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A B S T R A C T

Boreal forests constitute a large portion of the global forest area, yet they are undersampled through field
surveys, and only a few remotely sensed data sources provide structural information wall-to-wall throughout the
boreal domain. ArcticDEM is a collection of high-resolution (2m) space-borne stereogrammetric digital surface
models (DSM) covering the entire land area north of 60° of latitude. The free-availability of ArcticDEM data
offers new possibilities for aboveground biomass mapping (AGB) across boreal forests, and thus it is necessary to
evaluate the potential for these data to map AGB over alternative open-data sources (i.e., Sentinel-2). This study
was performed over the entire land area of Norway north of 60° of latitude, and the Norwegian national forest
inventory (NFI) was used as a source of field data composed of accurately geolocated field plots (n=7710)
systematically distributed across the study area. Separate random forest models were fitted using NFI data, and
corresponding remotely sensed data consisting of either: i) a canopy height model (ArcticCHM) obtained by
subtracting a high-quality digital terrain model (DTM) from the ArcticDEM DSM height values, ii) Sentinel-2
(S2), or iii) a combination of the two (ArcticCHM+S2).

Furthermore, we assessed the effect of the forest- and terrain-specific factors on the models’ predictive ac-
curacy. The best model (,i.e., ArcticCHM+S2) explained nearly 60% of the variance of the training set, which
translated in the largest accuracy in terms of root mean square error (RMSE=41.4 t ha−1). This result highlights
the synergy between 3D and multispectral data in AGB modelling.

Furthermore, this study showed that despite the importance of ArcticCHM variables, the S2 model performed
slightly better than ArcticCHM model. This finding highlights some of the limitations of ArcticDEM, which,
despite the unprecedented spatial resolution, is highly heterogeneous due to the blending of multiple acquisi-
tions across different years and seasons. We found that both forest- and terrain-specific characteristics affected
the uncertainty of the ArcticCHM+S2 model and concluded that the combined use of ArcticCHM and Sentinel-2
represents a viable solution for AGB mapping across boreal forests. The synergy between the two data sources
allowed for a reduction of the saturation effects typical of multispectral data while ensuring the spatial con-
sistency in the output predictions due to the removal of artifacts and data voids present in ArcticCHM data.
While the main contribution of this study is to provide the first evidence of the best-case-scenario (i.e., avail-
ability of accurate terrain models) that ArcticDEM data can provide for large-scale AGB modelling, it remains
critically important for other studies to investigate how ArcticDEM may be used in areas where no DTMs are
available as is the case for large portions of the boreal zone.

1. Introduction

Stereogrammetric data generated by matching stereo pairs of high-
resolution space-borne imagery (HRSI) have been used for nearly 15

years to map forest canopy height and above-ground biomass (AGB)
stocks (Poon et al., 2005; St-Onge et al., 2008). Despite the advantage
of providing finely detailed information on the forest canopy structure
over vast areas (from 100 up to millions of km2), their use in the
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scientific literature has been limited compared to other space-borne
medium resolution multispectral imagery.

The recently released and freely available ArcticDEM (arcticdem.
org) digital surface model (DSM) data set is a collection of HRSI ste-
reogrammetric data covering the entire hemiboreal zone (just over 10%
of the planet) (Porter et al., 2018). The ArcticDEM offers unprecedented
opportunities to map and estimate the forest attributes in the cir-
cumboreal region (Meddens et al., 2018). Meddens et al. (2018) and
Montesano et al. (2017, 2019) demonstrated that DSMs from HRSI data
could be used to map canopy height. However, the potential for using
the ArcticDEM for large scale mapping of AGB stocks in boreal forests,
to our knowledge, has not been investigated at a national or regional
scale. Currently, much of the large-scale remote sensing-based efforts
on forest AGB mapping are targeted at the tropics (e.g., GEDI mission).
Nevertheless, boreal forests cover approximately 9.2 million km2 (29%
of the global forest area), and they represent approximately 20% of the
total forest carbon sink (Pan et al., 2011) and one of the major carbon
pools of living organic carbon on Earth (Kuusela, 1990). The current
study represents the first effort to utilize ArcticDEM data at a national
scale to model AGB in Norwegian boreal forests using ground reference
data from the Norwegian National Forest Inventory (NFI).

Modelling and mapping of forest AGB with HRSI stereogrammetric
data have been demonstrated for Forest Management Inventory (FMI)
over relatively small areas (9–300 km2) (St-Onge et al., 2008; Persson
et al., 2013; Straub et al., 2013; Persson, 2016; Persson and Perko,
2016; Fassnacht et al., 2017; Pearse et al., 2018; Vastaranta et al.,
2018). For the FMI focused studies, the HRSI data were acquired on-
demand, and often fine geometric adjustments were performed to re-
duce the geometric errors in the HRSI DEMs. The results of these studies
performed in “controlled” environments were encouraging, revealing
AGB models with adjusted R2s and root mean square errors (RMSEs) in
the ranges 0.43–0.79 and 32–70 t ha−1 (20%–46%). Nevertheless, these
results may not be representative of large-scale data such as the Arc-
ticDEM which are the result of multiple HRSI acquisitions under dif-
ferent acquisition geometry (i.e., the combination of sun angle and
viewing angle), atmospheric, and seasonal conditions. Furthermore, in
contrast to previous studies done in an FMI context, the geometric
corrections performed on the ArcticDEM data are done using sparse
samples of the Geoscience Laser Altimeter System (GLAS) pulses. To
date, most studies focused on forest management inventories and only
in a few examples HRSI data were used in the context of large-scale
forest mapping (Immitzer et al., 2016; Neigh et al., 2016; Montesano
et al. 2017, 2019; Meddens et al., 2018). Only in Germany was, NFI
data used as ground truth (Immitzer et al., 2016), and where results
were promising showing growing stock predictions with a root mean
square error of 32% of the mean. The German study was performed
using two WorldView-2 stereo-pairs acquired within a few minutes and
the accuracy found by Immitzer et al. (2016) is hardly representative of
the hundreds of thousands of scenes used in ArcticDEM. The pre-re-
quirement for all of the abovementioned studies was that a digital
terrain model (DTM) was available to normalize the HRSI DSM or to
subtract the terrain height from the HRSI DSM height above the ellip-
soid to generate a canopy height model (CHM) in meters above-ground.
While such a prerequisite may limit the applicability of HRSI stereo-
grammetric data, in some cases accurate DTMs are freely accessible for
entire countries (e.g., Norway). The evaluation of ArcticDEM data
under the best-case scenario where a DTM is available wall-to-wall,
thus enabling the evaluation of the full potential of ArcticDEM data for
AGB modelling. Henceforth, the term ArcticCHM will be used to refer to
the height-normalized ArcticDEM data.

The factors affecting the quality of the HRSI DSMs and the potential
for modelling canopy height using ArcticDEM data (i.e., without the
need of an accurate DTM) are starting to be understood thanks to the
studies by Montesano et al. (2017); Montesano et al. (2019) and
Meddens et al. (2018). Amongst these, Montesano et al. (2017, 2019)
highlighted the seasonal variations and varying sun-target-sensor

geometry as some of the critical factors affecting the quality of the
DSMs for different forest types. The considerable variations in seasonal
and sun-target-sensor geometry amongst different ArcticDEM acquisi-
tions may limit its use for wall-to-wall AGB mapping. Despite the pio-
neering role of the abovementioned studies, they were limited by lack
of in-situ observations, and thus the accuracy of canopy height mea-
sures from the HRSI DSM was limited to comparison to samples of
airborne laser scanner (ALS) DSMs or small amounts of spatially limited
field plots. In order to utilize ArcticDEM data for large-scale cir-
cumboreal forest AGB assessment, it is critical to gain a better under-
standing of the quality of the models linking ArcticDEM data with
ground reference AGB over large areas and based on large numbers of
stereo image-pairs.

The literature highlights that there is a synergy between using the
DEM in combination with spectral information from HRSI stereo-
grammetric data for mapping forest attributes (Wallerman et al., 2010;
Persson et al., 2013; Kattenborn et al., 2015; Immitzer et al., 2016;
Persson, 2016; Fassnacht et al., 2017; Meddens et al., 2018). A common
finding is that the inclusion of multi-spectral information improved the
models’ predictive ability. As an example, Fassnacht et al. (2017) found
that the spectral variables differentiating coniferous and deciduous tree
species had a higher explanatory power for AGB than height-related
variables. Concerning the spectral data, ArcticDEM data only includes
the DEM and not the original imagery used for the DEM production.
However, several medium-resolution (10–30m) space-borne multi-
spectral data are available free of charge (e.g., Sentinel-2 or Landsat 8
data), and these data sources can be combined with the height in-
formation from the ArcticDEM.

The objective of this study was to model AGB for all of Norway at
latitudes north of 60° using Norwegian NFI data, ArcticDEM data, and
Sentinel-2 data. This study, to our knowledge, is the first to utilize
large-scale HRSI stereogrammetric data in combination with an ex-
tensive network of ground reference observations.

2. Materials and methods

2.1. Study area

The study area was the land area of Norway at latitudes north of 60°
(260 000 km2). Approximately 34% of this study area was estimated to
be forested, all of which was classified as boreal coniferous forest
(NIBIO, 2015). The main tree species in the study area were Norway
spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.), and birch
(Betula pubescens) (NIBIO, 2015).

2.2. National forest inventory data

The Norwegian NFI (Tomter et al., 2010) was used as ground re-
ference data. The NFI consisted of permanent sample plots located
across the country according to a stratified systematic design. The
stratification was based on the forest productivity, with a grid spacing
of 3 km×3 km, 3 km×9 km, and 9 km×9 km for productive,
mountainous, and mountainous forests in northern Norway (Finnmark
county). Each plot is re-measured every five years, and as such, 20% of
the total number of plots are measured every year as a part of an inter-
penetrating panel design.

The NFI plots were circular with an area of 250m2. Within each
plot, all trees with a diameter at breast height (DBH)≥ 5 cm were ca-
lipered, while height was measured for a sample of ten trees selected
according to probability proportional to stem basal area. The height of
every tree was measured on plots with less than ten trees. For the trees
with no height measurement, height was predicted using DBH-height
models calibrated with plot-level measurements. Single-tree AGB was
predicted for each tree using species-specific allometric models by
Marklund (1988) using DBH and tree height. The plots' AGB was the
sum of the trees’ AGB scaled to per hectare values. Dominant tree
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species were allocated to three classes (spruce, pine, or deciduous
species) according to the species with the largest proportion of AGB in
the plot. The coordinates of the plot centers were measured using one of
two methods: 1) using a Topcon GR-3 RTK rover and Topcon GB-3 RTK
base station observing the pseudo-range and carrier phase of both GPS
and GLONASS, or 2) by averaging multiple measurements by a hand-
held GNSS receiver. The two methods were used on 57% and 43% of
the plots in the current study, respectively.

A full five-year cycle of NFI data (2013–2017) was utilized. The
total number of forested NFI plots in the study area (n= 8431) was
reduced to include only plots covered by the ArcticDEM data and with
ArcticCHM (see section 2.4) mean height in the range of −10m to
30m, corresponding to the fourth and 97th percentiles, respectively
(Fig. 1). These thresholds were deemed necessary to remove the oc-
currence of sparse high or low height values while avoiding to discard a
large portion of the NFI plots with ArcticCHM mean height< 0m
(Fig. 1).

Overall, a total of n= 7710 NFI plots or 91.5% of the total number
of plots in the study area were available for modeling. The comparison
of the summary statistics for AGB according to the original and subset
datasets reported in Table 1 reveal that the sub-setting did not affect the
distribution of the AGB markedly.

2.3. DTM

A freely available national-level DTM of 10m resolution (DTM10)
was used to normalize the ArcticDEM (section 2.4) to the height above
ground (ArcticCHM). The DTM10 product from the Norwegian Map-
ping Authority (Kartverket, 2019) was generated using a combination
of airborne photogrammetric data and ALS data. The ALS data have
been acquired over the past ten years as part of a National effort in
producing a high-resolution DTM for the whole of Norway. Approxi-
mately 70% of the DTM in the study area was generated using ALS data.

The DTM10 heights were converted from the orthometric national
vertical datum NN2000 to the ellipsoidal vertical datum WGS84, in
order to fit the vertical datum of the ArcticDEM.

2.4. ArcticDEM and ArcticCHM

ArcticDEM (Porter et al., 2018) is a public-private initiative, in-
cluding the National Science Foundation (NSF) and The National
Geospatial-Intelligence Agency (NGA). The initiative aimed to produce
high resolution (2m×2m pixels) DSMs for the global land area north
of 60°. ArcticDEM data were freely available and generated by photo-
grammetric processing of in-track and cross-track image stereo pairs
from the ©DigitalGlobe, Inc. constellation (i.e., WorldView 1, 2, and 3).
The photogrammetric processing was performed by the “Surface Ex-
traction with TIN-based Search-space Minimization” (SETSM) algo-
rithm (Noh and Howat, 2015). The data are published in two main
formats: i) time-stamped strips corresponding to single stereo pair
image swaths and ii) a seamless mosaic of 50× 50 km tiles which has
been compiled from multiple strips that have been mosaicked by co-
registration using Geoscience Laser Altimeter System (GLAS) data,
blending and feathering to reduce edge-matching artefact. In this study,
we used the mosaicked version since it represents the most readily
usable data source. It is however important to note that despite being a
mosaic, these data are characterized by voids due to cloud-cover or
steep terrain and by the presence of some artefact (e.g., edges between
neighboring swaths acquired in different seasons). While efforts have
been made to include only the best-available imagery in the final mo-
saicked product, it is important to recognize that the ArcticDEM mosaic
has been assembled from imagery collected over several years and in-
cludes data collected throughout all seasons.

We used 231 ArcticDEM mosaics 50×50 km tiles from release no.7
with a total size of 398 GB. Despite the ArcticDEM mosaic lacked me-
tadata on acquisition dates, it is relevant to mention that most of the
HRSI acquisitions available over Norway were performed during the
period 2013–2015 and during 2017. The majority of scenes for the
study domain were acquired between March and August.

We normalized the height data, i.e., converted from the elevation
above the ellipsoid to height above-ground values by subtracting the
DTM10 corresponding to each pixel. The result of the normalization is
often referred to as a CHM and within this study will be referred to as
ArcticCHM. For each NFI plot we extracted four explanatory variables
from the ArcticCHM data: mean, standard deviation (sd), 20th (p20),
and 90th (p90) percentiles of the height values of all pixels with centers
within the plot area. Fig. 2 shows the location of Norway with respect to
the entire archive of ArcticDEM data, the NFI plot distribution across
Norway, and the available ArcticDEM data.

2.5. Sentinel-2

A wall-to-wall Sentinel-2 level-2A cloud-free mosaic was produced
for the entirety of Norway using scenes acquired between June 30th
and July 31st, 2018 and contained the bands 2 through 8, 8A, 11, and
12. The mosaic was created by the following steps: for each down-
loaded Sentinel-2 scene, we created a single PCI Geomatics file con-
taining the aforementioned bands. Bands with 20m resolution were
resampled to 10m with nearest neighbor resampling. Then within each
scene, polygons were manually drawn over clouds and cloud-shadows
and replaced with cloudless scenes.

The mosaicking was done in the PCI Geomatics Mosaic Tool and was
first done scene-by-scene, followed by mosaicking several scenes with
equal UTM zones to one larger block. All of the cloud-free blocks were
then re-projected to the ETRS89 UTM Zone 33 N with cubic convolution

Fig. 1. Distribution of ArcticCHM mean height for the reduced set of NFI plots
(n=8431). The red dashed lines represent the thresholds−10m and 30m used
to define the reliability of ArcticCHM data. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this
article.)

Table 1
Summary statistics for above-ground biomass (t ha−1) for the original and subset NFI data.

Min Maximum Mean Median Standard deviation Mean absolute deviation

All plots (n=8431) 0.1 825.4 57.2 36.6 64.0 43.5
Selected plots (n=7710) 0.1 825.4 56.7 36.5 63.5 43.5
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resampling, and finally mosaicked together to one large file. In order to
derive a seamless mosaic, dodging-points were used for color balancing,
including contrast and brightness adjustment. All dodging-points were
distributed on the cutline between two scenes and statistics were cal-
culated in a search area of 64×64 pixels on all bands.

Explanatory variables were derived by overlaying the mosaic with
the sample plots and extracting the area-weighted means of the pixels
intersecting with the sample plot polygons.

2.6. Statistical methods

Our statistical modelling approach can be summarized in three
steps: 1) fitting a random forest model predicting AGB; 2) validating the
model at the plot level through a k-fold cross-validation; and 3) asses-
sing the effect of forest- and terrain-specific factors (i.e., tree species,
tree density, forest productivity, slope, aspect, and topographical po-
sition index) on the model residuals. These three steps were performed
for three sets of explanatory variables, namely: ArcticCHM data,
Sentinel-2 data (S2), and a combination of the two (ArcticCHM + S2).
Furthermore, the latitude and longitude were also used as explanatory
variables for all the models.

2.7. Model fitting

Random forest (Breiman, 2001) was used to model AGB. Random
forest is an ensemble regression tree method based on un-correlated
decision trees (Immitzer et al., 2016). The random forest algorithm was
selected after preliminary analysis showed that it had better perfor-
mance over multiple linear regression models. One of the advantages of
random forest is that it allows using efficiently high-dimensional and
correlated data while minimizing the risk of overfitting (Breiman, 2001,
2002).

The variable importance in terms of node purity (i.e., a measure
related to the loss function relying on the mean square error and based
on which best splits are chosen) was compared between the different
models.

2.8. Model validation

We validated the models at plot level using k-fold cross-validation

(CV), where the folds were defined by the plots included within each
ArcticDEM mosaic tile. The CV was an iterative procedure where the
number of iterations was set equal to the total number of ArcticDEM
mosaic tiles. The average number of plots per tile was 47, with a
minimum of one and a maximum of 178. The cross-validated predic-
tions were then used to compute the root mean square error (RMSE),
mean difference (MD), and their respective values as the percentage of
the mean AGB (RMSE% and MD%). The RMSE and MD were calculated
as
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where i = 1,…,n and n=7710=number of plots, yi is plot-level AGB
and ŷi is the predicted AGB after cross-validation.

2.9. Assessing the effect of the forest- and terrain-specific factors.

Residual analysis was performed to understand which forest- and
terrain-specific factors were most influential on the AGB models’ pre-
dictive accuracy. Factors such as tree species, tree density, forest pro-
ductivity, slope, aspect, and topographical position index are known to
affect the quality of HRSI DEMs. For each of these factors, we assessed
the boxplots of the residuals categorized either by class (i.e., tree spe-
cies) or by ten percentile intervals (i.e., 10th, 20th, 30th,…,100th
percentiles). Furthermore, we assessed whether the residuals were
characterized by a geographical component (i.e., presence of regional
biases) by visually assessing maps of the residuals aggregated into
50 km×50 km grid cell mean values.

To gain further insights into the predictive ability of ArcticCHM, S2,
and ArcticCHM+S2 models, we predicted AGB for the area corre-
sponding to a single ArcticDEM tile and compared the prediction maps
visually. We subjectively selected an area that included different
ArcticCHM data quality scenarios, including areas with 1) data voids; 2)
artifacts due to adjacent acquisitions performed under different seasons
(i.e., summer versus winter); and 3) areas with reliable and complete
ArcticCHM.

Fig. 2. Overview of: a) the study area location with
coverage of ArcticDEM strip data (in red), b) the
distribution of the national forest inventory plots
available for this study, c) the coverage of
ArcticCHM data over the forest area, and d) detail
on a smaller area (including data voids). (For in-
terpretation of the references to color in this figure
legend, the reader is referred to the Web version of
this article.)
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Furthermore, to better understand the errors in the ArcticCHM, we
performed assessed it over treeless areas, where the ArcticDEM should
correspond to the DTM10. Such an analysis can provide useful in-
formation on the driving sources of uncertainty in the ArcticCHM data.
We selected a systematic sample of points at the intersection of a
1 km×1 km grid over the entire study area and located in treeless
areas. A land-use map from the Norwegian Mapping Authorities was
used to exclude points in forest or urban areas (Ahlstrøm et al., 2014).
For each of these points we extracted the corresponding height values
from the ArcticCHM. These values were then used to analytically assess
the presence of overall bias and visually detect regional biases.

3. Results

3.1. Modelling

The correlation matrix of all the variables (Fig. 3) highlights the two
groups of variables derived either from ArcticCHM or Sentinel-2. The
former was characterized by a Pearson's correlation coefficient with
AGB in the range 0.3–0.6 while all of the Sentinel-2 bands were nega-
tively correlated with AGB (−0.2 – -0.5 Pearson's correlation coeffi-
cient). Latitude had a slightly stronger correlation (−0.3) with AGB
than longitude (−0.2).

The most important variables, according to the importance esti-
mated by random forest, were those associated with ArcticCHM data
rather than S2 (see Fig. 4). More specifically, 90th percentile (p90), and
the mean were the three most important variables both for the Arc-
ticCHM model and the ArcticCHM+S2 model. In S2 models, the vari-
able importance decreased more gradually than for the ArcticCHM
models. The three most important S2 variables were the mean of the
bands 5 (red edge), 11 (short wave infra-red), and 3 (green). The
longitude and latitude were among the ten most important variables for
all models.

The results of the k-fold cross-validation (CV) for the models (see
Table 2) revealed that the best model fit (explained variance= 0.57)
and corresponding smallest RMSE (41.4 t ha−1) were found for the
model using a combination of ArcticCHM and S2 explanatory variables.
The S2 model predictions were slightly more accurate than the Arc-
ticCHM model.

However, it is essential to note that for the Sentinel-2 model, we
observed a saturation effect – all AGB values larger than approximately
250 t ha−1 were under-predicted (see Fig. 5, top center pane). This issue
was reduced when using ArcticCHM data, for which the saturation
threshold was nearly twice as big as for the Sentinel-2 model (i.e., ap-
prox. 400 t ha−1). However, given the vast amount of forest in Norway
with low biomass density, this saturation effect is not apparent in the
model fit statistics (Table 2) when comparing the S2 and ArcticCHM
models. For all of the three models, the mean differences were in the

Fig. 3. Correlation matrix for the studied response (AGB; m3 ha−1) and pre-
dictor variables. The direction on the major axis of the ellipse indicates whether
there is a positive or negative correlation, while the colors represent the
strength of the Pearson's correlation coefficient between each pair of variables.
The Sentinel-2 bands are denoted as B2, B3, …, B12. (For interpretation of the
references to color in this figure legend, the reader is referred to the Web
version of this article.)

Fig. 4. Variable importance according to the node purity estimates using the random forest algorithm for the models including ArcticCHM (left pane), Sentinel-2
(center pane), and a combination of the two (right pane).

Table 2
Summary diagnostics for the AGB models including the percentage of the var-
iance explained (% var) by the model, root mean square error (RMSE), mean
difference (MD), and their values as the percentage of the mean.

% var RMSE (t ha−1) RMSE (%) MD (t ha−1) MD (%)

ArcticCHM 43 47.7 84.0 −0.9 −1.6
S2 47 45.8 80.7 −1.6 −2.8
ArcticCHM+S2 57 41.4 72.8 −1.4 −2.5
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range −1.6 – -0.9 t ha−1 and were significantly different from zero (p-
value of t-test < 0.05) indicating a small negative bias. We found that
the combination of ArcticCHM and S2 variables led to decreasing the
saturation effects of S2 and improving the model's predictive ability.

The maps of the residuals aggregated for pixels of 50 km×50 km
(see Fig. 5) indicated that for most of the country, the residuals had an
average around zero. However, there were some areas characterized by
a local bias which was mostly negative, meaning that the models over-
predicted AGB. In particular, we observed the over-prediction of AGB in
mountain areas, characterized by non-productive forests and smaller
sampling intensity. On the contrary, we observed a small trend of AGB
under-prediction in the south-eastern portions of the study area, char-
acterized by spruce dominated productive forests. The combination of
ArcticCHM and S2 led to a slight reduction of the systematic regional
biases compared to separate models for ArcticCHM and S2 data alone.

We carried out the analyses of the effect of the forest- and terrain-
specific factors on the model residuals for the ArcticCHM+S2 model
alternative since it yields the most promising results (Fig. 6). The

residual variance was largest for spruce dominated plots and smallest
for deciduous dominated plots. However, spruce forests also have the
largest AGB, and this may be the reason for the larger residual variance.
The residual variance also increased with the number of trees and the
AGB was in general larger than field measurements for plots with<
1000 trees ha−1 and smaller than those for plots with> 1400 trees
ha−1. Furthermore, even though the uncertainty was larger for pro-
ductive forests than for non-productive forest, model predictions for the
latter were more systematically larger than field measurements. The
more substantial residual variance for productive forest can be partially
explained by the large proportion of these plots (70% of the total) and
with larger AGB values.

Amongst the terrain-specific factors, we assessed the slope, aspect,
and topographical position index. The residual variance increased with
the slope and when moving from flat areas or in areas with a constant
slope towards ridges or valleys. On the contrary, the residual variance
was rather stable across different aspect classes. Furthermore, the
analysis revealed that for slopes> 30%, the systematic trend of model

Fig. 5. Scatterplots of the observed values versus the predicted values (a), with a detail in the region between 0 and 100 t ha−1 (b), and residual maps over Norway
aggregated in pixels of dimensions 50 km×50 km (c) for the three models.

S. Puliti, et al. Remote Sensing of Environment 236 (2020) 111501

6



predictions being larger than field measurements increased markedly.
Interestingly, the trend in the residuals was minimal for south-facing
slopes and gradually increased when moving towards north facing
slopes. A potential explanation for the increased uncertainty of the
stereogrammetric DEM in the northern slope may relate to the in-
creased amount of shadowed regions (areas of reduced image dynamic
range) such as terrain shadows.

The visual assessment of the AGB prediction for the three models
(Fig. 7) was performed for two sub-areas of the selected ArcticDEM tile
characterized by varying degrees of reliability of the ArcticCHM data.
Fig. 7a shows an artefact visible as a north-south oriented stripe where
most ArcticCHM values are negative, and no forest canopy is visible.
The visual assessment confirmed the ArcticCHM+S2 model to be the
one producing the most realistic predictions. In particular, the Arc-
ticCHM+S2 model reduced the impact of artifacts (the left half of
Fig. 7a) in the ArcticCHM data while reducing the under-prediction of
large AGB observed for the S2 model (Fig. 7b). Further, the predictions
of the ArcticCHM+S2 model were less noisy, and forest stand borders
were more clearly delineated than when using Sentinel-2 data alone
(Fig. 7b).

Despite the presence of local variability in the DTM quality, the
median difference over entire Norway was limited to −0.2 m (Fig. 9)
and, as can be seen from see Table 3, was more pronounced for areas
without ALS coverage (median= −0.5 m) compared to areas with ALS
coverage (median= 0.1m).

Because of the terrain model effect, we tested the performance of
the ArcticCHM and ArcticCHM+S2 models when stratifying the models
according to the availability of ALS data. The RMSEs of the combination
of the two models’ predictions slightly decreased (47.3 t ha−1 and
41.0 t ha−1 for ArcticCHM and ArcticCHM+S2 models, respectively)
compared to the values reported for the non-stratified models
(47.7 t ha−1 and 41.4 t ha−1) but the small magnitude of this

improvement did not justify the use of the stratified models.

4. Discussion

The objective of this study was to assess the potential of ArcticDEM
data for modelling and mapping of AGB over vast boreal forest regions.
The main novelty of this study lies in the broad geographical scale at
which this study was conducted (260 000 km2) compared to previous
studies (9–700 km2) and in the availability of an extensive number of
ground reference observations (n= 7710) for model calibration and
validation. These two points enabled us to assess a large variety of
forest types under varying topography and along a broad latitudinal
gradient.

The model fit (explained variance: 0.45–0.58) and predictive ac-
curacy in absolute terms (RMSE: 40.6–46.2 t ha−1) were consistent with
previous research using HRSI stereogrammetric data (explained var-
iance: 0.43–0.79; RMSE: 31.8–70.6 t ha−1) (St-Onge et al., 2008;
Persson et al., 2013; Kattenborn et al., 2015; Persson, 2016; Fassnacht
et al., 2017; Vastaranta et al., 2018). The comparison with alternative
remotely sensed data sources to map AGB in Scandinavian forests, re-
vealed that the plot-level RMSEs found in this study were smaller than
what previously found by Fazakas et al. (1999) when using Swedish NFI
and Landsat data (RMSE: 61.4 t ha−1) and even smaller than using
Tandem-X data (42.6–58.9 t ha−1) (Næsset et al., 2011; Solberg et al.,
2013). The consistency with previous research using HRSI DSMs to
model AGB and performance compared to alternative data sources is
encouraging for further use of ArcticDEM for larger areas and regions.
This is particularly true in light of the poorer quality of these data
compared to the HRSI DSMs used in small-scale detailed studies. The
reduced accuracy of ArcticDEM compared to on-demand acquisitions
was mostly caused by the inclusion of multiple acquisitions from dif-
ferent seasons causing inconsistencies or artifacts in the data. In this

Fig. 6. Boxplots of the ArcticCHM+S2 model AGB residuals categorized according to the forest- (top row) and terrain-specific (bottom row) factors that were
affecting the residuals.
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respect, the sun angle has previously been determined as one of the
most important factors affecting the features captured in HRSI DSMs
(Montesano et al. 2017, 2019). Montesano et al. (2017, 2019) indicate
that HRSI DSMs will capture different surfaces depending on an ac-
quisition's sun elevation angle, and this will affect the estimates of the
vertical position of forest canopies above the ground. Montesano et al.
(2019) also highlighted the negative effect of snow-cover on the quality
of some canopy surface estimates from HRSI DSMs. Within the Arc-
ticDEM acquisitions over Norway, a total of 589 out of 3133 acquisi-
tions (18%) were performed between December 1st and April 1st when
much of the country is covered in snow, and the sun angle is low. The
presence of snow- or cloud-cover in the HRSI acquisition used in the
ArcticDEM, caused the presence of data voids in the ArcticDEM data.

In contrast to most previous studies, which used HRSI DEMs co-
registered using locally available ALS data, the ArcticDEM data were
co-registered using sparse GLAS data. While GLAS data represent the
best currently available open-data source covering the entire boreal
zone, the inherent errors are likely to be larger than what was

previously reported for HRSI DEMs (Montesano et al. 2017, 2019;
Piermattei et al., 2018). In the near future, the availability of space-
borne data from ICESat-2 (Neuenschwander and Pitts, 2019) will en-
able to obtain denser networks of ground control points for co-regis-
tration purposes, thus potentially offering increased accuracy of HRSI
DEMs. The analysis of the difference between ArcticDEM and DTM10
(i.e., the ArcticCHM) over treeless areas showed no alarming systematic
shift between the two surfaces. We identified the quality of the terrain
model as the main driver of systematic and random errors in ArcticCHM
data.

Topographic complexity was a factor in our study, and our findings
confirm the results by Piermattei et al. (2018) indicating an increase in
uncertainty of HRSI DEMs with terrain slope. In line with these results,
the analysis of the topographic position on the AGB residuals revealed
that the smallest uncertainty was found for areas characterized by a
constant slope (i.e., flat areas or areas on a slope). This study also
showed systematic errors in predictions from the ArcticCHM+S2 model
given aspect; where systematic errors were smallest on southern facing
slopes and largest on northern facing slopes. Such systematic errors may
be explained by the fact that both ArctiCHM and S2 were derived from
optical data and their quality was reduced on north-facing slopes due to
topographic shading.

In this study, we combined ArcticCHM with Sentinel-2 data as a
means to improve a model's fit and predictive accuracy. We adopted
this approach to provide a new understanding of the synergies between
two freely available datasets for the entire boreal zone. The results
highlight the importance of the synergy between 3D and multispectral
information for AGB modelling. This study found that Sentinel-2 data
alone yielded relatively accurate models. For S2 models the model fit
(explained variance=0.47) was of similar magnitude to what was
previously found (explained variance= 0.48) in a sub-area of the cur-
rent study area for growing stock volume by Puliti et al. (2018). Our
results are encouraging for further use of Sentinel-2 for AGB mapping in
boreal forests. A noteworthy finding of this study was the S2 model
explained more variation and had a smaller RMSE than Arctic CHM
variables. A possible explanation may lie in the fact that the ArcticCHM
includes a large HRSI acquisition variability (atmospheric, seasonal and
sun-target-sensor geometry) while the Sentinel-2 mosaic was generated
using images acquired within two summer months and was normalized
for edge effects, thus limiting the variation within the dataset. The
importance of the consistency of the multispectral data had been pre-
viously highlighted by Næsset et al. (2016), who found that single-date
RapidEye data outperformed TanDEM-X data in the estimation of AGB

Fig. 7. Maps of AGB predicted using the three different models using either ArcticCHM, Sentinel-2, or a combination of the two (center coordinates: 60° 58′ N, 11° 27′
E). The first column represents the extent of the selected ArcticCHM tile, while the following two columns represent two details for areas where the ArcticCHM is
either un-reliable (a) or of high quality (b). In (a) an artefact in the form of a north-south oriented striping corresponding to two different acquisitions done either in
the summer (left side of dashed line) or the winter (right side of dashed line). In the last row, the Sentinel-2 mosaic is displayed for areas a and b to highlight the
forested areas. The analysis of the ArcticCHM over treeless areas revealed a higher variability in areas where the DTM10 was not based on ALS data (Fig. 8).

Fig. 8. ArcticCHM values in mountain areas with no tree cover and with varying quality of the DTM depending on ALS coverage.

Fig. 9. Histogram of the ArcticCHM values in treeless areas based on the sample
of points selected over the entire study area. The range in x-axis was reduced to
ArcticCHM values < −20m and>20m for visualization purposes.

Table 3
The median difference between ArcticDEM and DTM10 over
treeless areas (n= 127 079 points) subdivided into areas with
ALS DTM or not.

ALS DTM Median of difference (m)

Yes (42%) 0.1
No (58%) −0.5
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but that this performance declined considerably when using more
heterogeneous data.

The negative effects of a larger acquisition variability resulted in
20% of the field plots where the 90th percentile of the ArcticCHM was
negative. These negative values were mostly found in areas where the
ArcticCHM was of poor quality and did not detect canopy height (see
artefact in Fig. 7a). Given such characteristics, these areas could be
excluded from the ArcticCHM data as considered similar to void areas.
However, in this study we did not discard the NFI plots with negative
ArcticCHM values in order to assess the full ArcticDEM mosaic product.
When using only the ArcticCHM, the presence of the negative heights
resulted in a severe under prediction of AGB (see ArcticCHM predic-
tions within the artefact in Fig. 7a). Interestingly, when combining
ArcticCHM with Sentinel-2, we were able to substantially reduce such
errors (see ArcticCHM+S2 predictions within the artefact in Fig. 7a).
These results demonstrate the utility of augmenting highly variable
ArcticCHM data with a wall-to-wall layer of Sentinel-2 data. Such sy-
nergy allowed the model to predict realistic AGB values even in areas
where ArcticCHM was unreliable (see ArcticCHM+S2 predictions in
Fig. 7b).

Similarly to areas with negative values, data voids (i.e., because of
lack of coverage, snow- or cloud-cover) represent a considerable lim-
itation to the use of ArcticDEM for large-scale mapping purposes. Even
though the extent of the data voids was limited within this study (8.5%
of the forest area), large portions of the hemiboreal are characterized by
voids in the ArcticDEM data (e.g., Siberia). Similarly to areas with
negative values, data voids could be filled by relying on the synergy
with Sentinel-2 data, thus allowing producing an AGB wall-to-wall
product. Future studies should investigate the possibility to use space-
borne multispectral imagery for filling gaps in HRSI stereogrammetric
data in a similar fashion to what has been done in the ArcticCHM+S2
model.

In this study, we utilized the mosaicked version of the ArcticDEM
data which lacks details on HRSI acquisition characteristics (e.g., time
and date) and which limited the possibility to investigate the effect of
seasonal variations in the quality of the ArcticDEM. Further work with
the ArcticDEM should consider the stripped version, which by including
the timestamp can potentially improve the modelling by for example
chronologically matching the NFI data corresponding to each strip, thus
avoiding temporal mismatch issues between field and remotely sensed
data (e.g., due to harvests). Furthermore, the possibility to subset the
data based on solar geometry and seasonal effects enables a sub-setting
of the highest quality DEMs, rather than using mosaicked information
over multiple acquisitions.

In the context of global efforts to measure, report, and verify carbon
stock changes, ArcticDEM represents the most complete and freely
available 3D data covering the hemiboreal zone. However, the un-
certainty of the repeatability in time of programs such as ArcticDEM
limits the possibility to base long-term monitoring programs on HRSI
DEMs. More appropriate use of ArcticDEM data would be to estimate
and map present AGB stock across boreal forest. Such effort would
provide nearly full coverage, consistent and high-resolution predictions
of AGB for forest areas otherwise characterized by sparse, low resolu-
tion, and uncertain information on AGB stocks (Dong et al., 2003;
Boudreau et al., 2008; Thurner et al., 2014). In addition to providing a
better understanding of the current state of AGB stocks in boreal forests
such product could become the benchmark for any future efforts to
monitor AGB changes in boreal forests based on freely available
spaceborne data such as Sentinel-2.

A unique aspect of this study was that a DTM was available for the
entirety of Norway, thus allowing for the production of the ArcticCHM
from the ArcticDEM. At a boreal scale, accurate DTMs are scarce, and
thus alternative methods are needed to obtain canopy heights from
ArcticDEM. One potential source of global DTM is the WorldDEM DTM
(AIRBUS, 2019), a 12m resolution commercial product from TanDEM-
X data. An alternative approach has been proposed by Meddens et al.

(2018), who predicted canopy height using a model combining HRSI
multispectral and ArcticDEM data with a sample of ALS data as re-
ference height. While these represent potential opportunities, both rely
on commercial products that are not readily available to the interna-
tional scientific community. Hence, future research should address the
use of freely available data for mapping AGB across boreal forests. The
merit of this study was to provide first best-case scenario insights (i.e.,
availability of DTM) into the relationships between forest AGB and
ArcticCHM at a nation-wide scale. The results of this study form a
benchmark for future efforts in the use of HRSI stereogrammetric data
for large-scale forest AGB mapping.

5. Conclusion

To the best of our knowledge, this study represents the first attempt
to utilize HRSI DEMs data to model AGB at a national scale. The main
contribution of the study is the application of the large-scale NFI field
dataset and its use to evaluate ArcticDEM, Sentinel-2, and their com-
bination for AGB modeling. Based on the results of this study we con-
clude that 1) AGB can be estimated with similar accuracy when using
ArcticCHM or Sentinel-2 data, 2) considerable synergies can be ex-
pected when combining ArcticCHM with Sentinel-2 data, 3) Both forest-
and terrain-specific characteristics affect the uncertainty of predictions
deriving from ArcticCHM models.
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