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ABSTRACT: 
 
Planning sustainable use of land resources and environmental monitoring benefit from accurate and detailed forest information. The 
basis of accurate forest information is data on the spatial extent of forests. In Norway land resource maps have been carefully created 
by field visits and aerial image interpretation for over four decades with periodic updating. However, due to prioritization of 
agricultural and built-up areas, and high requirements with respect to the map accuracy, forest areas and outfields have not been 
frequently updated. Consequently, in some part of the country, the map has not been updated since its first creation in the 1960s. The 
Sentinel-2 satellite acquires images with high spatial and temporal resolution which provides opportunities for creating cloud-free 
mosaic images over areas that are often covered with clouds. Here, we combine object-based image analysis with machine learning 
methods in an automated framework to map forest area in Sentinel-2 mosaic images. The images are segmented using the 
eCogntionTM software. Training data are collected automatically from the existing land resource map and filtered using height and 
greenness information so that the training samples certainly represent their respective classes. Two machine learning algorithms, 
namely Random Forest (RF) and the Multilayer Perceptron Neural Network (MLP), are then trained and validated before mapping 
forest area. The effects of including and excluding some features on the classification accuracy is investigated. The results show that 
the method produces forest cover map at very high accuracy (up to 97%). The MLP performs better than the RF algorithm both in 
classification accuracy and in robustness against inclusion and exclusion of features. 
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1. INTRODUCTION 

Detailed forest information is crucial for land use planning, land 
resource management, biodiversity and climate change 
monitoring and mitigation (Astrup et al. 2019; Fichtner et al. 
2018; Gamfeldt et al. 2013). The basis for forest information is 
accurate and up-to-date data on the spatial extent of forests. 
Efficient methods of obtaining accurate forest cover is thus 
important in up-to-date resource inventory and environmental 
monitoring, especially with respect to climate change. 
 
Optical satellite remote sensing has long been used in land use 
land cover mapping including forest cover. However, major 
parts of countries like Norway are covered by clouds throughout 
the year with only few days of clear sky. This severely limits the 
use of optical satellite images. The high temporal frequency of 
the Sentinel-2 satellite pair (Drusch et al. 2012), every 2 to 3 
days for Norway, gives great opportunities to circumvent this 
challenge. Cloud-free image mosaics over relatively short 
period of time can be created. The short time spans of one or 
two months in the middle of the summer, June to July, are 
important as the phenological conditions of the vegetation are 
more stable compared to periods of seasonal transitions. Cloud-
free mosaic images produced over that period can therefore be 
considered as representative of the period. Beyond visualisation 
purposes, such mosaic images can be analysed in a similar 
approach as single scene images. 
 
Mapping forest cover from remote sensing images is a 
classification problem where the image characteristics, the 

entity to be classified, and the methods used for the 
classification are important and must be chosen carefully. 
Sentinel-2 images have already proven to have well suited 
spectral and spatial characteristics for land cover classification 
and forest inventory (e.g., Astrup et al. 2019, Puliti et al. 2020). 
The choice of analysis entity, i.e. pixel, sub-pixel or objects, is 
nonetheless important. Experiences show that object-based 
image analysis (OBIA) for land cover classification has a few 
advantages, including accuracy improvement, compared to 
pixel-based methods (Blaschke 2010; Myint et al. 2011; 
Whiteside et al. 2011). Careful implementation is, however, 
required as OBIA involves some subjective parameter 
adjustments.   
 
The analysis method is another important issue that affects the 
outcome. Nowadays, supervised machine learning is widely 
used in image classification. Some algorithms, such as Random 
Forest (RF) and Support Vector Machines (SVM), have become 
state-of-the-art methods for image classification (Khatami et al. 
2016). Deep learning based on the Neural Network algorithm 
are gaining popularity in image classification due to their 
superior classification accuracy. Multilayer Perceptron Neural 
Network (MLP), Convolutional Neural Network (CNN), and 
Recurrent Neural Network (RNN) are used depending on the 
purpose of application. The MLP implements neural networks 
without considering the spatial and temporal aspects of the data. 
Detailed description of MLP is given by Panchal et al. (2011). 
CNNs take the spatial aspect or texture into account. Such an 
approach is important when object classes have distinct 
appearances as in the case of animals, fruits, leave types, etc. 
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However, land cover classes are more complex and satellite 
images have coarse resolution with a single pixel covering a 
relatively large area. The spatial aspect is thus better taken care 
of in a different approach. OBIA is known to be one of the 
techniques used to include the spatial and neighbourhood 
context into image analysis (Li et al. 2014). OBIA suppresses 
noise and enhances uniqueness of the classification entities, i.e. 
image objects.  
 
In this study, cloud-free sentinel-2 mosaic images over the mid-
summer months are used as the main dataset. Image objects 
created through multiresolution segmentation are used as 
analysis entities and two machine learning algorithms (i.e. RF 
and MLP) are trained and implemented in an automated 
procedure where training data are collected from the existing 
land resources map. The results of the classification are also 
automatically integrated with the existing land resources map to 
create an updated and detailed forest cover map. The effects of 
including and excluding some important features are also 
explored. 
 

2. METHODS 

2.1 Study area 

This study is conducted in the south-eastern part of Norway as 
shown by the dark area in Figure 1. The area covers about 8000 
km2. This includes open water areas such as lakes. The region is 
one of the areas dominated by forest.  The whole region is 
treated as one study area for which the same training dataset is 
used. 

 
Figure 1. Location of the study area (dark part) in relation to the 
map of Norway 
 

2.2 Datasets 

Sentinel-2 images acquired over the land area of Norway during 
June and July of 2018 are the image data used in this study. The 
images were at level 2A, i.e. georeferenced and atmospherically 
corrected. The Norwegian Mapping Agency produced the 
cloud-free mosaic images as a national product and provided 
free public access at a lower bit depth of 8-bit. We are 
privileged to obtain the mosaics with the full bit depth. The 
mosaic images are made for all the spectral bands and 
resampled at 10 m pixel size. All the 10 bands with the original 
resolutions of 10 m and 20 m are used in this study. 
 
The Norwegian land resource map, called AR5, which is a land 
use/cover map at the scale of 1:5000 (Ahlstrøm et al. 2019), is 
used as a reference land cover map. The map is originally 
created as an aggregated product based on the economic map of 
the country that was created dating back up to four decades. The 
AR5 has four attributes; namely major land use/cover type; and 
within forest, site index, tree species and the ground condition. 
The map is updated continuously and periodically, but some 
areas are prioritized over others depending on their economic 
importance. 
 
Norway is conducting a national Aerial Laser Scanning (ALS) 
campaign since 2015 to produce a fine-resolution digital terrain 
model. The acquired data is processed and provided as point 
clouds, digital terrain model (DTM) and digital surface model 
(DSM) , with a resolution of 1 m, freely by the Norwegian 
Mapping Agency. In this study, the DSM and DTM are used to 
create the canopy height model (CHM), that is used to filter the 
training data further. 
 
In addition, the cadastre map of Norway contains point data 
representing single buildings, among others. The data can be 
used in post-processing phase to check if houses are constructed 
in forest areas. 
  
2.3 Segmentation 

The Sentinel-2 mosaic is tiled into smaller overlapping tiles. 
Each tile with all the selected spectral bands is segmented using 
the eCognitionTM software (Trimble 2018). In eCognition, a 
ruleset that implements the multiresolution segmentation 
algorithm, with manually adjusted parameters such as the 
scaling factor, is created. The ruleset implements a few actions 
before exporting the segments as polygons, i.e. removing sliver 
polygons, merging segments covering water and missing data 
areas. The segments are then exported with a long list of 
attributes. The attributes included are the mean, standard 
deviation, and percentiles (25 and 75) of the 10 Sentinel-2 
bands, and both CHM and NDVI. This means, four features for 
each of these attributes is included, creating 48 features in total. 
The attributes of the AR5 map and the number of building 
points in each polygon are also included for post classification. 
For automation purposes, eCognition is integrated into a Python 
script by piping through its command line application.  
 
2.4 Training data collection 

Six major classes are defined based on the AR5 map by 
aggregating similar classes for this particular purpose; for 
example, built-up areas and roads, grazing and open areas, etc. 
Table 1 presents the classes with brief description for each. The 
training data are collected first as the centroids of the polygons 
in AR5. As the polygons are large and the landcover type at the 
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centroid area may have changed since the creation of the map, 
the collected sample points are further filtered using the CHM 
and NDVI to confirm whether they accurately represent their 
respective classes. For example, forest samples must have 
certain height above ground and must be green during the 
summer, grazing and open areas (outfields) must be green and 
not significantly above ground, etc. The final training points are 
used to extract the attribute values from the segmentation 
dataset hence creating the complete training dataset. The 
complete training dataset is composed of about 125000 samples 
with six classes and 48 features. 
 

Code  Class Description  
0 Built-up Buildings, roads and paved areas 
1 Bare land Cultivated and other bare areas 
2 Forest All high vegetation 
3 Outfields Open areas which are not forest and 

not bare 
4 Mire Open mire areas that are not 

cultivated and not covered by forest 
5 Water  All open water bodies 

Table 1. The six classes and their brief description 
 
2.5 Training and parameter tuning 

During the training stage, 70 percent of the training data is used 
to train the algorithms with a 10-fold cross-validation approach. 
That means during every iteration one-tenth of the training data 
is randomly selected for the cross-validation. The final 
evaluation sample is prepared in such a way that 30 percent of 
the dataset is randomly selected and kept out of the training 
process for later evaluation.  
 
Two of the popular machine learning algorithms in image 
classification are selected, i.e. the RF and the MLP. Both are 
non-parametric and widely used machine learning algorithms 
but operate under different principles. RF is an ensemble 
classifier that uses multiple decision trees through a voting 
system (Breiman 2001). RF is conceptually easy to understand, 
computationally fast and parallelizable (Biau and Scornet 
2016). Ma et al. (2017) state that RF shows best performance in 
object-based classification. RF has some hyperparameters that 
need to be tuned. In this work, we used the randomized search 
procedure of the hyperparameter tuning from the Scikit Python 
package.   
 
The MLP is a light-weight deep learning algorithm. As stated 
by Zhang et al. (2018), although mathematically complicated, 
the MLP architecture is simple to implement. It does not 
implicitly consider the spatial or temporal context as the CNN 
and the RNN respectively do. Image segmentation is one of the 
methods in which spatial-contextual aspects are included in 
image analysis Li et al. (2014). Here, the MLP was 
implemented on segmented objects so that the spatial and 
neighbourhood context is included implicitly through the 
segmentation process, and explicitly by collecting statistical 
values such as standard deviation and percentiles. The MLP was 
trained by changing the hyperparameters, specifically number of 
hidden layers, drop-outs and number of epochs. 
 
The effects of including and excluding the spatial-contextual 
and other features on the classification accuracy is investigated. 
The spatial-contextual features are features that represent the 
local textural and contextual variations, for example the 
standard deviation, the 25 percentiles and 75 percentiles of the 

features. Even the mean values produced through the 
segmentation process can be considered as spatial-contextual as 
they are aggregates of the pixel values within the respective 
segments. Additionally, the effects of including and excluding 
the precomputed NDVI and CHM are also investigated. Table 2 
below presents the different cases of including and excluding 
features. 
 
  

Case Description 
All Features All features including CHM and NDVI are 

included, i.e. all 48 features. 
Excluding 
spatial 
features 

Only the mean values of the features 
ignoring the statistics that represent the 
textural variation in the segments is 
ignored, i.e. 12 features 

Excluding 
CHM 

All the CHM related features are removed, 
i.e. 44 features 

Excluding 
CHM and 
NDVI 

All the CHM and NDVI related features are 
removed, i.e. 40 features 

Only band 
means 

Only the mean values of the spectral bands 
are used, i.e. 10 features 

Table 2. Different combinations of features in the analysis 
process 
 
After the trained models are evaluated using the test dataset, the 
model is implemented on the entire segmentation dataset in 
order to classify each segment into one of the six classes. The 
classification results are further processed as explained under 
section 2.6 below. 
 
2.6 Creating the updated forest cover map 

As the aim of the work is to create an up-to-date and accurate 
forest cover map, the final classification result is evaluated in 
reference to the existing AR5 land resource map. A few rules 
are created to include new forests and exclude erroneous forest 
areas from the existing map. First, all areas that are forest in 
both maps are kept as forest. Second, new forests on areas 
previously mapped as open areas or mire or grazing areas are 
included as regenerated or planted forests. Third, areas that are 
forest in the land resource map, but are not classified as forest 
in the new map are evaluated further: if their site index does not 
show productive forest, it is considered as wrong classification 
in the old map and removed from the new forest cover map. 
However, if the site index shows productive forest and there is 
no building point in the polygon, it is kept as forest (possibly 
harvested) in the new map. Old forest areas now covered by 
buildings are not included into the new forest cover map. The 
procedure is presented in a workflow diagram in Figure 2 
below. 
 

 
Figure 2. Workflow diagram of the overall automated procedure 
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3. RESULTS AND DISCUSSION 

Table 3 and Table 4 present the normalized confusion matrix of 
the evaluation result based on the test data for the RF and MLP 
algorithms respectively. In this analysis all the 48 features are 
included. The accuracies are computed based on the number, 
not area, of the training records which are supported by image 
objects of various sizes. There is very small difference in 
classification accuracy of forest between the RF ad MLP 
algorithms (96% and 97% respectively). The training data is 
dominated by forest (well over one-half). Therefore, a better 
way to look at the performances is the balanced accuracy rather 
than the overall accuracy and the accuracies of individual 
classes. As presented in Table 5, MLP resulted in a slightly 
higher balanced accuracy (91%) compared to the RF (88%).  
  

Built-
up  

Arable 
land 

Forest Outfields Mire Water 

Built-up  0.96 0.01 0.03 0.01 0.00 0.00 
Arable land 0.00 0.93 0.01 0.01 0.05 0.00 
Forest 0.00 0.00 0.96 0.01 0.02 0.00 
Outfields 0.00 0.04 0.03 0.77 0.15 0.00 
Mire 0.00 0.01 0.17 0.01 0.81 0.00 
Water 0.00 0.00 0.04 0.00 0.01 0.94 

Table 3. The normalized confusion matrix for the RF algorithm 
  

Built-
up  

Arable 
land 

Forest Outfield
s 

Mire Water 

Built-up  0.92 0.00 0.05 0.02 0.00 0.00 
Arable 
land 

0.00 0.95 0.01 0.01 0.02 0.00 

Forest 0.00 0.00 0.97 0.01 0.02 0.00 
Outfields 0.00 0.04 0.03 0.83 0.10 0.00 
Mire 0.00 0.00 0.13 0.01 0.86 0.00 
Water 0.00 0.00 0.03 0.00 0.01 0.96 

Table 4. The normalized confusion matrix for the MLP 
algorithm 
 
Table 5 presents the effects of including and excluding the 
different features on the accuracy levels. The values in the 
parenthesis are from the RF algorithm while the others are from 
the MLP. As the table depicts, the highest overall accuracy, 
balanced accuracy, and accuracy of forest class is obtained 
when all the features are included. The removal of statistical 
attributes such as standard deviation and the percentiles affects 
the overall performance of the classification in both RF and 
MLP almost equally. RF is more sensitive to the removal of 
CHM and NDVI than the MLP is. The MLP is not at all 
affected by the removal NDVI. This is in line with the 
theoretical claim that there is no need of manual extraction of 
features for deep learning algorithms. The lowest accuracy 
levels in both algorithms is registered when the spatial-
contextual features  and the CHM features are excluded. The 
balanced accuracy in this case is reduced by about 6% and 9%, 
from that of the case where all the features are used, for RF and 
MLP respectively. However, in this study, the classification 
accuracy of forest is almost insensitive to the inclusion or 
exclusion of these variables.  Another important point to note is 
that RF was more sensitive to the class imbalance than MLP as 
can be observed by the difference between their respective 
overall and balanced accuracies. 
 
The automated workflow produced an up-to-date and detailed 
forest cover map by removing previously erroneous forest areas 
in the land resources map (Figure 3) and adding new forests 
(Figure 4). Up-to-date and accurate forest cover map improves 
the accuracy of the estimation of other forest properties as 
pointed out in Breidenbach et al. (2020).  A closer look at the 

new forests show that much of it is regeneration in previously 
open outfields. However, there are also some areas of mire that 
are either planted or regenerated in the years after the map is 
originally created. Some grazing fields have also grown into 
forest possibly due to abandonment. 
 

Accuracy 
measure/ 
Case 

All 
features 

Excluding 
spatial 
features 

Excluding 
CHM 
features 

Excluding 
NDVI and 
CHM 
features 

Only 
band 
means 

Balanced 
accuracy 

91 (88) 91 (88) 89 (81)  87 (80) 84 (79) 

Overall 
accuracy 

94 (92) 93 (91) 92 (90) 92 (90) 91 (90) 

Forest 
accuracy 
(producer) 

97 (96) 96 (96) 96 (96) 96 (96) 96 (95) 

Table 5. The effects of including and excluding some features 
on the different measures of accuracy. Values for RF are the 
ones in the parentheses. 
 

 
Figure 3. Example of open areas erroneously recorded in the 
AR5 as forest and removed from the updated forest cover map. 
Only the green areas are kept in the new forest cover map. 
 

 
Figure 4. The open forest seen in this figure is an example of 
forest areas absent in the land resource map but included in the 
new forest cover map  
 

4. CONCLUSION 

This work has demonstrated that cloud-free Sentinel-2 mosaic 
images created over relatively short time periods can be used 
beyond visualization. The proposed automated procedure 
produced an accurate forest cover map. The newly created 
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forest cover map can be used as a base map for various purposes 
including forest inventory, climate change monitoring, land use 
planning and related purposes.  
 
The two algorithms resulted in similar accuracies for forest 
cover mapping. If the purpose is, however, to make complete 
land cover map, the MLP performed better in both classification 
accuracies and sensitivities to some features. The inclusion of 
spatial-contextual features and CHM improve the classification 
accuracy in both the RF and the MLP. While manually 
computed features such as NDVI did not affect the performance 
of MLP, it slightly affected that of RF.  
 
Such fully automated can even get more accurate if time series 
satellite images are used instead of the image mosaics as in the 
case of this work.  The temporal dimension can help capture the 
temporal differences between the land cover classes enhancing 
the discriminability of the classes. 
 

ACKNOWLEDGEMENTS 

The authors are very grateful to the Norwegian Institute of 
Bioeconomy Research (NIBIO) for financing the study and the 
Norwegian Mapping Agency for producing the cloud-free 
Sentinel-2 mosaic images. 
 

REFERENCES 

Ahlstrøm, A., Bjørkelo, K., & Fadnes, K.D. (2019). AR5 
Klassifikasjonssystem. Ås, Norway 

Astrup, R., Rahlf, J., Bjørkelo, K., Debella-Gilo, M., Gjertsen, 
A.-K., & Breidenbach, J. (2019). Forest information at multiple 
scales: development, evaluation and application of the 
Norwegian forest resources map SR16. Scandinavian Journal 
of Forest Research, 34, 484-496 

Biau, G., & Scornet, E. (2016). A random forest guided tour. 
TEST, 25, 197-227 

Blaschke, T. (2010). Object based image analysis for remote 
sensing. ISPRS Journal of Photogrammetry and Remote 
Sensing, 65, 2-16 

Breidenbach, J., Waser, L.T., Debella-Gilo, M., Schumacher, J., 
Rahlf, J., Hauglin, M., Puliti, S., & Astrup, R. (2020). National 
mapping and estimation of forest area by dominant tree species 
using Sentinel-2 data. Canadian Journal of Forest Research, In 
Press 

Breiman, L. (2001). Random forests. Machine learning, 45, 5-
32 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., 
Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., 
Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. 
(2012). Sentinel-2: ESA's Optical High-Resolution Mission for 
GMES Operational Services. Remote Sensing of Environment, 
120, 25-36 

Fichtner, A., Härdtle, W., Bruelheide, H., Kunz, M., Li, Y., & 
von Oheimb, G. (2018). Neighbourhood interactions drive 
overyielding in mixed-species tree communities. Nature 
Communications, 9, 1144 

Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., 
Kjellander, P., Ruiz-Jaen, M.C., Fröberg, M., Stendahl, J., 
Philipson, C.D., Mikusiński, G., Andersson, E., Westerlund, B., 
Andrén, H., Moberg, F., Moen, J., & Bengtsson, J. (2013). 
Higher levels of multiple ecosystem services are found in 
forests with more tree species. Nature Communications, 4, 1340 

Khatami, R., Mountrakis, G., & Stehman, S.V. (2016). A meta-
analysis of remote sensing research on supervised pixel-based 
land-cover image classification processes: General guidelines 
for practitioners and future research. Remote Sensing of 
Environment, 177, 89-100 

Li, M., Zang, S., Zhang, B., Li, S., & Wu, C. (2014). A Review 
of Remote Sensing Image Classification Techniques: the Role 
of Spatio-contextual Information. European Journal of Remote 
Sensing, 47, 389-411 

Ma, L., Li, M., Ma, X., Cheng, L., Du, P., & Liu, Y. (2017). A 
review of supervised object-based land-cover image 
classification. ISPRS Journal of Photogrammetry and Remote 
Sensing, 130, 277-293 

Myint, S.W., Gober, P., Brazel, A., Grossman-Clarke, S., & 
Weng, Q. (2011). Per-pixel vs. object-based classification of 
urban land cover extraction using high spatial resolution 
imagery. Remote Sensing of Environment, 115, 1145-1161 

Panchal, G., Ganatra, A., Kosta, Y., & Panchal, D. (2011). 
Behaviour analysis of multilayer perceptrons with multiple 
hidden neurons and hidden layers. International Journal of 
Computer Theory and Engineering, 3, 332-337 

Puliti, S., Hauglin, M., Breidenbach, J., Montesano, P., Neigh, 
C.S.R., Rahlf, J., Solberg, S., Klingenberg, T.F., & Astrup, R. 
(2020). Modelling above-ground biomass stock over Norway 
using national forest inventory data with ArcticDEM and 
Sentinel-2 data. Remote Sensing of Environment, 236, 111501 

Trimble Geospatial (2018). eCognition developer: Version 9.5. 
Munich, Germany. 

Whiteside, T.G., Boggs, G.S., & Maier, S.W. (2011). 
Comparing object-based and pixel-based classifications for 
mapping savannas. International Journal of Applied Earth 
Observation and Geoinformation, 13, 884-893 

Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., & 
Atkinson, P.M. (2018). A hybrid MLP-CNN classifier for very 
fine resolution remotely sensed image classification. ISPRS 
Journal of Photogrammetry and Remote Sensing, 140, 133-144 

 
 
 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-3-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-3-2020-803-2020 | © Authors 2020. CC BY 4.0 License.

 
807




