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A B S T R A C T

Soil respiration is an important ecosystem process that releases carbon dioxide into the atmosphere. While soil
respiration can be measured continuously at high temporal resolutions, gaps in the dataset are inevitable,
leading to uncertainties in carbon budget estimations. Therefore, robust methods used to fill the gaps are needed.
The process-based non-linear least squares (NLS) regression is the most widely used gap-filling method, which
utilizes the established relationship between the soil respiration and temperature. In addition to NLS, we also
implemented three other methods based on: 1) artificial neural networks (ANN), driven by temperature and
moisture measurements, 2) singular spectrum analysis (SSA), relying only on the time series itself, and 3) the
expectation-maximization (EM) approach, referencing to parallel flux measurements in the spatial vicinity. Six
soil respiration datasets (2017–2019) from two boreal forests were used for benchmarking. Artificial gaps were
randomly introduced into the datasets and then filled using the four methods. The time-series-based methods,
SSA and EM, showed higher accuracies than NLS and ANN in small gaps (<1 day). In larger gaps (15 days), the
performance was similar among NLS, SSA and EM; however, ANN showed large errors in gaps that coincided
with precipitation events. Compared to the observations, gap-filled data by SSA showed similar degree of var-
iances and those filled by EM were associated with similar first-order autocorrelation coefficients. In contrast,
data filled by both NLS and ANN exhibited lower variance and higher autocorrelation than the observations. For
estimations of the annual soil respiration budget, NLS, SSA and EM resulted in errors between −3.7% and 5.8%
given the budgets ranged from 463 to 1152 g C m−2 year−1, while ANN exhibited larger errors from −11.3 to
16.0%. Our study highlights the two time-series-based methods which showed great potential in gap-filling
carbon flux data, especially when environmental variables are unavailable.

1. Introduction

The quantification of carbon (C) exchanges between natural eco-
systems and the atmosphere, in the form of carbon dioxide (CO2), has
attracted great attention over the last few decades in the context of
climate change (IPCC, 2013). With the development of automatic and
continuous measurements at high temporal resolutions (e.g., eddy
covariance), it is now possible to estimate the C budget of the ecosys-
tems to a certain degree of accuracy and evaluate their contributions to
climate change (e.g., Lu et al., 2017; Reichstein et al., 2007).

Among the key components of the C cycle in an ecosystem, soil
respiration is the process that releases the CO2 produced by roots, soil
organisms and chemical oxidation into the atmosphere (Lloyd and
Taylor, 1994). Soil respiration is usually measured using either static or
dynamic chambers (Bekku et al., 1997; Jensen et al., 1996;
Rochette et al., 1992). Automated soil respiration measurements have

been performed in many studies at a temporal interval of 10–60 min
(e.g., Suh et al., 2006; Wu et al., 2016). Among the approaches, the
forced diffusion (FD) technique was developed based on the theory of
dynamic chambers but has the advantage of low power consumption
(see details in Risk et al., 2011). At the same time, FD chambers require
no mechanical movement between or during measurements which al-
lows them to operate even under snow cover (Lavoie et al., 2015). The
FD chambers have been demonstrated to produce comparable results to
conventional chambers under the same conditions (Risk et al., 2011).
The FD technique, by producing data continuously throughout the year,
provides a firm ground for estimating budgets of soil respiration in an
ecosystem.

As with all automatic field measurements, missing data, due to e.g.,
power failure, instrumentation malfunction, disturbance during main-
tenance, data corruption, etc. are almost inevitable. Depending on the
size and number of gaps, large uncertainties may be introduced to the
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estimated C budget (Falge et al., 2001). Therefore, robust and suitable
gap-filling methods are critical to ensure the accuracy of C budget es-
timations.

The gap-filling of carbon flux data usually takes auxiliary variables
measured within or near the flux footprint to generate models for
predicting missing values in the gaps. For soil respiration, its ex-
ponential relationship with soil temperature has long been acknowl-
edged (Lloyd and Taylor, 1994). This relationship is thus most widely
used as the basis of the non-linear least squares (NLS) method for soil
respiration gap-filling (Gomez-Casanovas et al., 2013). Apart from soil
temperature, soil moisture is another driver of soil respiration
(Cook and Orchard, 2008). However, the relationship between soil
moisture and soil respiration is more complicated because other factors
are heavily entangled in it (e.g., time of soil rewetting) (Cook and
Orchard, 2008). Many types of models have been used to describe the
relationship, such as linear functions (Cook and Orchard, 2008),
quadratic polynomials (Hursh et al., 2017), or the moisture effect was
even included in the temperature-based model as a limitation term
(Reichstein et al., 2003). Thus, it is challenging to choose the proper
mathematical form to incorporate soil moisture in the models for soil
respiration gap-filling. As a data-driven alternative, artificial neural
networks (ANNs) use machine learning algorithms to simulate the
output variable (soil respiration) based on the inputs (e.g., soil tem-
perature and moisture) without explicitly specifying the mathematical
relationships (Zhang et al., 1998). ANNs have been successfully im-
plemented in gap-filling the ecosystem CO2 exchange data from eddy
covariance observations with multiple environmental variables (in-
cluding soil moisture) (Moffat et al., 2007); however, their performance
in soil respiration data gap-filling has yet to be evaluated.

Despite low temperatures in the winter, the soil respiration usually
remains active under the snow cover (Brooks et al., 2011). Due to the
long snow covering period at high latitudes, winter soil respiration can
represent a substantial proportion of the annual ecosystem CO2 budget
(Alm et al., 1999; Aurela et al., 2002; Groffman et al., 2006; Zhao et al.,
2016). However, since soil temperature and moisture exhibit very
limited variations under the snow cover, their control over soil

respiration is usually not significant in the winter (Alm et al., 1999;
Liptzin et al., 2009; Merbold et al., 2012). As a result, gap-filling
methods driven by environmental variables might perform poorly when
being applied to winter time fluxes. This has not been investigated
before.

Alternatively, methods using time series analysis can predict the
missing data based on the measured soil respiration time series itself,
independent of auxiliary variables. For example, singular spectrum
analysis (SSA) (Ghil et al., 2002) implements nonparametric spectral
algorithms to analyze time series for forecasting and has been applied in
diverse fields such as hydrometeorology, remote sensing and space
sciences for data analysis and gap-filling purposes (Golyandina and
Osipov, 2007; Kondrashov et al., 2010; Mahecha et al., 2011;
Schoellhamer, 2001; Shun and Duffy, 1999; Wang and Liang, 2008).
Compared to other time series analysis methods, SSA is fully data-
adaptive and has no prior knowledge requirements on the periodicities
of the data, making it rather flexible (Golyandina et al., 2018). While
the performances of all gap-filling methods are to some degree influ-
enced by the gap size (Kunwor et al., 2017; Moffat et al., 2007), the
accuracy of the SSA method is expected to be especially sensitive to gap
size increase, due to the self-referencing nature of this method. In
contrast, methods that uses the expectation-maximization (EM) algo-
rithm can take other soil respiration time series measured in parallel as
reference and impute the missing values based on the relationships
between the multiple time series (Junger and Ponce de Leon, 2015).
This method can be effective when multiple chambers are deployed at
the same site as replicates. Overall, these time-series-analysis-based
methods have never been applied to C flux gap-filling but may have
great potential for future applications, especially in cases when the
environmental variables are not measured or missing.

All the gap-filling methods require a sampling window around the
gap. Using the available data within the window, the corresponding
models are trained to predict the data in the gap. The sizes of this
sampling window are usually arbitrarily chosen, ranging from one half-
month to a full year (e.g., Kunwor et al., 2017; Moffat et al., 2007;
Zhao and Huang, 2015). Theoretically, a large sampling window could
contain more information on the dynamics and patterns of the time
series investigated but may produce an overgeneralized model that
hardly represents the local gaps. At the same time, a small sampling
window that captures the local conditions close to the gap may none-
theless cause large uncertainties in the model itself due to less training
data. Thus, an optimal sampling window should have the smallest size
possible that minimizes the prediction errors for the missing data.
Whether the optimal window size varies among different methods,
seasons and gap sizes needs to be further studied.

In this study, we implemented the four gap-filling methods de-
scribed above, namely NLS, ANN, SSA, and EM, on artificially created
data gaps in six soil respiration datasets from two boreal forest sites in
Norway. The aims of the study are 1) to determine the best sampling
window size for each gap-filling method, 2) to evaluate the perfor-
mance of the gap-filling methods in gaps of different sizes (1-, 6-h, 1-
and 15-day) and seasons (winter vs. non-winter), and 3) to test the
suitabilities of the four methods in estimating annual soil respiration
budgets under mixed-gap scenarios. Through these analyses, we ac-
cessed the strengths and weaknesses of these methods in soil respiration
data gap-filling and enrich the toolbox for future C flux data gap-fill-
ings.

2. Material and methods

2.1. Datasets

The soil respiration datasets used in this study were collected at two
forest sites in Hurdal (60°22′21″ N, 11°04′41″ E, 284 m a.s.l.) and Løten
(60°51′33″ N, 11°26′08″ E, 262 m a.s.l.), southern Norway. Both sites
are dominated by Norway spruce (Picea abies (L) Karst.). At Hurdal, the

Table 1
Summary of the 6 studied soil respiration datasets.

# of data points
Site Plot # Period Available Missing

Hurdal H1 2017/7/27–2019/4/29 89,290 2972
H2 2018/5/9–2019/3/20 39,974 5355
H3 2017/9/18–2019/4/29 70,646 14,036
H4 2017/9/8–2019/4/29 81,208 4905

Løten L1 2018/6/1–2019/4/18 46,291 8
L2 2018/3/14–2019/4/29 51,062 8148

Date format: year/month/day. Data temporal resolution: 10-min.

Table 2
Summary of the analysis of variance (ANOVA) for the mixed effects models
with RMSE as dependent variable and sampling window size, method, season,
gap size and the two-way interactions between window size and the other three
factors as independent variables.

Independent variable SS F-value P-value

Window size 3.63 8.42 <0.001
Method 39.76 184.32 <0.001
Gap size 79.20 367.16 <0.001
Season 333.39 4636.62 <0.001
Window size*Method 2.44 1.89 0.013
Window size*Gap size 1.17 0.91 0.572
Window size*Season 0.70 1.62 0.136

The plot number is included in the models as random effects. SS: type III sums
of squares with Satterthwaite approximation for the degrees of freedom. RMSE:
root mean squared error.
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terrain is slightly sloping, and the soils are podzolic in the upper part
and rather hydrogenic (partially waterlogged) in the lower part. The
site at Løten is rather flat and contains a bog surrounded by mixed
forests. The soils are loamy with a high water-holding capacity. Both
sites are typically covered with snow for 4–5 months per year, with a
long-term (1957–2018) annual mean air temperature of 3.9 °C for
Hurdal and 3.1 °C for Løten, respectively according to the seNorge2018
database (Lussana et al., 2019). The soil respiration measurements were
carried out automatically every 10-min using forced diffusion (FD)
chambers (eosFDCO2, Eosense Inc., Dartmouth, NS, Canada). Specifi-
cally, each chamber is equipped with membranes allowing gases to
freely diffuse into it. With different compartments, it separately mea-
sures the CO2 concentrations that represent the ambient air (Cambient)
and the air that mixes the ambient air with gases from the soil (Cmix).
The soil respiration rate (Rs) is then calculated as (Risk et al., 2011):

=R G C C·( )s mix ambient (1)

where G is an empirical positive constant (a function of the gas diffu-
sion rate through the membrane and measured soil surface area; unit: m
s−1) provided by the manufacturer. More details of the method are
outlined in Risk et al. (2011). The Cmix is larger than the Cambient under
typical circumstances, implying a loss of CO2 from the soil (i.e., a po-
sitive flux). Since the FD chamber measures the fluxes with the same
CO2 source from the soil (i.e., soil respiration) as static chambers and
produces comparable soil respiration data (Risk et al., 2011), we sug-
gest that the methods and results in this study can also be applied to the

soil respiration measured by the widely used static chambers.
Along with the soil respiration, corresponding soil temperature and

moisture (TMS-4, TOMST inc., Prague, Czech Republic) at 10, 20 and
50 cm depths were measured within <1 m from each chamber at the
same temporal resolution (i.e., 10-min). In addition, the ambient tem-
peratures were measured at ~5 cm above the soil surface, which re-
presented either the temperature of the snowpack during winter time or
air temperature when snow was absent. Data from a total of 6 plots (4
from Hurdal and 2 from Løten) were used for analysis. The datasets
overall covered the period between July 2017 and April 2019 but
varied among the plots (see details in Table 1). The soil respiration data
were quality-checked before being analyzed and were rejected (marked
as missing values): 1) during instrument malfunction or power failure,
and 2) with implausible values (soil respiration rate < −2 or
>10 µmol CO2 m−2 s−1). In total, 11% of the data were discarded (see
Table 1 for the summary for each plot).

2.2. Artificial gaps

In order to compare the gap-filled data to the original observations,
we created artificial gaps (flagged) in the soil respiration time series in
all the 6 datasets. Specifically, we used each dataset to create four se-
parate benchmark datasets: one with 80 one-hour gaps (6 observations
per gap), a second one with 40 six-hour gaps (36 observations per gap),
a third one with 30 one-day gaps (144 observations per gap), and the
last one with 10 fifteen-day gaps (2160 observations per gap). The gaps

Fig. 1. The RMSE for the gap-filled values predicted by NLS (a), ANN (b), SSA (c) and EM (d) as a function of the sampling window size. The bottom and top of a box
indicate the lower and upper quartiles, respectively, and the horizontal line within the box is the median. The lower and upper whiskers are the 10th and 90th
percentiles, respectively. Different lowercase letters indicate significant differences in the RMSE among different sampling window sizes (P < 0.05).
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were added at random locations of the time series while avoiding
overlapping with each other as well as with the original gaps in the
dataset. These benchmark datasets were used to test the performance of
the gap-filling methods in gaps of different sizes.

In addition, to evaluate the overall influences of different gap-filling
methods on the estimations of annual soil respiration budget, we se-
lected the datasets that were longer than 1 year (i.e., H1, H3 and H4 in
Hurdal and L2 in Løten, Table 1) and extracted the data of a one-year
period each from April 30, 2018 to April 29, 2019. Based on each of the

extracted datasets, we created a random number of gaps with random
lengths (uniformly distributed) up to 15 days (mixed gaps) that resulted
in benchmark datasets with 5 levels of the gap proportion (10, 20, 30,
40 and 50%). For each of the 5 levels, 10 replicate datasets were created
with different random gap arrangements (i.e., 200 benchmark datasets
in total for the 4 plots, see Fig. A1 in the Appendices for an example of
gap summary in the dataset). These mixed gap benchmark datasets
were thereafter used for the estimation of the annual soil respiration
sum after the artificial gaps have been filled.

Fig. 2. Predicted values for the gaps of 1-h. (1 h, a–d), 6-h. (6 h, e–h), 1-day (1d, i–l) and 15-day (15d, m–p) by NLS (a, e, i, m), ANN (b, f, j, n), SSA (c, g, k, o) and EM
(d, h, l, p) as a function of the corresponding observations. Non-winter and winter seasons are plotted in red and blue, respectively. Total least squares regression was
used to accommodate the uncertainty of both dependent and independent variables. The black solid and dashed lines indicate the regressions for non-winter and
winter seasons, respectively. The gray dashed lines indicate the 1:1 ratio. The coefficients of the regressions are presented in Table 3. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Coefficients of the linear regressions between the observations and the gap-filled data that were predicted by the four methods for different gap sizes and seasons.

NLS ANN SSA EM
Gap size Season Intercept Slope Intercept Slope Intercept Slope Intercept Slope

1-h Non-winter 0.170 (0.017) 0.919 (0.009) 0.139 (0.016) 0.936 (0.009) 0.014 (0.013) 0.998 (0.008) 0.074 (0.016) 0.960 (0.009)
Winter 0.043 (0.007) 0.956 (0.010) 0.038 (0.007) 0.958 (0.010) −0.003 (0.004) 1.007 (0.005) 0.014 (0.005) 0.971 (0.007)

6-h Non-winter 0.012 (0.010) 1.016 (0.006) 0.059 (0.010) 0.996 (0.006) −0.023 (0.010) 1.021 (0.006) −0.033 (0.011) 1.028 (0.009)
Winter 0.045 (0.004) 0.935 (0.006) 0.046 (0.004) 0.942 (0.006) −0.009 (0.003) 1.010 (0.004) 0.012 (0.009) 0.978 (0.006)

1-day Non-winter 0.149 (0.007) 0.923 (0.004) 0.075 (0.006) 0.966 (0.004) 0.062 (0.008) 0.949 (0.005) 0.097 (0.003) 0.948 (0.004)
Winter 0.051 (0.002) 0.920 (0.005) 0.045 (0.002) 0.925 (0.005) 0.006 (0.002) 0.977 (0.004) 0.025 (0.007) 0.955 (0.004)

15-day Non-winter −0.055 (0.004) 1.108 (0.003) −0.297 (0.009) 1.182 (0.005) −0.236 (0.006) 1.177 (0.004) −0.130 (0.006) 1.170 (0.004)
Winter 0.066 (0.002) 0.914 (0.003) 0.097 (0.002) 0.920 (0.003) 0.010 (0.002) 0.979 (0.003) 0.029 (0.002) 0.977 (0.003)

Standard errors of the coefficients are shown in the parentheses.
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2.3. Sampling window length

Each of the gap-filling methods has its own algorithm to build
models trained by available data around each gap, and the models were
then used to predict the values in the gap. Since the data sampled
around the gap for training the models could have a significant influ-
ence on the accuracy of the gap-filled values, choosing a sampling
window length that includes proper training data is important. In this
study, we compared the performance of the gap-filling methods using
sampling windows of 5, 10, 20, 30, 40, 50 and 60 days (i.e., 720, 1440,
2880, 4320, 5760, 7200, 8640 observations, respectively), arranged
symmetrically around the gap. A sampling window of 10 days, for ex-
ample, included data of 5 days before and after the gap, regardless of
the gap length. The shortest window length that achieved best accuracy
was chosen for each method. This sampling window is more flexible
than the traditional fixed window (Moffat et al., 2007), which also
includes the gap itself and may suffer from insufficient training data if
the gap size approaches the sampling window size.

2.4. Gap-filling methods

In this study, we used four methods to fill the artificially created
gaps.

Firstly, the artificial gaps were filled with the predictions from the
nonlinear least squares (NLS) regression based on the relationship be-
tween soil temperature and soil respiration. Since NLS is the most
commonly used method for gap-filling (Gomez-Casanovas et al., 2013;
Kunwor et al., 2017; Moffat et al., 2007), we took it as a reference to
compare other methods with. The Lloyd-Taylor function was used for
making the models (Lloyd and Taylor, 1994):

=R R ·es
E T T T T

10
1 1

ref s0 0 0 (2)

where R10 and E0 are parameters to be estimated, Tref and T0 take the
values of 283.15 and 227.13 K, respectively, following Lloyd and
Taylor (1994), and Ts is the soil temperature measured at 10 cm depth
(K). The NLS regression was performed by applying the Levenberg-

Marquardt algorithm using the “minpack.lm” package (Elzhov et al.,
2016) in the program R 3.5.2 (R Development Core Team, 2018). In
cases when the variance of soil temperature in the winter was too low
for the NLS function to fit with, the mean value of the soil respiration
rate within the sampling window was taken to fill the gap (71% of the
gaps in the winter).

Secondly, to include environmental variables other than the soil
temperature, artificial neural network (ANN) models similar to
Moffat et al. (2010) were implemented to fill the gaps. The inputs of the
ANN models were soil temperature, soil moisture and ambient tem-
perature (i.e., either snow temperature in the winter or air temperature
in non-winter periods), and the output was soil respiration rate. The
input variables were normalized to be centered around 0 with a stan-
dard deviation of 1 before used to train the models. We included one
hidden layer with two neurons in the models and a back-propagation
algorithm was performed using the R package “neuralnet”
(Fritsch et al., 2019).

Thirdly, being independent of the variations of other environmental
variables, the singular spectrum analysis (SSA) method analyzes the
structure of the soil respiration time series and predicts the missing
values in the gap. In this study, we used the iterative approach sug-
gested by Kondrashov and Ghil (2006) to determine the major periodic
component of the time series in the sampling windows and projected
this periodic component into the gaps. In addition to the major periodic
(i.e., low frequency) component, we also extracted the high frequency
component (i.e., the eigentriples with periodicity band < 10, unit: 10-
min) of the time series in the sampling window and added its average
diurnal variations to the projected low frequency values in the gap at
the corresponding time of the day. This approach takes both low and
high frequency components derived from the time series into account
for the gap-filled data. The SSA was conducted using the R packages
“spectral.methods” (Buttlar, 2015) and “Rssa” (Golyandina et al.,
2015).

Lastly, we implemented the method developed by Junger and Ponce
de Leon (2015) based on the expectation-maximization (EM) algorithm
(Dempster et al., 1977). This method takes multiple other parallelly
measured soil respiration time series as references for the target gap-
filling series and makes predictions accounting for both the correlation
among the series and temporal structure of individual series. In this
study, all the parallel soil respiration time series (no artificial gaps) that
reached a certain degree of correlation with the target series (i.e.,
r > 0.75; see Table A1 for the correlations among the plots) from the
same site (Hurdal or Løten) were used as references. We used the
“spline” method to fit the time series at each iteration with a degree of
freedom of 10 (chosen by cross validation). Due to the unequal data
temporal range among the plots, the gaps located out of the temporal
range of the references were not filled and excluded in further analyses
(<5% in total). Similarly, EM was not applied to gap-fill the mixed gap
benchmark datasets from the plot L2 in Løten for determining the an-
nual budget, due to the lack of a full year data at plot L1 as the re-
ference. The EM gap-filling was performed using the R package “mtsdi”
(Junger and Ponce de Leon, 2018).

2.5. Statistical analysis

The performance of the gap-filling methods was investigated sepa-
rately in the winter and other periods of the year. Since the snow was
not monitored at the sites, we defined the winter as the period with soil
temperature <1.5 °C and the remaining period as non-winter. This
criterion well separated each year into two seasons and characterized
the winter by low soil temperature with a narrow variation range
(mostly 0–1 °C).

To select the optimal sampling window length for each gap-filling
method, we calculated the root-mean-squared error (RMSE) between
gap-filled values and the original observations for each gap. RMSE has
been widely used as an indication of the model accuracy and it was

Table 4.
Summary of the analysis of variance (ANOVA) for the mixed effects models
with RMSE, relative error, AR (1) and variance as dependent variables and
method, season, gap size and their two-way interactions as independent vari-
ables.

Dependent variable Independent variable SS F-value P-value

RMSE Method 0.27 1.72 0.161
Season 41.81 791.66 <0.001
Gap size 15.43 97.411 <0.001
Method*Season 0.30 1.90 0.128
Method*Gap size 1.57 3.29 <0.001

Relative error Method 0.40 1.95 0.119
Season 14.98 217.81 <0.001
Gap size 6.35 30.75 <0.001
Method*Season 0.21 1.00 0.394
Method*Gap size 1.14 1.83 0.057

Variance Method 3.37 25.99 <0.001
Season 3.89 119.77 <0.001
Gap size 11.12 114.28 <0.001
Method*Season 1.61 12.37 <0.001
Method*Gap size 4.28 10.98 <0.001

AR (1) Method 25.62 47.32 <0.001
Season 39.06 288.60 <0.001
Gap size 271.34 668.25 <0.001
Method*Season 18.56 34.28 <0.001
Method*Gap size 18.33 11.28 <0.001

The plot number is included in the models as random effects. SS: type III sums
of squares with Satterthwaite approximation for degrees of freedom. RMSE:
root mean squared error. AR (1): first order autocorrelation coefficient. The
sampling window length of 5 days was used.
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calculated as:

=
=

RMSE
n

P O1 ( )
i

n

i i
1

2

(3)

where n is the number of data points in the gap, and Pi and Oi are the
predicted (gap-filled) and observed soil respiration rates (µmol CO2

m−2 s−1), respectively. A linear mixed-effects model was used to in-
vestigate the effects of sampling window size, gap-filling method,
season, gap size and the interactions between window size and each of
the other three factors on RMSE. Plot ID was included as random effect
in the model. Normality and homoscedasticity of the model were
evaluated visually by plotting residuals. The post-hoc Tukey HSD test
was used to further investigate the differences among the groups of the
significant effects. The smallest window size associated with the lowest
RMSE was chosen for each method for further analyses.

With the gaps filled using the optimal sampling windows, we further
calculated relative error, variance and first order autocorrelation coef-
ficient (AR (1)), in addition to RMSE (Eq. (3)), for each gap to evaluate
the performance of the gap-filling methods. They are given as follows:

= =

=
Relative error
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i i
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1

1 (4)
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Variance
n

PO PO1 ( )
i

n

i
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2

(5)

= +AR r PO PO(1) ( , )t t 1 (6)

where POi is either the predicted (gap-filled) or observed soil respira-
tion rate (µmol CO2 m−2 s−1) and PO is the mean of the rates in each
gap. AR (1) is the Pearson Correlation Coefficient (r) between the time
series in the gap (OPt) and the series itself with a lag of one-time step
(i.e., 10-min) (POt+1). Variance and AR (1) were calculated separately
for the gap-filled and observed values. The gaps that were filled with
the mean value of the sampling window in the winter were excluded in
the AR (1) calculations for NLS. Linear mixed-effects models were es-
tablished to determine the effects of the method, season, gap size and
their two-way interactions on RMSE, relative error, variance and AR (1)
with the random effect of plot ID.

The relationships between the observations and the gap-filled values
were fitted by linear regressions using the total-least-squares approach
to account for variances of both the dependent and independent vari-
ables. We assumed that the residue variance of the gap-filled values was
the same as the observations (i.e., the variance ratio was set to 1). The
regression slopes were used to indicate systematic bias of each method
in different gap sizes and seasons. The standard errors of the regression
coefficients were estimated by bootstraps (1000 random replicates).

In addition, we also calculated the Nash-Sutcliffe Efficiency (NSE)

Fig. 3. The RMSE for the gap-filled values of different gap sizes (1 h: 1-h, 6h: 6-h, 1d: 1-day, 15d: 15-days) predicted by different methods. The boxplots are plotted as
in Fig. 1. Different lowercase letters indicate significant differences in RMSE among the different methods in (a–d) and among different gap sizes in (e–h) (P < 0.05).
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(Nash and Sutcliffe, 1970) and Kling-Gupta Efficiency (KGE)
(Gupta et al., 2009; Kling et al., 2012) in the gaps to evaluate the
overall performance of the four methods in different gap sizes and
seasons, as follows:
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2 (7)

= + +KGE r cv1 ( 1) ( 1) ( 1)2 2 2 (8)

where r is the Pearson correlation coefficient, cv is the ratio of the
coefficient of variation between the predicted and the observed values,
and β is the ratio of the means between the predicted and the observed
values. The calculations were conducted using the R package “hy-
droGOF” (Zambrano-Bigiarini, 2017).

To investigate the influences of gap-filling methods on the annual
flux budget, the four methods were also applied to the one-year
benchmark datasets with mixed gaps. We then compared the annual
sum of soil respiration including gap-filled values to those summed
from original observations using the Wilcoxon tests. The original gaps
in the datasets were not taken into account for the budget estimations.

All the data processing and analyses were carried out using the

program R 3.5.2 (R Development Core Team, 2018). In addition, the
packages “lme4” (Bates et al., 2015) and “lmerTest” (Kuznetsova et al.,
2016) were used to estimate linear mixed-effects models, the “em-
means” package was used for the post-hoc Tukey HSD test
(Lenth, 2019), the “MethComp” package was used to perform regres-
sions with the total-least-squares approach (Carstensen, 2015), and
“ggplot2” package was used for plotting graphs (Wickham, 2016). The
R code to perform the gap-filling with the four methods in this study is
incorporated into the R package “FluxGapsR” freely available at
https://github.com/junbinzhao/FluxGapsR/.

3. Results

3.1. Effect of sampling window size

According to the mixed-effects model (Table 2), the sampling
window size showed a significant effect on the RMSE of the gap-filling
results (P < 0.01). This window size effect differed among the methods
(P = 0.01), but not among the gap sizes (P = 0.57) or the seasons
(P = 0.14). Of the four methods, NLS, ANN and EM showed slight in-
creases in RMSE along the window size gradient from 5 to 60 days with
significantly higher values of RMSE being present in the window of
≥30, 50 and 60 days, respectively, compared to the 5-day window
(P < 0.05) (Fig. 1a, b and d). In contrast, SSA showed no significant
changes in RMSE with different sampling window sizes (P > 0.05)
(Fig. 1c). Therefore, the 5-day window, which is the smallest window
size associated with the lowest RMSE for all the four gap-filling
methods, was chosen in this study for further analysis.

3.2. Performance of the gap-filling methods

The scatterplots of the gap-filled (predicted) soil respiration values
versus the original observations generally followed the 1:1 line in the
gaps ≤ 1 day (Fig. 2). While the corresponding regression slopes for
SSA and EM were between 0.95 and 1.03, the slopes for NLS and ANN
occasionally dropped down to 0.92 (Table 3), indicating a slight un-
derestimation. For the 15-day gaps, all the methods generally over-
estimated the values in the non-winter gaps (i.e., regression
slope > 1.1, Fig. 2m–p and Table 3). For the winter gaps, SSA and EM
exhibited slopes of 0.98 but NLS and ANN slightly underestimated the
flux values in the gaps (i.e., slopes were 0.91 and 0.92, respectively).

According to the mixed-effects model (Table 4), the RMSE differed
among different seasons (P < 0.01) and gap sizes (P < 0.01) but not
among different methods in general (P = 0.16). However, differences
of the RMSE were present among the methods when considering the
interaction with the gap size (P < 0.01) but not when considering the
season (P = 0.13). The difference was present in the 1-h gap where the
results from SSA showed significantly lower RMSE than those from the
other 3 methods (P < 0.01) (Fig. 3a). While the RMSE of EM was also
significantly lower than that of NLS (P < 0.05), ANN resulted in similar
RMSE as NSL (P > 0.05). For the gap sizes of 6-h, 1- and 15-day, the
RMSE from ANN, SSA and EM were not significantly different from NLS
(p > 0.05) (Fig. 3b–d).

All the four methods generally showed significantly greater RMSE as
gap size increased from 1 h to 15 days (Fig. 3e–h). For NLS and ANN,
the RMSE remained similar in gaps ≤ 1 day (P > 0.05) while the RMSE
became significantly higher in the 15-day gaps (P < 0.01) (Fig. 3e and
f). The RMSE of SSA showed much higher sensitivity to gap size changes
with a significant RMSE increase with every step of gap enlarging from
1-h to 15-day (P < 0.01) (Fig. 3g). The RMSE of EM showed a similar
pattern with significantly lower values exhibited in 1-h gaps than in 15-
day gaps (P < 0.01) while 15-day gaps had the greatest RMSE
(P < 0.01) (Fig. 3h).

The relative error was significantly different among seasons
(P < 0.01) and gap sizes (P < 0.01), but not among the methods
(P = 0.12) (Table 4). The interactions of method with season

Fig. 4. The RMSE (a) and relative error (b) for gaps of different sizes (1 h: 1-h,
6 h: 6-h, 1d: 1-day, 15d: 15-days) in different seasons. The boxplots are plotted
as in Fig. 1. Different lowercase letters indicate significant differences in RMSE
or relative error among the different gap sizes and seasons (P < 0.05).
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(P = 0.39) and gap size (P = 0.06) were not significant either. Fur-
thermore, even though the RMSE was generally lower in the winter
gaps compared to those in the non-winter (P < 0.01) (Fig. 4a), the
relative errors were significantly higher in the winter than in the non-
winter for the 1-h, 1- and 15-day gaps (P < 0.05) (Fig. 4b). The greatest
relative error was present in the winter 15-day gaps.

The mixed-effects model for the variance showed significant effects
of method, season, gap size as well as the two-way interactions of
method with season and gap size (P < 0.01) (Table 4). Among the four
methods, only SSA resulted in similar variance in the gap-filled values
compared to the original observations across the seasons and the gap
sizes (P > 0.05) (Fig. 5). The variances of the values filled by other 3
methods were overall much lower than those of the observations
(P < 0.05), particularly for the winter gaps (Fig. 5e–h). Exceptions are
the non-winter 15-day gaps filled by ANN, which also showed similar
level of variance as the observations (P > 0.05) (Fig. 5d).

The AR (1) were affected by method, season, gap size as well as the
two-way interactions of method with season and gap size (P < 0.01)
Table 4). Of the four methods, EM outputted data series with similar AR

(1) to the original observations (P > 0.05), except for the 6-h and 1-day
gaps in the winter (Fig. 6). NLS also resulted in similar AR (1) structure
as the observations in the winter gaps of ≤1 day (P > 0.05) when
excluding those filled using the mean values in the sampling windows
(Fig. 6e–g). AR (1) of the data series generated by SSA were similar to
the observations only in 1-h gaps (Fig. 6a and e) and the winter 6-h gaps
(Fig. 6f). ANN produced data series with significantly higher AR ((1)
than the observations in all cases (P < 0.01) (Fig. 6).

The NSE were >0.85 in the gaps of ≤ 1 day for all the methods,
among which the NSE values of SSA and EM were >0.95 in the 1-h
gaps (Table 5). The NSE values dropped below 0.8 in the 15-day gaps
for all the methods with the values being <0.7 for ANN in the winter
and EM in the non-winter periods and being even <0.6 for ANN in the
non-winter periods. The more comprehensive index KGE, which con-
siders accuracy, bias and variance of the gap-filled data, showed a si-
milar pattern as the NSE (Table 5). Specifically, KGE values were >0.9
for gaps ≤ 1 day for all the methods and the values were even ≥ 0.95
for SSA and EM in the 1- and 6-h gaps. In the 15-day gaps, lower KGE
values were present, which ranged between 0.8 and 0.9.

Fig. 5. The variance of the gap-filled values predicted by different methods in gaps of different sizes (1h: 1-hour, 6 h: 6-h, 1d: 1-day, 15d: 15-days) as compared to
variance of the observations. The variances are shown separately for the winter (a-d) and the non-winter (e–h) with different scales. The boxplots are plotted as in
Fig. 1. Different lowercase letters indicate significant differences in variances among different methods (P < 0.05).
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3.3. Annual budget estimation

The annual soil respiration budget was estimated to be 1152, 463,
627 and 865 g C m−2 year−1, respectively, at the plot H1, H3, H4 in
Hurdal and L2 in Løten during April 30, 2018–April 29, 2019 based on
the observations (Fig. 7). By filling the mixed artificial gaps in the da-
tasets, the corresponding annual soil respiration budget estimations
ranged 1108–1136, 449–475, 598–646 and 767–955 g C m−2 year−1,
respectively, for the four plots. Overall, the errors of budget estimations
tended to be larger as the proportion of gaps increased. For different
gap-filling methods, the overall budget errors were −3.7 to 3.6%,
−11.3 to 16.0%, −3.7 to 5.8% and −3.2 to 5.3%, respectively, for
NLS, ANN, SSA and EM. Significant biases only occurred in the H3 and
L2 datasets with 50% gaps (Fig. 7b and d). Specifically, NLS and ANN
overestimated the budget in the L2 dataset (P < 0.05), while NLS and
SSA underestimated the budget in the H3 dataset (P < 0.05).

Fig. 6. The AR (1) coefficient of the gap-filled values predicted by different methods in gaps of different sizes (1 h: 1-h, 6 h: 6-h, 1d: 1-day, 15d: 15-days) as compared
to variance of the observations. The AR (1) coefficients are shown separately for the winter (a–d) and the non-winter (e–h) with different scales. The boxplots are
plotted as in Fig. 1. Different lowercase letters indicate significant differences in AR (1) coefficient among different methods (P < 0.05). Note that the gaps failed to
be filled with NLS (but filled with the average of the sampling window) in the winter are not included in the AR (1) calculations (e–h).

Table 5
Nash-Sutcliffe efficiency (NSE) and Kling-Gupta Efficiency (KGE) for the gap-
filled values predicted using different methods.

Gap size Season NSE KGE
NLS ANN SSA EM NLS ANN SSA EM

1-h Winter 0.89 0.90 0.97 0.96 0.92 0.93 0.98 0.97
Non-winter 0.93 0.94 0.97 0.96 0.91 0.93 0.99 0.95

6-h Winter 0.89 0.90 0.94 0.96 0.92 0.92 0.97 0.97
Non-winter 0.91 0.92 0.94 0.93 0.95 0.95 0.97 0.96

1-day Winter 0.89 0.89 0.88 0.91 0.91 0.92 0.94 0.94
Non-winter 0.90 0.92 0.89 0.91 0.92 0.95 0.93 0.94

15-day Winter 0.76 0.69 0.76 0.79 0.85 0.83 0.88 0.89
Non-winter 0.78 0.58 0.72 0.69 0.88 0.85 0.80 0.84
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4. Discussion

Our study evaluated the performances of four gap-filling methods
on soil respiration datasets from two boreal forest sites. For carbon flux
studies, gap-filled data are mostly used for estimating the sum of the
flux budget, usually on the scale of one year. According to our esti-
mations, NLS, SSA and EM resulted in annual budget errors that ranged
from −3.7 to 5.8%, which are fully acceptable given that this result
represents a wide range of soil respiration budget (i.e., 463–1152 g C
m−2 year−1) in high latitude ecosystems (Bahn et al., 2010; Raich and
Schlesinger, 1992). Among the methods used, SSA and EM are based on
the time series analysis and had never been used for gap-filling in
carbon flux data. Particularly, they are implemented independent of
other environmental measurements (e.g., soil temperature). With this

advantage and their accurate annual budget estimations, we suggest
SSA and EM to be considered as alternatives to the more conventional
methods (e.g., NLS) for gap-filling in soil respiration data and possibly
in other carbon flux data (e.g., net ecosystem CO2 exchange measured
by eddy covariance, methane fluxes, etc.), especially when the con-
trolling environmental variables are unavailable, missing or unknown.

4.1. The accuracy of the gap-filling methods

In our study, we selected the sampling window size of 5 days, be-
cause this window size already achieved the most accurate results for
all the methods. Previous studies commonly use sampling windows
ranging from half a month up to a full year depending on the method
used (e.g., Kunwor et al., 2017; Moffat et al., 2007; Zhao and
Huang, 2015), which might not be necessary according to our result.
Our result implies that a smaller sampling window that captures the
local data structures or relationships around the gap can be more re-
presentative for the gap than one that includes data of longer periods.
Using a smaller sampling window also significantly reduces the com-
puting time for the methods involving iterations (e.g., ANN). However,
we do not recommend windows that are smaller than 5 days, because
they may simply underrepresent the diurnal variation of the variables
in the gap if e.g., only 1 day before and 1 day after the gaps are con-
sidered. In addition, it is worth to note that our datasets have a tem-
poral resolution of 10 min, which is three times as many as the com-
monly used 30-min interval flux datasets in a 5-day window. Thus, we
further aggregated the 10-min-interval data by averaging data within
each half hour and generated datasets with 30-min intervals. The gap-
filling results on the aggregated datasets also indicated that the 5-day
sampling window had the lowest RMSE among the window sizes for all
the methods (see Fig. A2 in the Appendices). Therefore, we suggest a 5-
day sampling window could be suitable for most gap-filling procedures
on carbon flux data.

Among the four methods, NLS is the most widely accepted method
for carbon flux gap-filling since it is usually supported by well-ac-
knowledged relationships between the flux and environmental factors,
such as the one between soil respiration and temperature used in this
study (Gomez-Casanovas et al., 2013; Lloyd and Taylor, 1994). This
method provides the basis to evaluate the other methods. Compared to
NLS, ANN models were trained against more environmental variables
(i.e., soil moisture and ambient temperature); however, it showed no
improvement over NLS in terms of the RMSE (Fig. 3a–d). A previous
study that included soil moisture in soil respiration gap-fillings also
reached the same conclusion (Gomez-Casanovas et al., 2013). This is
mainly because the controls of soil moisture over soil respiration are
complicated and depend on many other factors (e.g., time, microbial
communities, etc.) (Cook and Orchard, 2008). Particularly in this study,
we found large prediction errors by ANN associated with the pulse in
soil moisture induced by precipitation events that occurred in the gaps
or the sampling windows (see Fig. 8 for examples). Depending on when
those pulses occurred as well as their magnitude, gap-filled values
predicted by ANN could greatly over- or under-estimate the fluxes in
the gaps due to a mismatch of the soil moisture magnitudes in the gaps
to those in the sampling windows. These large errors were also reflected
in the lower NSE values in the 15-day gaps (Table 5) and the large
uncertainties in soil respiration budget estimations by ANN (Fig. 7).
Yet, models that better represent soil moisture in soil respiration gap-
filling are still needed.

The SSA yielded the smallest errors among the methods in the small
gaps (i.e., 1-hour) and outcompeted NLS (Fig. 3a), suggesting that SSA
is a highly robust method for filling small gaps. In larger gaps, SSA
could also capture the diurnal pattern and well construct the data series
in the gap close to the observations if the variation pattern persisted
throughout the gap (see Fig. 9a for an example). However, drifts in the
diurnal patterns and magnitudes of soil respiration, which are driven by
environmental factors, often occur in larger gaps (e.g., Fig. 9b). Without

Fig. 7. The annual soil respiration sum estimated based on the observations
(red lines) and included the gap-filled values predicted by different methods
(boxplots) during April 30, 2018–April 29, 2019 for the mixed gap benchmark
datasets from plot H1 (a), H3 (b), H4 (c) in Hurdal and L2 (d) in Løten. The
boxplots are plotted as in Fig. 1. The asterisks (*) indicate significant differences
of the estimated annual sum from the observed sum (P < 0.05). The datasets
from L2 were not gap-filled by EM due to the lack of reference for the full year.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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referencing to environmental variables, these drifts in the gap could be
hardly predicted by SSA (but could be predicted by NLS and ANN), and,
thus, introduced large errors in the gap-filled values. In addition to the
gap size, the completeness of the data in the sampling windows also
plays a big role in the SSA predictions. Without sufficient data to con-
struct the diurnal pattern, a “blind guess” by SSA can deviate well away
from the observations (e.g., Fig. 9c). A high gap proportion (e.g., 50%)
significantly increases the chances of incomplete data in the sampling
window. This can increase the errors of the budget estimation with SSA,
as shown, for example, in the H3 mixed-gap dataset (Fig. 7b). There-
fore, caution needs to be taken when applying SSA for large gaps or
highly fragmented datasets.

EM is a method whose performance relies on the relationship be-
tween the target time series and the references (Junger and Ponce de
Leon, 2015). For our datasets, the accuracy of EM was higher than that
of NLS in the 1-hour gaps but not in larger gaps (Fig. 3a–d). This may be
partly due to the heterogeneity of our sites where time series con-
siderably deviated from each other (r < 0.85, Table A1). A better ac-
curacy from EM is expected in cases when more closely related time
series are available to be used as references. Nevertheless, EM provides
a practical approach to gap-fill missing data when parallel measure-
ments are available, which is common for measurements such as soil
respiration when multiple replicates are needed.

Due to the limited variations under the snow cover, soil temperature
and soil respiration usually decouple from each other during the winter
(Alm et al., 1999; Liptzin et al., 2009; Merbold et al., 2012). As ex-
pected, the NLS could not be applied to up to 71% of the small winter
gaps in this study because of the low variance of the soil temperature.
Compared to NLS, the time-series-analysis-based methods (i.e., SSA and

EM), which were implemented independent of the soil temperature,
achieved a better accuracy in gaps ≤ 6 h and less biased predictions in
the 15-day gaps in the winter. Even though the RMSE in the winter was
generally much lower than in the non-winter season, larger relative
errors were present in the winter gaps. This suggests that the errors
introduced by filling winter gaps can account for a large fraction of the
annual budget in higher latitude ecosystems when the winter con-
tribution is a significant component (Alm et al., 1999; Aurela et al.,
2002; Groffman et al., 2006; Zhao et al., 2016). According to our re-
sults, gap-filling methods that are based on time series analysis (i.e.,
SSA and EM), rather than the more conventional NLS approach, are
recommended in ecosystems with substantial winter contributions.

4.2. Data structure restoration

The time series analyses are useful tools in ecology studies; how-
ever, they are usually very sensitive to gaps in the data (Barnea et al.,
2008). In addition to achieving low errors, gap-filled data that restore
the original structure of the time series can potentially be further used
in time series analysis for, e.g., forecasting (Kohn and Ansley, 1986).
Variance and AR (1) are two important structural properties of time
series data (Box et al., 2015). In our study, the conventional method
NLS as well as ANN largely underestimated the variances, especially
during the winter time (Fig. 5). This is because the structures of their
predicted data series closely followed the corresponding environmental
variables, which usually have much lower variances than the flux data
(Kunwor et al., 2017). The data series produced by EM were also low in
variances and this is mainly due to the relatively low degrees of
freedom (i.e., 10) we chose for spline constructions to achieve better

Fig. 8. Examples of the gap-filled soil respiration rates predicted by ANN (pink dashed lines) as compared to the original observations (gray solid lines) (a–b) in
response to the pulse of the (purple solid lines, c–d) induced by the precipitation events. Soil temperature and ambient temperature are shown in blue dotted and
green dashed lines, respectively (c–d). The black lines are observed values out of the gap. The red boxes indicate the corresponding sampling window for each gap.
The data were derived from the mixed gap benchmark datasets at the plot H4 in Hurdal in 2018. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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accuracy. In contrast, only SSA, which considered the high frequency
signal of the data in the sampling window, restored the variance to the
same level as the observations.

For AR (1), we found the gap size showed a significant effect, which
was mainly due to the systematic errors introduced to the auto-
correlation coefficient estimations when sample size was small, known
as finite size effects. The finite size effect is most evident in the ob-
servations of 1-hour gaps (n = 5) which had large variances that cov-
ered the full range from −1 to 1, and, thus, hardly represented the AR

(1) structure of the original time series. Apart from the 1-h gaps, only
EM attained the same level as the observations in most cases (Fig. 6)
mainly because of the similar AR (1) structures between the target
series and the references. In contrast, the other 3 methods all over-
estimated the AR (1). It is worth to note that even though the predic-
tions from NLS showed lower AR (1) in the winter time to roughly the
same degree as the observations, this low AR (1) was largely caused by
the low winter soil temperature variances and, also, that 71% of the
gaps with extremely low temperature variances were excluded in AR
(1) calculations for NLS. Given that the AR (1) became much larger than
the observations in the non-winter season, we suggest the capability of
NLS to reproduce the AR (1) is limited, which agrees with
Kunwor et al. (2017).

Overall, SSA and EM can restore the original structure of the data in
certain respects. Nevertheless, to restore the full structural properties of
the data is challenging and new methods are still needed.

5. Conclusions

All the four studied methods achieved good accuracy in estimating
the annual soil respiration budget. However, they all have different
strengths and weaknesses which need to be considered when used for
gap-filling in different situations. NLS is a widely used method; how-
ever, due to its poor performance in the winter (i.e., failing to fit the
equation and lack of variance), ecosystems with substantial winter
contributions should consider other alternatives for gap-filling, at least
during the winter. In contrast, SSA has great advantages (i.e., good
accuracy, variance and less bias) for winter gaps, especially the small
ones. Also, because SSA is independent from environmental variables, it
can be implemented even when the driving variables are unavailable,
missing or even unknown. Compared to SSA, implementation of EM is
more limited by the availability of the corresponding reference data.
With a highly related reference dataset, EM is also a reliable option to
be used without involving environmental variables. ANN is a flexible
approach to include other potential driving factors in the gap-filling
models without specifying the exact mathematical formulation.
However, its performance may suffer under certain conditions (e.g., a
precipitation event). At the same time, the long computing time of ANN
compared to its (usually disproportional) improvement in the accuracy
over NLS must also be considered.
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Appendices

Figs. A1-A2 and Table A1.

Fig. 9. Examples of the gap-filled soil respiration rates as compared to the
original observations (gray lines) for gaps > 10 days derived from the mixed
gap benchmark datasets at the plot H3 in Hurdal in 2018. The examples include
scenarios where soil respiration diurnal pattern in the gap followed (a) and did
not follow (b) the patterns in the sampling windows and where missing data
were present in the sampling windows (c). Values predicted by NLS, ANN, SSA
and EM are plotted in pink dotted, green dashed, blue solid and purple solid
lines, respectively. The insets show the RMSE calculated for the gap-filled va-
lues predicted by different methods using the same color scheme. The black
lines are observed values out of the gap. The red boxes indicate the corre-
sponding sampling window for each gap. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. A1. Summary of the gap number and their sizes in the benchmark mixed gap datasets at the plot H1 in Hurdal. Columns indicate gap proportion from 10% to
50% and rows indicate 10 replicate datasets (R1–R10) for each gap proportion level. See Method and Materials Section 2.2 for details.
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