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The aerial parts of land plants are covered by a hydrophobic layer called cuticle that
limits non-stomatal water loss and provides protection against external biotic and abiotic
stresses. The cuticle is composed of polymer cutin and wax comprising a mixture
of very-long-chain fatty acids and their derivatives, while also bioactive secondary
metabolites such as triterpenoids are present. Fleshy fruits are also covered by the
cuticle, which has an important protective role during the fruit development and ripening.
Research related to the biosynthesis and composition of cuticles on vegetative plant
parts has largely promoted the research on cuticular waxes in fruits. The chemical
composition of the cuticular wax varies greatly between fruit species and is modified by
developmental and environmental cues affecting the protective properties of the wax.
This review focuses on the current knowledge of the cuticular wax biosynthesis during
fleshy fruits development, and on the effect of environmental factors in regulation of
the biosynthesis. Bioactive properties of fruit cuticular waxes are also briefly discussed,
as well as the potential for recycling of industrial fruit residues as a valuable raw material
for natural wax to be used in food, cosmetics and medicine.

Keywords: fruit, cuticle, cuticular wax, biosynthesis, regulation, temperature, light, bioactivity

INTRODUCTION

The primary surfaces of aerial parts of land plants are covered by a hydrophobic layer called
cuticle. The cuticle is composed of polyester cutin and a mixture of lipidic compounds collectively
called wax. The chemical composition of cuticular wax varies between species and organs but
is also dependent on the developmental stage and environmental conditions (Yeats and Rose,
2013). Cuticular wax appears as amorphous “intracuticular wax” embedded in cutin matrix, that is
connected to the polysaccharides on the underlying epidermal cell walls, and as “epicuticular wax”
that may exist as crystallized to various micro-morphologies (Koch and Ensikat, 2008; Fernández
et al., 2016; Barthlott et al., 2017; Figure 1). Cuticle not only provides protection against desiccation
but also has a role in plant development and environmental interactions (Yeats and Rose, 2013).
In fleshy fruits, cuticular waxes have a crucial role in minimizing water loss/uptake through
an often astomatous surface, providing mechanical support, preventing fruit softening, and in
resistance to pathogens (Saladié et al., 2007; Martin and Rose, 2014; Wang J. et al., 2014). The
cuticle in fruits is usually thicker than in leaves and the epicuticular wax is often visible to the
naked eye as a white, dull, or glossy coating. Alterations in cuticular wax biosynthesis, load and
composition take place during the fruit development to keep it continuous and adjusted to its tasks.
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From a human perspective, fleshy fruits are an indispensable
part of a healthy diet and cuticular wax affects important
quality traits for consumers, such as fruit color, texture, shelf-
life, sensory and nutritional quality, and preventing fruit cracking
(Lara et al., 2014; Petit et al., 2017; Chu et al., 2018a;
Tafolla-Arellano et al., 2018).

Recent reviews exist concerning cuticular wax biosynthesis
in vegetative organs of plants (e.g., Lee and Suh, 2013; Yeats
and Rose, 2013; Borisjuk et al., 2014) but also in fruits mainly
focusing on cuticle composition (Lara et al., 2015), genetic
regulation of cuticle assembly (Hen-Avivi et al., 2014) and role
of cuticle in postharvest quality (Lara et al., 2014). The present
review compiles the current knowledge on the developmental
and environmental regulation of biosynthesis and composition
of cuticular waxes in fleshy fruits.

CUTICULAR WAX COMPOSITION AND
BIOSYNTHESIS IN FRUITS

The major components of plant cuticular waxes are very-
long-chain fatty acids (VLCFAs, typically C20–C34) and their
derivatives including alkanes, aldehydes, primary and secondary
alcohols, ketones, and esters along with secondary metabolites,
such as triterpenoids, sterols, tocopherols, and phenolic
compounds (Kunst and Samuels, 2009; Yeats and Rose, 2013).
The composition of cuticular wax varies widely among fruit
species and cultivars (Table 1). While alkanes are common wax
components in cuticles of different plant organs, triterpenoids
are present especially in fruits (Szakiel et al., 2012). Triterpenoids
and n-alkanes are the major compounds of cuticular wax in
tomato (Solanum lycopersicum), apple (Malus × domestica),
Asian pear (Pyrus spp.), sweet cherry (Prunus avium), peach
(Prunus persica), and pepper (Capsicum annuum) fruits. Also,
among wild tomatoes, alkanes are the dominant compounds
but the content of triterpenoids varies between tomato species
(Yeats et al., 2012). Instead, the cuticular wax in grape (Vitis
vinifera), olive (Olea europaea), persimmon (Diospyros kaki),
and blueberries (Vaccinium spp.) contain high amounts of
triterpenoids but only traces of alkanes (Table 1).

Apart from alkanes and triterpenoids, many fruits have high
proportions of other components in their cuticles. A recent
study indicated high levels of primary alcohols and tocopherols
in the cuticular wax of some pear cultivars (Wu et al., 2017,
2018). Plum (Prunus domestica) and some apple cultivars show
high proportion of secondary alcohols in fruit cuticle, while
tomato cuticle contains significant amounts of polyunsaturated
constituents, including alken-1-ols and alkenes (Kosma et al.,
2010). Aldehydes are abundant only in cuticles of some fruits,
such as cucumber (Cucumis sativus), cranberry (Vaccinium
macrocarpon), and Citrus fruits. Cuticular wax of bayberry
(Myrica pensylvanica) uniquely consists of glycerolipids while
blueberries contain high levels of β-diketones (Table 1).

Many of the cuticle properties are affected by the composition
of wax. For example, wax composition rather than cuticle
thickness has been indicated to affect water transpiration rate
(Riederer and Schreiber, 2001). The presence of long-chain

alkanes and aldehydes has been found to increase water
impermeability of fruit cuticles, while triterpenoids and sterols
have opposite effects (Vogg et al., 2004; Leide et al., 2007;
Parsons et al., 2012; Wang J. et al., 2014; Moggia et al.,
2016). Instead, triterpenoids were shown to enhance mechanical
strength of persimmon fruit cuticle by functioning as nano-fillers
(Tsubaki et al., 2013). Wax composition also affects epicuticular
wax micro-morphology (Koch and Ensikat, 2008). Alkanes,
aldehydes and alcohols were shown to promote the formation of
epicuticular wax crystals in orange (Citrus sinensis) and apples
(Liu et al., 2012, 2015; Yang et al., 2017).

The knowledge of cuticular wax biosynthesis has mainly
been gained from the studies in Arabidopsis leaves, but also
from tomato fruit owing to its thick, astomatous, easy-to-isolate
cuticle and availability of mutants (Bernard and Joubès, 2013;
Lee and Suh, 2013; Hen-Avivi et al., 2014). During recent years
high-throughput sequencing has facilitated the identification of
candidate genes involved in the fruit cuticle formation and wax
biosynthesis in addition to tomato (Mintz-Oron et al., 2008;
Matas et al., 2011) in apple (Albert et al., 2013; Legay et al.,
2015), mango (Mangifera indica, Tafolla-Arellano et al., 2017),
sweet cherry (Alkio et al., 2012, 2014), orange (Wang et al.,
2016), pear (Pyrus pyrifolia, Wang Y. et al., 2014), and bayberry
(Simpson and Ohlrogge, 2016).

The cuticular wax components are biosynthesized in the
epidermal cells of fruit peel. The biosynthesis of aliphatic wax
constituents utilizes C16 and C18 fatty acids produced by de
novo synthesis in plastids (Figure 1). These precursors are
elongated to C20–C34 VLCFAs in endoplasmic reticulum (ER)
by the fatty acid elongase (FAE) complex with β-ketoacyl-CoA
synthase (KCS) as the rate-limiting enzyme of the complex
(Kunst and Samuels, 2009; Yeats and Rose, 2013). Tomato lecer6
mutant has shown that KCS plays a key role in wax aliphatic
compound biosynthesis and determines the chain-length of
VLCFAs in tomato fruit (Leide et al., 2007). The resulting
VLCFAs can be converted into primary alcohols and esters by acyl
reduction pathway or aldehydes, alkanes, secondary alcohols and
ketones by decarbonylation pathway (Kunst and Samuels, 2009).
In decarbonylation pathway, CsCER1 and CsWAX2 (CER3) of
cucumber and PaCER1 of sweet cherry was recently shown to
play important roles in alkane biosynthesis (Alkio et al., 2012;
Wang et al., 2015a,b), while CsCER3 was linked to aldehyde
biosynthesis in orange fruit (Wang et al., 2016). Also CsCER4
linked to wax biosynthesis was recently identified in cucumber
(Wang W. et al., 2018). Wax triterpenoids and sterols are
biosynthesized from squalene produced from mevalonate (MVA)
pathway followed by modifications into various compounds
(Sawai and Saito, 2011; Thimmappa et al., 2014; Figure 1).

DEVELOPMENTAL REGULATION OF
FRUIT CUTICULAR WAX FORMATION

Tomato is a model species for studying regulation of fleshy fruit
development and ripening (Karlova et al., 2014). During the
last decades, intensive studies in tomato performed in cuticle
formation indicate connections in regulatory network between
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FIGURE 1 | Cuticular wax biosynthesis and interacting environmental factors. Cuticle has an important role as water barrier and in environmental interactions.
Biosynthesis of aliphatic wax compounds starts with the generation of fatty acids in plastid by fatty acid synthase complex (FAS). The C16 and C18 precursors are
hydrolyzed by acyl-ACP thioesterase (FATB) and converted to CoA thioesters by long chain acyl-CoA synthase (LACS) before transferred to endoplasmic reticulum
(ER). In the ER, fatty acids are extended to very-long-chain fatty acids (VLCFAs) by fatty acid elongase (FAE) complex enzymes β-ketoacyl-CoA synthase (KCS),
β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD), and enoyl-CoA reductase (ECR). VLCFAs are modified to primary alcohols by fatty
acyl-CoA reductase (CER4) and further to wax esters by wax synthase (WSD1) through acyl reduction pathway. Decarbonylation pathway produces aldehydes,
alkanes, secondary alcohols and ketones by enzymes including fatty acyl-CoA reductases (CER1/3) and a midchain alkane hydroxylase (MAH1). The compounds
are transported to the plant surface through Golgi network and ABC transporters and by lipid transfer proteins (LTPs). Wax triterpenoids and sterols are derived from
squalene that is produced from isopentenyl diphosphate (IPP) through mevalonic acid (MVA) pathway by geranyl pyrophosphate synthase (GPS), farnesyl
pyrophosphate synthase (FPS), squalene synthase (SQS), and squalene epoxidase (SQE). Squalene is cyclized by oxidosqualene cyclases (OSCs) including
cycloartenol synthase (CAS), lanosterol synthase (LAS), lupeol synthase (LUS), and β-amyrin synthase (BAS) to produce sterols, lupeols, and amyrins, respectively,
which are modified by cytochrome P450 monooxygenases (CYPs) and glycosyltransferases (GTs) before transported to plant surface. TFs important for cuticle
development are shown in the nucleus. Modified according to Kunst and Samuels (2009); Sawai and Saito (2011); Lee and Suh (2013); Yeats and Rose (2013); and
Thimmappa et al. (2014).

cuticle and fruit development. Transcription factors (TFs) NON-
RIPENING (NOR), and RIPENING INHIBITOR (RIN) are
important regulators of fruit ripening, but tomato nor and rin
mutants also show altered fruit cuticular wax profile from early
stage throughout the fruit development (Kosma et al., 2010).
In addition, other ripening regulators, including FRUITFULL
(FUL1,2) and TOMATO AGAMOUS-LIKE1 (TAGL1), have
been linked to fruit cuticle development (Bemer et al., 2012;
Hen-Avivi et al., 2014; Giménez et al., 2015).

In climacteric fruits, including tomato and apple, plant
hormone ethylene acts to initiate and co-ordinate ripening
processes, while in many non-climacteric fruits abscisic acid
(ABA) has been shown as ripening inducer (Cherian et al.,
2014; Karppinen et al., 2018). Both ethylene and ABA signaling
seems to play important roles in fruit cuticle biosynthesis

(Ziv et al., 2018). Studies have indicated that ethylene accelerates
cuticular wax accumulation in orange and apple (Ju and
Bramlage, 2001; Cajuste et al., 2010; Li et al., 2017). The
Arabidopsis members of the SHINE (WIN1/SHN1) clade of
ethylene responsive factors (ERFs), transducing signal from
ethylene, are well-characterized regulators of the cuticular wax
biosynthesis (Aharoni et al., 2004; Broun et al., 2004). In tomato,
SlSHINE3 (SlSHN3) was shown to regulate fruit cuticle formation
and cuticular lipid biosynthesis (Shi et al., 2013). Also the
expression of sweet cherry, apple and mango homologs for
WIN1/SHIN1 coincided with fruit cuticle deposition (Alkio
et al., 2012; Lashbrooke et al., 2015b; Tafolla-Arellano et al.,
2017). Downstream to SlSHN3, MYB TF SlMIXTA has been
shown to regulate fruit cuticle assembly in tomato (Lashbrooke
et al., 2015a; Ewas et al., 2016). Recently, a grape berry-specific
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TABLE 1 | The main cuticular wax compound classes in various fleshy fruits at mature stage and changes during fruit development.

Species Main compound classes∗ References

Tomato (Solanum lycopersicum) Alkanes (n-hentriacontane, n-nonacosane) ∼, triterpenoids
(amyrins) ∼

Bauer et al., 2004; Leide et al., 2007, 2011; Saladié
et al., 2007; Mintz-Oron et al., 2008; Kosma et al.,
2010; Petit et al., 2014

Wild tomato (Solanum spp.) Alkanes (n-hentriacontane, n-nonacosane), triterpenoids
(amyrins), esters

Yeats et al., 2012

Eggplant (Solanum melongena) Alkanes (n-hentriacontane), alkanoic acids Bauer et al., 2005

Apple (Malus × domestica) Triterpenoids (ursolic acid) ↓, alkanes (n-nonacosane) ↓,
primary and secondary alcohols ↑

Belding et al., 1998, 2000; Ju and Bramlage, 2001;
Verardo et al., 2003; Legay et al., 2017; Yang et al.,
2017; Leide et al., 2018

Asian pear (Pyrus spp.) Alkanes (n-hentriacontane, n-nonacosane) ↓, triterpenoids
(α-amyrin) ↑, primary alcohols (triacontanol,
triacontane-1,30-diol) ↑, fatty acids ↑

Yin et al., 2011; Li et al., 2014; Heng et al., 2017;
Wu et al., 2017, 2018

European pear (Pyrus communis) Alkanes (n-hentriacontane), primary alcohols (triacontanol,
triacontane-1,30-diol)

Wu et al., 2018

Sweet cherry (Prunus avium) Triterpenoids (ursolic acid) ↓, alkanes (n-nonacosane) ↑,
fatty acids

Peschel et al., 2007; Belge et al., 2014a; Rios et al.,
2015

Peach (Prunus persica) Triterpenoids (ursolic acid, oleanolic acid), alkanes
(n-tricosane, n-pentacosane)

Belge et al., 2014b

Plum (Prunus domestica) Secondary alcohols, alkanes (n-nonacosane) Ismail et al., 1977

Grape (Vitis vinifera) Triterpenoids (oleanolic acid) ↓, alcohols ↓ Radler, 1965; Comménil et al., 1997; Casado and
Heredia, 1999; Pensec et al., 2014

Orange (Citrus sinensis) Triterpenoids (friedelin, lupeol) ↑, aldehydes ↑, alkanes
(n-hentriacontane) ∼, fatty acids ↓

Sala et al., 1992; Liu et al., 2012; Wang J. et al.,
2014; Wang et al., 2016

Satsuma mandarin (Citrus unshiu) Aldehydes (octacosanal) ↑, triterpenoids (friedelin) ∼,
alkanes (n-nonacosane) ∼, fatty acids ∼

Sala et al., 1992; Wang J. et al., 2014

Grapefruit (Citrus paradisi) Triterpenoids (friedelin), aldehydes McDonald et al., 1993; Nordby and McDonald, 1994

Olive (Olea europaea) Triterpenoids (oleanolic acid) ↓, primary alcohols ↑, fatty
acid derivatives ∼

Bianchi et al., 1992; Huang et al., 2017

Persimmon (Diospyros kaki) Triterpenoids (ursolic acid, oleanolic acid), alkanes, alcohols Tsubaki et al., 2013

Pepper (Capsicum annuum) Triterpenoids (amyrins), alkanes (n-hentriacontane) Bauer et al., 2005; Kissinger et al., 2005; Parsons
et al., 2012, 2013

Cucumber (Cucumis sativus) Alkanes (n-nonacosane), aldehydes, fatty acids Wang et al., 2015a,b

Blueberry (Vaccinium corymbosum) Triterpenoids (ursolic acid, oleanolic acid) ∼, β-diketones ↓ Chu et al., 2017, 2018b

Blueberry (Vaccinium ashei) Triterpenoids (ursolic acid) ↑, β-diketones ↓ Chu et al., 2017, 2018b

Cranberry (Vaccinium macrocarpon) Triterpenoids (amyrins), aldehydes Croteau and Fagerson, 1971

Bayberry (Myrica pensylvanica) Glycerolipids (triacylglycerol, diacylglycerol) Simpson and Ohlrogge, 2016

∗Proportional change in cuticular wax during fruit development is indicated when information available. ↑, increased proportion; ↓, decreased proportion; ∼ no clear trend.
The main compound(s) indicated in parentheses when information available.

ERF VviERF045, resembling SHINE clade members, and Malus
AP2/SHEN member McWRI1 were indicated in regulation of
cuticular wax biosynthesis (Leida et al., 2016; Hao et al., 2017).
A connection between ABA and cuticular wax biosynthesis was
demonstrated in orange fruit (Wang et al., 2016). In cucumber,
ABA was shown to induce gene expression involved in cuticle
alkane biosynthesis (Wang et al., 2015a,b).

Due to the multiple tasks, maintaining intact cuticle over
the fruit development is necessary, but challenging, due to
rapid and extensive surface expansion. Cuticular wax deposition
starts early in fruit development (Comménil et al., 1997; Casado
and Heredia, 2001; Curry, 2005; Domínguez et al., 2008).
However, the pattern of wax load varies markedly between species
(in contrast to cutin load) and indicates separately regulated wax
biosynthesis from cutin biosynthesis (Wang et al., 2016). In many
fruits, including apple (Ju and Bramlage, 2001; Lai et al., 2016),
orange (Liu et al., 2012; Wang et al., 2016), pear (Li et al., 2014),

blueberries (Chu et al., 2018b), bayberry (Simpson and Ohlrogge,
2016), and mango (Tafolla-Arellano et al., 2017), cuticular wax
load increases during the fruit development leading to a thick
cuticle at maturity. Furthermore, in many fruits, modification
of the wax chemical profile and cuticle accumulation, even
after harvest has been reported (Ju and Bramlage, 2001; Belge
et al., 2014a,b; Tafolla-Arellano et al., 2017; Yang et al., 2017).
Tomatoes also have a thick cuticle at maturity but there are clear
cultivar-specific variations in cuticle development (España et al.,
2014). In cherry tomatoes, cuticular wax is deposited early in
fruit development (Domínguez et al., 2008), while in medium-
sized tomatoes, such as “Micro Tom” and “Ailsa Craig,” the
wax amount reaches its maximum level at orange-colored stage
(Leide et al., 2007; Mintz-Oron et al., 2008) and in some other
cultivars the wax amount increases continuously toward the fruit
maturity (Bauer et al., 2004). In tomato, all the wax compound
classes, except branched alkanes, accumulate during the cuticular
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wax load (Leide et al., 2007; Mintz-Oron et al., 2008; Kosma
et al., 2010). However, in many cases, the continuous wax load
leads to changes in the cuticular wax profile during the fruit
development (Table 1). For example, in apple, hydrocarbons and
triterpenoids predominate in cuticles of young fruits while fatty
acids, alcohols and esters contribute mostly to the wax increase
during fruit ripening increasing wax greasiness (Ju and Bramlage,
2001; Yang et al., 2017).

High cuticular wax deposition rate at the early stages of
fruit development followed by reduction at later stages has
been described for sweet cherry (Peschel et al., 2007; Alkio
et al., 2012; Lai et al., 2016) and grape (Comménil et al.,
1997; Becker and Knoche, 2012; Pensec et al., 2014). The
decrease in sweet cherry wax load toward fruit maturity was
mainly attributed to the decrease in triterpenoids (Peschel et al.,
2007). Similarly, the total triterpenoids decreased during the
development of grape berries (Pensec et al., 2014). The role of
cuticle as a mechanical support at fruit ripening is important
when degrading cell walls cannot sustain the fruit internal
pressure. Thus, the inability of the wax deposition to keep in
the pace with surface expansion makes ripening fruits vulnerable
for micro- and macro-cracking leading to uncontrolled water
movement and fungal infections (Comménil et al., 1997; Børve
et al., 2000). Cracking is a serious problem in many fruit species,
such as tomato and cherries (Domínguez et al., 2012). Recently,
an association between cuticular n-nonacosane level and cracking
tolerance among sweet cherry varieties was described by Rios
et al. (2015). Failure in cuticle deposition associated with
micro-cracking can cause formation of russeting, a common
disorder in fruits, such as apples and pears (Khanal et al.,
2013). Improper cuticular wax deposition was shown to be
accompanied by the decreased expression of wax biosynthetic
genes and MdSHN3 TF in russeted apples (Lashbrooke et al.,
2015b; Legay et al., 2015, 2017).

ENVIRONMENTAL REGULATION OF
FRUIT WAX BIOSYNTHESIS
AND COMPOSITION

Being a protective barrier on fruit surface, cuticle has a crucial
role in the tolerance to various environmental stresses (Figure 1),
including osmotic stress (Shepherd and Griffiths, 2006; Xue
et al., 2017). Both drought stress and humidity have been shown
to affect cuticle deposition. In general, a decrease in cuticle
deposition has been detected in plants under high humidity
(Tafolla-Arellano et al., 2018). In tomato fruit, decreased cuticle
thickness was detected in high humidity, but had no effect
on wax accumulation (Leonardi et al., 1999; Domínguez et al.,
2012). Instead, plants adapted to water deficit conditions usually
have well-developed cuticles in fruits (Crisosto et al., 1994;
Barker and Procopiou, 2000; Xue et al., 2017). Regulation of
cuticular wax biosynthesis in response to drought stress has
been most intensively studied in Arabidopsis but also in tomato
and cucumber (Xue et al., 2017). In tomato, overexpression
of SISHN1 TF induced expression of wax biosynthetic genes
leading to enhanced cuticular wax deposition and drought-
tolerance compared to control plants (Al-Abdallat et al., 2014).

In cucumber, the expression of fruit-specific cuticular wax
genes CsCER1 and CsWAX2 increased under drought and
salinity stresses (Wang et al., 2015a,b). Furthermore, transcrip-
tome level studies in drought-sensitive cucumber variety sugg-
ested that the decreased expression of cutin, suberin, and
wax biosynthetic genes might be responsible for sensitivity to
drought (Wang M. et al., 2018).

Both light and temperature can directly change the
morphology and properties of fruit epicuticular wax (Schirra
et al., 1999; Charles et al., 2008). For example, a post harvest
heat treatment at 38◦C was shown to affect the structure of
the epicuticular wax in apple (Roy et al., 1994). However,
temperature changes can also modify the biosynthesis of fruit
cuticular waxes. Since wax layer is important in maintaining
postharvest quality (Lara et al., 2014; Chu et al., 2018a), most
temperature treatments have been performed on postharvest
fruits. In Malus fruits, low temperature treatment (+4◦C)
increased the thickness of cuticular wax compared to control
fruits and up-regulated the expression of McWRI1, McKCS,
McLACS, and McWAX leading to the accumulation of alkanes
(Hao et al., 2017). Similarly, expression of cucumber fruit-specific
CsCER1 and CsWAX2 were induced by low temperature (Wang
et al., 2015a,b). Changes in fruit cuticular wax content and
composition during cold storage have also been reported for
blueberries (Chu et al., 2018b), Asian pears (Wu et al., 2017),
grapefruit (Citrus paradisi, Nordby and McDonald, 1991), and
sweet cherries (Belge et al., 2014a).

Cuticle is the first barrier to receive light radiation. The
increase in thickness of the cuticular wax layer as a response
to higher irradiation has been shown in many plant species
(Shepherd and Griffiths, 2006; Tafolla-Arellano et al., 2018).
In grape berries, the cuticle amount was reported to be higher
in sun-exposed berries compared to berries developed in canopy
shade (Rosenquist and Morrison, 1989). Also, the spectral
quality of light affects the cuticular wax biosynthesis and several
reports show that cuticular wax plays a role in the protection
against damaging UV-light. Irradiation with enhanced UV-B
or UV-C has been demonstrated to increase total amount of
cuticular wax and alter wax composition (Tafolla-Arellano et al.,
2018). Monochromatic far-red light was shown to stimulate the
cuticular wax biosynthesis increasing hydrophobicity of the wax
in both tomato and bell pepper fruits during storage (Cozmuta
et al., 2016a,b). In grapefruit and mango, interaction of light and
temperature conditions affected fruit cuticle accumulation and
cuticular wax composition considering difference between fruits
growing in interior or exterior canopy (McDonald et al., 1993;
Léchaudel et al., 2013).

BIOACTIVITY AND COMMERCIAL
POTENTIAL OF WAXES

Cuticle serves as a primary defense against pathogens and
affects susceptibility of fruits to pathogens (Comménil et al.,
1997; Saladié et al., 2007; Shi et al., 2013). It was shown
in sweet orange and pepper that fruits respond to fungal
infections by increasing the cuticle load (Kim et al., 2004;
Marques et al., 2012). Agudelo-Romero et al. (2015) reported
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that grape berries infected with Botrytis cinerea accumulated
saturated long-chain fatty acids with simultaneous up-regulation
of genes related to lipid and wax biosynthesis, including acyl-CoA
synthetases (LACSs). A transcriptome analysis of Colletotrichum
gloeosporioides infected tomato fruits showed activation of genes
linked to the formation of cuticular wax VLCFAs (Alkan et al.,
2015). Also, a contact of orange fruit with yeast Kloeckera
apiculatawas shown to trigger biosynthesis of cuticular waxes and
expression of CsKCSs leading to increased wax hydrophobicity
and changes in wax morphology (Liu et al., 2014).

In addition to cuticles acting as physical barriers, recent
findings suggest that cuticle composition rather than thickness
determines fruit susceptibility to pathogens (Reina-Pinto and
Yephremov, 2009; Ziv et al., 2018). Fruit cuticular waxes are
especially rich sources of triterpenoids, which have clear bioactive
properties, such as anticancer, anti-inflammatory, antimicrobial
and cardioprotective (Dzubak et al., 2006; Szakiel et al., 2012).
He and Liu (2007) isolated triterpenoids from apple peels and
reported antiproliferative activity against human cancer cells. The
antifungal activity of Asian pear fruit cuticular wax was associated
with n-alkanes, fatty acids along with triterpenoids (Yin et al.,
2011; Chen et al., 2014; Li et al., 2014).

Plant cuticles potentially offer a natural alternative for
synthetic waxes. Industrial leftover material in particular, such as
peels from juice production, provides raw material for isolating
fruit wax compounds. For example, extraction of apple peel
pomace using supercritical fluid extraction (SFE) demonstrated
the reuse potential of juice industry leftovers as a source for
value-added wax (Li et al., 2015). Recently, Tedeschi et al.

(2018) demonstrated the utilization of fatty acids from tomato
pomace waste for production of packaging films. Thus, fruit
cuticular waxes from industrial waste can provide sources for
bioactive compounds and biodegradable products for the use
in pharmaceuticals, cosmetics, packaging, nanocoatings, and
the food industry.
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