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From a theoretical perspective, it is well stated that the farm’s decision on the use of in- 

puts depends on the farmer’s ability to make an efficient decision over time. The existing 

literature in performance analysis of the dairy farms based on static modeling and thus 

ignores the inter-temporal nature of production decisions. This paper aims to construct a 

dynamic stochastic production frontier incorporating the sluggish adjustment of inputs, to 

measure the performance of dairy farms in Norway. The empirical application focused on 

the farm-level analysis of the Norwegian dairy sector for 20 0 0- 2018. The dynamic frontier 

estimated using the system Generalized Method of Moments estimator. The analysis shows 

that the static model in the previous studies underestimates the performance of the dairy 

farms. 
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1. Introduction 

The standard neoclassical frontier function applied in empirical efficiency models entails an assumption that all farms

are fully efficient ( Alem, 2018 ). Following the pioneering contributions by Aigner et al. (1977) and Meeusen and van Den

Broeck (1977) , who independently proposed the stochastic production frontier framework using cross-sectional data, the

literature diverges from the standard neoclassical production function model by including two distinct error components.

These two studies have suggested that given the input, there are two main causes for the deviation of the actual output of

a given farm from the maximum possible or the potential output. One of the deviations (error components) is attributed

to captures random shocks (noise) to a production system that is beyond the control of the producer and can affect the

output, for instance, uncertainty about the weather, disease, and pest infestation. The second deviation is the inefficiency

reflected in the shortfall from the maximal potential output, which is individual specific (farm-effect) interpreted as one-

sided inefficiency (non-negative random variable). Thus, In Stochastic Frontier Analysis (SF) the gap between observed output

and the potential output is explained in terms of both inefficiency and random errors. 

Since the introduction of one-sided inefficiency within the context of SF panel data models, there has been considerable

research to extend and apply the model to generate consistent and unbiased estimates ( Alem, 2018 ). Thus, the SF model can

be categorised in two based on the assumptions used. The first category is assumptions model specification such as on about

the temporal behavior of the inefficiency (e.g. persistent and transit); distribution of the error terms (exponential, normal,

truncated, and gamma distribution); estimation techniques such as Generalized Method of Moments (GMM); Maximum
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likelihood, etc. (see e.g. Greene (2008) , and Kumbhakar et al. (2015) . The second category is assumptions on the behavior of

the input use (static and dynamic). This paper contributes to the literature focusing on the second category. 

There exists a strand of literature focusing on estimating the performance of the farm based on a static framework as-

sumption in which an input is used for the production process, it immediately contributes to production at the maximum

possible level see (e.g. Alem et al., 2019 , Kumbhakar et al., 2014 , Sipiläinen et al., 2013 ). However, once the input is intro-

duced in the production process, it might take some time for adjusting within the system ( Minviel and Sipiläinen, 2018 ).

Thus, comparing the performance of the farm using technical efficiency scores obtained based on the static framework is

likely to produce misleading results. This is mainly because the farm’s decision on the use of inputs depends on the farmer’s

ability to make an efficient decision over time. The dynamic SF framework relaxes the static assumption on the use of inputs.

In the literature, we can find important contributions to dynamic efficiency modeling, and the model advances have taken

place in the framework of the nonparametric approach using data envelopment analysis (DEA). A nonparametric measure of

dynamic efficiency first proposed by Silva and Stefanou (2003 and 2007 ). Silva et al. (2015) employed the adjustment cost

technology to generalize the static conditional input distance function developed by Chambers et al. (1998) to a dynamic

framework. Ahn et al. (20 0 0) examine a potential link between technical innovation and productive efficiency level using a

parametric dynamic approach. Recently, we can find a few important contributions of a dynamic efficiency modeling from

the parametric approach (e.g. Bhattacharyya, 2012 ; Minviel and Sipiläinen, 2018 ; Serra et al., 2011 ). 

The parametric dynamic efficiency measures mainly carried out either in a structural or reduced approach ( Minviel and

Sipiläinen, 2018 ). The structural dynamic model approach is mainly based on two methods i.e. shadow cost method

(see e.g. Rungsuriyawiboon and Hockmann, 2015 ) and distance function method ( Serra et al., 2011 ). A shadow cost

method that relates actual observed costs shadow or behavioral costs obtained from the optimization programs. However,

Serra et al. (2011) argue that the shadow cost approach does not specify the production technology directly. The dynamic

distance function approach developed by Serra et al. (2011) is derived from the duality between input distance functions

and cost functions which provide a complete characterization of production technology. 

The reduced dynamic model approaches mainly the extension of the standard stochastic frontier model through an au-

toregressive process of order for the inefficiency component (see e.g. Minviel and Sipiläinen, 2018 ). That is, the actual pro-

ductive efficiency in any period depends on the actual product in the previous period. The productive efficiency in a given

farm is assumed to be related to sluggish adjustments, high adjustment costs, or uncertainty over future production con-

ditions. Sluggish adjustments and high adjustment costs of inputs not only affect the adoption of technology innovations

but can also affect the whole production process by preventing outputs from reaching the maximum possible output level

( Ahn et al., 20 0 0 ; Bhattacharyya, 2012 ). As such, in this paper, we follow the reduced dynamic model approach that follows

the set up used in Ahn et al. (20 0 0) and Bhattacharyya (2012) . 

The empirical application focused on the farm-level analysis of the Norwegian dairy sector. Performance analysis of

the dairy sector has received much attention in the literature (see e.g. Alem et al., 2019 , Minviel and Sipiläinen, 2018 ,

Sipiläinen et al., 2013 ). This is mainly the sector that is highly regulated and gets support from the government which in-

deed measuring productive efficiency has become a key indicator to control and plan the performance of production units

for both policy-makers and farmers. Dairy farms face a continuous process of technological and environmental changes that

requires them to make managerial decisions in a dynamic context. The farm makes a production plan such that an objective

extending far into the future is optimized. The vast literature on Norwegian farm efficiency measures has largely ignored

this issue. That is, That is, the previous study estimations were based on a static setting technology specification see for

instance Alem et al. (2019) ; Kumbhakar et al. (2008) ; Lien et al., 2018 ; Sipiläinen et al., al.(2013) . 

The paper contributes to the literature in several ways. First, in contrast to Bhattacharyya (2012) , we used the flexible

functional form for the technology estimation and applied for the agricultural sector. Second, we are fortunate to be able to

use a large farm-level panel dataset of Norwegian dairy farms with observations from 20 0 0 to 2018. 

The rest of the article is organized as follows. The main theoretical and econometric models are presented in

Sections 2 and 3 , respectively. Section 4 addresses the application of the empirical model. Section 5 discusses the nature

of Norwegian agriculture followed by a discussion of the data and definitions of variables used in the production function.

Section 7 covers the empirical results and finally, Section 8 presents concluding remarks. 

2. Theoretical model 

Let us consider a general production function for the potential output y ∗
it 

of a farm i that uses a vector of inputs x it at

time t. 

y ∗it = f ( x it ;β) (1) 

Where f ( x it ; β) is the chosen function form (e.g. Cobb–Douglas, Translog); β is the vector of technology parameters to be

estimated; i = 1, …, N denotes the production unit; and t = 1, …, T denotes the time. 

Let y it be the actual output produced by farm i at time t and let θ be the speed of adjustment of outputs. 

y it = θy ∗it (2) 

y ∗ − y it = y ∗ ( 1 − θ ) (3) 
it it 
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If the speed of adjustment is lower than one, then the actual output is will be lower than the potential output. For

the first period of production, the actual output ( y it ) is only θ fraction of the potential output ( y ∗
it 
) , however for the next

production period onwards, not only the θ fraction of the potential output ( y ∗
it 
) , but also θ fraction of the potential output

( y ∗
it 
) for the previous period output is important. Therefore, the dynamic process of output generation can be represented

by: 

y it+1 = θy ∗it + θy ∗it ( 1 − θ ) or y it+1 = θy ∗it + ( 1 − θ ) y it (4)

y it = θy ∗it + ( 1 − θ ) y it−1 (5)

Substituting Eq. (1) to (5) , 

y it = θ f ( x it ;β) + θ ( 1 − θ ) f ( x it−1 ;β) (6)

Eq. (6) demonstrates that the current output depends on the current and past inputs. 

3. Empirical model 

We choose a translog (TL) specification for our empirical analysis because of its flexibility and Eq. (1) specified as a TL

production function in log form as: 

lny 
∗
it = β0 + 

4 ∑ 

j=1 

βj ln x jit + 

1 
2 

4 ∑ 

j=1 

β j j 

(
ln x jit 

)2 + 

4 ∑ 

j=1 

4 ∑ 

l=2 

βjl ln x jit ln x lit + βt D t 

+ 

1 
2 
βtt + 

4 ∑ 

j=1 

β jt ln x jit D t 

(7)

where y ∗
it 

is a vector of potential outputs, x jit is a vector of inputs ( j = 1 , · · · , J ) by farms ( i = 1 , · · · , N ) and time

( t = 1 , · · · , T ) , all Greek letters are parameters to be estimated, and D t is the dummy variable for time to capture the tech-

nological change. 

The dynamic stochastic production frontier that incorporates the sluggish adjustment of inputs and the error terms can

be written as: 

ln y it = ( 1 − θ ) ln y it−1 + θ ( β0 + 

4 ∑ 

j=1 

βj ln x jit + 

1 
2 

4 ∑ 

j=1 

β j j 

(
ln x jit 

)2 

+ 

4 ∑ 

j=1 

4 ∑ 

l=2 

βjl ln x jit ln x lit + βt D t + 

1 
2 
βtt + 

4 ∑ 

j=1 

β jt ln x jit D t )+ 

(8)

The error-terms ɛ it splits into two components, i.e. ε it ≡ v it − u it . The component ( u it ) captures transient (time-varying)

and producer specific inefficiency with u it ∼ N 

+ (μ, σ 2 
u ). v it is the idiosyncratic error term capturing random shocks and

assumed v it is symmetric and to satisfy the classical assumptions i.e., v it iid ∼ N( 0 , σ 2 
v ) . . All Greek letters are parameters to

be estimated. The trend variable, t , is introduced to capture the effect of technological change and starts with t = 1 for 20 0 0

and increases by one annually. 

4. Application 

The dynamic stochastic production frontier model in Eq. (8) includes the dependant variable and one period lagged

dependant variable ( ln y it and ln y it−1 ) which both are the function of the error term ( ɛ it ). The lagged dependent variable is an

endogenous regressor by construction in Eq. (8) . Thus, the conventional fixed effect estimator is biased and inconsistent. To

deal with this problem, the Generalized Method of Moments (GMM) estimator in the spirit of Arellano and Bond (1991) and

Blundell and Bond (1998) are predominantly applied in practice for that consistently estimates Eq. (8) . GMM uses a set

of moment conditions relating to the first differenced regression equation, and another set of moment conditions for the

regression equation in levels (See for example Bhattacharyya, 2012 ). 

Arellano and Bond (1991) argue that additional instruments can be obtained in a dynamic panel data model if one

utilizes the orthogonality conditions that exist between lagged values of ln y it−1 and the disturbances error term ( ɛ it ). Let us

illustrate this with the simple autoregressive model: 

ln y it = αln y it−1 + βj ln x jit + ε it i = 1 , · · · , N and t = 1 , · · · , T (9)

Bludell and Bond (1998) and Bhattacharyya (2012) suggested that the first differences of the two or more-period lagged

dependent variables are valid instruments for the equation in levels, and two or more period lagged dependent variables in

levels are relevant instruments for the equation in first differences. To get a consistent estimate of δ as N → ∞ with T fixed,

we first difference (9) to eliminate the individual effects is 

ln y it − l n y it−1 = α( l n y it−1 − l n y it−2 ) + βj 

(
ln x jit − ln x jit −1 

)
+ ε it − ε it−1 (10)
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and note that ( ε it − ε it−1 ) is MA (1) with a unit root. For t = 3, the first period we observe this relationship, we have 

ln y it−3 − l n y it−2 = α( l n y it−4 − l n y it−3 ) + βj 

(
ln x jit −3 − ln x jit −2 

)
+ ε it−2 − ε it−3 (11) 

In this case, ln y it−1 and ln x jit −2 are a valid instrument, since they are highly correlated with ( l n y it−4 − l n y it−3 ) and

( ln x jit −3 − ln x jit −2 ) respectively, but not correlated with ( ε it−2 − ε it−3 ) as long as the ɛ it are not serially correlated. One

can continue in this fashion, adding an extra valid instrument with each forward period, so that for period T, the set of

valid instruments becomes ( ln y it−1 ,…, ln y it−T , T − 2) and ( ln x jit −1 ,…, ln x jit −T , T − 2). 

We estimate Eq. (8) using a one-step GMM estimator following the above procedure. The Arellano and Bond (1991) test is

applied to the residuals in differences to test for second-order autocorrelation. Moreover, Sargan’s J test is used to determine

the validity of the overidentifying restrictions. 

All variables expressed in Eq. (8) , each variable is divided by its geometric mean which allows for a possibility of the TL

first-order parameters directly interpreted as partial production elasticities at the geometric mean of the data ( Coelli et al.,

2005 ). The trend variable is normalized to be zero in the year 2018. Various specification tests of hypotheses about the pa-

rameters in the frontier and the inefficiency model were performed using the generalized likelihood ratio (LR) test statistic.

Since only the sum of two error terms ( ε it = v it − u it ) can be observed in Eq. (8) , the farm’s technical efficiency index can

be estimated using the conditional mean of the efficiency term, proposed by Battese and Coelli (1988) , i.e. E( exp (−u it ε it ) .
The static model with time-variant technical efficiency as given in Eq. (8) is estimated as a fixed-effects model and accord-

ingly, the technical efficiency is estimated using Battese and Coelli (1988) . For empirical application, we used Norwegian

dairy farm data. 

5. The nature of Norwegian agriculture 

The primary objectives of Norwegian agricultural and food policies, as set out in White Paper no. 11 (2016–2017), are

long-term food security; agricultural production in all parts of the country; creating more added value; and sustainable

production with reduced greenhouse gas emissions. Consumers are to be provided with wholesome, high-quality products

and the production process should be mindful of aspects related to the environment, public health, and animal welfare

( OECD, 2017 ). Due consideration is given to the idea that farmers, as self-employed individuals, should have opportunities

for the same income development as others in society. To achieve these objectives, the government supports the farmers.

As in most developed countries, farming has become highly mechanized and the number of farms has been declining, with

production becoming concentrated on fewer farms. According to a 2017 Statistics Norway report, in 1991, there were 96 0 0 0

farms; this declined to 42 0 0 0 in 2015. Moreover, 2.3% fewer farms were registered in 2016 compared to 2015. The number

of farms growing only crops decreased by 29% during the period 2006–2016. Moreover, the average farm size increased from

14.7 ha in 1999 to 23.9 ha in 2016 ( Statistics Norway, 2017 ). In 1991, the number of dairy cows stood at 342 0 0 0, compared

to 224 0 0 0 in 2015, while the number of dairy farms decreased from 27 625 to 8 860 over the same period. 

Livestock dominates Norwegian agriculture in all regions and about 30% of the farmers in Norway specialize in dairy

farming ( Alem et al., 2019 ). Over the past three decades, various regulatory schemes have been established to align aggre-

gate milk production with domestic demand ( Jervell and Borgen, 20 0 0 ). From 1977 to 1983, dairy farmers who voluntarily

stabilized or reduced their supply of milk relative to a base year obtained a bonus. However, over these years, aggregate

milk supply increased. To avoid the overproduction of milk for the domestic market, the government introduced a two-price

scheme in 1983. The quotas limited the amount of milk farmers could sell at full price. Until 1990, investments for the

development and entry of new generations of farming families entitled some farmers to obtain an additional (free) quota.

Many farmers expanded to beef production (by purchasing calves or suckler cows) to use idle resources (such as land, build-

ings, and labor) that had previously been used for dairy cows. In 1996, the government implemented a system for restricted

redistribution of milk quotas using regionally based, regulated quota sales. Initially, the government managed the quota

transfer; however, from 2002, a portion of the quota could be sold and bought between farmers. Leasing of milk quotas has

been allowed since 2009. There is an upper limit on the milk quota per farm, though this limit has been changed several

times. Norwegian agriculture is so heavily subsidized that, without support, it would not be competitive with imports. There

is a threat that Norway may be obliged by international pressures to cut back on border protection and output-related sub-

sidies. This would force a dramatic and painful shift towards more competitive agriculture. Therefore, there is a case to be

made to urgently take steps to improve the productivity and management of farming. 

6. Data 

The data source is the Norwegian Farm Accountancy Survey collected by the Norwegian Institute of Bioeconomy Research

(NIBIO). It includes farm production and economic data collected annually from about 10 0 0 farms. 1 There is no limit on the

number of years a farm may be included in the survey. However, for various reasons, approximately 10% of the surveyed

farms are replaced per year. 
1 The number of participants varies from year to year. For example, in 1991 data were collected from 1049 farms but in 2013 the number of farms was 

924. 
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Table 1 

Descriptive statistics (mean values per farm) for dairy farms 

(20 0 0–2018). 

Mean Standard deviations 

Output variable 

Total revenue in NOK ∗ 1,567,332 1,021,241 

Input variables 

land in hectare 34.4 20.4 

labor in hours 3534 940 

Materials in NOK 502,254 322,294 

Capital in NOK 484,443 267,996 

Observation 5327 

∗ NOK = Norwegian kroner, 2015 values. 

Fig. 1. The median, first and third quantile values (middle, bottom, and top lines) of outputs and inputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dataset used is an unbalanced panel of 5323 observations on 663 Norwegian dairy farms involved in the production

of dairy output for the year 20 0 0–2018. To ensure that milk output is the main farm output, we select those farms whose

milk sales represent at least 80% of total farm income. The variables selected for this analysis contain one output variable

and four input variables. Output ( y ) includes dairy production, which represents total farm revenue from milk and dairy

products, exclusive of direct government support. The output is valued in Norwegian kroner (NOK) and adjusted to 2015

values using the consumer price index (CPI). The TL production function in the empirical model (8) is specified with the

following four input variables. Farmland ( x 1 ), defined as productive land (both owned and rented) in hectares and labor ( x 2 ),

measured as the total labor hours used on the farm, including hired labor, owners’ labor, and family labor. Materials ( x 3 ),

including fertilizers, feed, oil and fuel products, electricity, expenses for crop and animal protection, construction materials

and other costs; and fixed cost ( x 4 ), including fixed cost items plus maintenance costs on-farm capital tied up in machinery,

buildings, and livestock. All costs are measured in NOK adjusted to 2015 values. Maintenance and costs associated with the

hiring of machines are registered annually. 

To accommodate panel features with farm information over several years in the estimation, only those farms for which

at least three years of data were available were included in the analysis. A summary of the output and input variables is

shown in Table 1 . Fig. 1 shows the input and output for the year 20 0 0–2018. All inputs, investment, and outputs increase

for the study period. 
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Table 2 

Estimated parameters for the dynamic model and its Static counterpart. 

Dynamic model Static model 

Estimated value Robust Std. error Estimated value Robust Std. error 

Elasticities 

y t-1 (lagged output) 0.488 ∗∗∗ 0.011 

x 1 (Land) 0.140 ∗∗∗ 0.009 0.256 ∗∗∗ 0.009 

x 1 (Labour) 0.034 ∗∗∗ 0.008 0.056 ∗∗∗ 0.008 

x 3 (Materials) 0.233 ∗∗∗ 0.006 0.420 ∗∗∗ 0.007 

x 4 (capital) 0.105 ∗∗∗ 0.006 0.268 ∗∗∗ 0.007 

t (Time-trend) 0.013 ∗∗∗ 0.001 0.034 ∗∗∗ 0.000 

AR (1) −2.849 ∗∗∗

AR (2) 0.244 

Sargan test 22.730 

Nr. of instruments 20 

Technical efficiency 0.970 0.022 0.919 0.073 

Number observation 5327 5327 

∗ p < 0.10, ∗∗ p < 0.05, and ∗∗∗ p < 0.01 . 
∗The second-order parameters in the TL are dropped, to save space, but is available from the authors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Results and discussion 

7.1. Model specification tests 

Parameter estimates for the dynamic model are reported in Table 2 . As a baseline for comparisons, Table 2 also reports

parameter estimates for the static counterpart of the dynamic model. The dynamic model differs from the static one mainly

in the fact that it accounts for lagged decisions and that it does include lagged dependant variable and estimated using

GMM. 

Various specification tests were conducted to obtain the best model and functional form for the data under analysis. 2 

First, we tested the null hypothesis that there are no technical efficiency effects in the models for the five regions and the

pooled data. The null hypothesis was rejected. That test confirmed that technical inefficiency constitutes the largest share of

total error variance. Second, LR tests for all SF models for each region and the pooled data revealed that a simplification of

the translog (TL) to Cobb-Douglas functional form was rejected. Thus, the TL functional form was retained. 

The AR (2) test statistic ( p -value = 0.81), as reported in column (1) of Table 2 corresponds to the test of the null hy-

pothesis that the residuals in the first-differenced regression exhibit no second-order serial correlation. Following the test

procedure proposed by Arellano and Bond (1991) , a negative first-order serial correlation in the equation in first differences

is expected and the AR (1) test statistic supports that. Thus, the random shocks to the sectors are not serially correlated

and the estimation results are consistent. The Sargan (1958) and Hansen (1982) J-statistic which is used to determine the

validity of the overidentifying restrictions and statistic for testing exogeneity of the instrumental variables, as reported in

column (1) of Table 2 , supports the validity of the instruments ( p -value = 0.302). The GMM system estimation uses inter-

nal instruments for estimation, and thus, there can be several valid instrumental variables. Thus, the set of instrumental

variables for which the Sargan test of exogeneity was the most powerful. 

7.2. Elasticities 

Table 2 shows the parameters of dynamic and static model estimates. Both models exhibited positive and highly sig-

nificant first-order parameters, fulfilling the monotonicity condition for a well-behaved production function. The estimated 

elasticity of dairy output to land input ( x 1 ) is significant with values of 0.140 and 0.256 for dynamic and static models,

respectively. If the land input increase by 1% in the dynamic model, the dairy output will increase by an estimated 0.14%,

ceteris paribus. The estimated elasticities of dairy output to labor input ( x 2 ) were 0.034 and 0.056 for dynamic and static

models, respectively. The estimated elasticities of dairy output to material input ( x 3 ) were 0.233 and 0.420 for dynamic and

static models, respectively. The coefficients of the materials ( x 3 ) are the largest among other partial production elasticities

statistically significant ( p < 0.001) in both models. These results imply that the percentage change in materials has a larger

influence on dairy production compared to other farm inputs. The static model result is consistent with results in the liter-

ature, for instance, Alem et al. (2019) . The partial elasticity of capital cost ( x 4 ) was positive and statically significant a value

of 0.105 and 0.268 for dynamic and static models, respectively. 

The result in Table 2 also shows that the one period lagged output has a significant positive effect on the current output,

where output is measured in logarithm. Using the estimated value of ( 1 − θ ) = 0.488, the actual change in the output

of a sector in any period is 52% of the change in output that is needed to catch up with the potential output in that
2 Tests are not reported here due to space but are available upon request from the principal author. 
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Table 3 

Distribution of technical efficiency scores. 

Percentile Dynamic model Static model Difference 

1% 0.901 0.647 0.254 

5% 0.947 0.764 0.183 

10% 0.958 0.818 0.140 

25% 0.968 0.895 0.073 

Mean 0.970 0.919 0.051 

75% 0.978 0.968 0.010 

90% 0.981 0.978 0.003 

95% 0.983 0.982 0.001 

99% 0.997 0.990 0.007 

Std.devation 0.017 0.073 

Observations 5327 5327 

Welch test comparing mean TE 49.85 ∗∗∗

Fig. 2. Yearly average technical efficiencies for dynamic and static models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

period. Further, an estimate of ( 1 − θ ) is statistically significant at the 1% level indicating that the speed of adjustment

is significantly different from unity. Assuming similar speeds of adjustment for inputs across sectors, this result supports

the partial adjustment scheme for output and suggests that the static model is a misspecified one for this sample. The

coefficients for the time trend (0.013) implies that the productivity of dairy farms resource use increased on average by 1.3%

over the period 20 0 0 −2018. 

7.3. Technical efficiency 

The estimated technical efficiency (TE) scores are reported in Table 3 . The average TE score of 0.97 while the static one is

0.92. The Welch test, reported in Table 3 , indicates the dynamic and the static efficiency scores are significantly different. As

the dynamic efficiency scores are higher, this suggests that, in our sample, the static model underestimate the performance

of the dairy farms. Considering the dynamic TE score which implies that these dairy farms producing only 97% of the

maximum possible (frontier) output, given the input used. That is an average dairy farm can increase its output by around 3

if it becomes technically efficient. In the static case, the estimated scores suggest that farmers could improve their technical

efficiency level by 8 percent on average without increasing their input use. Table 3 also shows the distribution of the farms

in the sample according to their technical efficiency. Thus, for instance, 1% of the farms are only 90% and 0.65% technical

efficient for dynamic and static models respectively. While 10% of the sample farms are 95% and 0.82% technical efficient. 

Fig. 2 shows that the yearly average of TE scores in which the dynamic model scores are higher than those from the static

model. A similar result also reported in Similar results have been reported for instance see Minviel and Sipiläinen (2018) . 

The TE score for Norwegian regions and farm size reported in Tables 4 and 5 , respectively. The results show that there is

no significant difference in regions and farm sizes for the two different models. A similar result reported Alem et al. (2019)
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Table 4 

Technical efficiency scores by region. 

Regions Dynamic model Static model Number of Observations 

Eastern Norway Lowlands 0.968 0.928 442 

(0.019) (0.058) 

Eastern Norway other parts 0.971 0.913 865 

(0.015) (0.070) 

Agder and Rogaland -Jæren 0.974 0.951 304 

(0.001) (0.054) 

Agder and Rogaland -other parts 0.967 0.888 539 

(0.021) (0.096) 

Western Norway 0.971 0.913 1132 

(0.018) (0.082) 

Trøndeland -Lowlands 0.973 0.937 388 

(0.013) (0.051) 

Trøndeland -other parts 0.972 0.928 676 

(0.016) (0.058) 

Northern Norway 0.969 0.920 981 

(0.017) (0.071) 

All regions 0.970 0.919 5327 

(0.017) (0.073) 

Standard errors in parentheses. 

Table 5 

Technical efficiency scores by Farm size. 

Regions Dynamic model Static model Number of Observations 

< 10 hectar of land 0.964 0.786 125 

(0.024) (0.113) 

10- 20 hectar of land 0.971 0.900 1091 

(0.019) (0.080) 

20- 30 hectar of land 0.972 0.921 1514 

(0.012) (0.062) 

30- 50 hectar of land 0.970 0.928 1725 

(0.015) (0.062) 

> 50 hectar of land 0.968 0.941 872 

(0.023) (0.071) 

All farm size 0.970 0.919 5337 

(0.017) (0.073) 

Standard errors in parentheses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. Conclusion 

The existing literature in performance analysis based on static modeling and thus ignores the inter-temporal nature of

production decisions. This study departs from static modeling by developing a dynamic stochastic framework to investigate

the performance of farms focusing on Norwegian dairy farms. This formwork allows accounting for the dynamic nature of

the environment in which dairy farms operate. The empirical application focused on the farm-level analysis of the Norwe-

gian dairy sector using panel data for the year 20 0 0–2018. The result shows that the dynamic production model provides a

more realistic approach to measure the performance of the Norwegian dairy farm, where sluggish adjustment of inputs is

a very credible phenomenon. The average technical efficiency score of 0.97 for the dynamic model while the static one is

0.92. The Welch test, reported in Table 3 , indicates the dynamic and the static efficiency scores are significantly different. As

the dynamic efficiency scores are higher, this suggests that, in our sample, the static model underestimate the performance

of the dairy farms. Considering the dynamic TE score which implies that these dairy farms producing only 97% of the max-

imum possible (frontier) output, given the input used. That is an average dairy farm can increase its output by around 3 if

it becomes technically efficient. In the static case, the estimated scores suggest that farmers could improve their technical

efficiency level by 8 percent on average without increasing their input use 

Supplementary materials 

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.rie.2020.07.006 . 
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