiency is modelled and interpreted. 
We also distinguished the level of both persistent 
and transient inefficiency of crop farms using the 
four-component model. The overall efficiency score 
of Norwegian crop farms based on the latest model 
was 89%. The estimated persistent cost (long-run) 
efficiency was 95%, while transient (short-run) ef-
ficiency was 94%. 

The empirical analysis shows that the magnitude 
of persistent cost inefficiency (5%) was lower than 
the transient inefficiency level (6%). It is possible 
to reduce crop-production costs by on average 5% 
if we reduce shortfalls in farmers’ managerial capabili-
ties such as lack of experience. Moreover, it is possible 
to reduce crop production costs by 6% if we improve 
transient inefficiency such as the debt/asset ratio.

We estimated the levels of persistent cost and tran-
sient inefficiency, but we have not investigated the 
determinants of persistent and transient inefficiency 
in Norwegian crop farms. Thus, the limitations of this 
study suggest important topics that could benefit 
from further research.
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