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Although artificial-selection experiments seem well suited to testing our ability to predict evolution, the correspondence between

predicted and observed responses is often ambiguous due to the lack of uncertainty estimates. We present equations for assessing

prediction error in direct and indirect responses to selection that integrate uncertainty in genetic parameters used for prediction

and sampling effects during selection. Using these, we analyzed a selection experiment on floral traits replicated in two taxa of

the Dalechampia scandens (Euphorbiaceae) species complex for which G-matrices were obtained from a diallel breeding design.

After four episodes of bidirectional selection, direct and indirect responses remainedwithinwide prediction intervals, but appeared

different from the predictions. Combined analyses with structural-equation models confirmed that responses were asymmetrical

and lower than predicted in both species. We show that genetic drift is likely to be a dominant source of uncertainty in typically-

dimensioned selection experiments in plants and a major obstacle to predicting short-term evolutionary trajectories.

KEY WORDS: breeder’s equation, evolvability, G-matrix, indirect selection, Lande equation, correlated traits, artificial selection,

Dalechampia.

At the core of evolutionary quantitative genetics sits the Lande

equation, which predicts the mean evolutionary response of a

set of characters as the product between the selection gradi-

ent and the additive genetic variance matrix, G (Lande 1979;

Lande and Arnold 1983). Many studies have confirmed that the

geometry of G influences the response to selection (e.g. Hine

et al. 2014), and patterns of population and species divergence

in multivariate character space are often congruent with direc-

tions of high evolvability in G (e.g., Schluter 1996; Hansen

and Houle 2008; Bolstad et al. 2014; Houle et al. 2017; Mc-

Glothlin et al. 2018; Hansen and Pélabon 2021). The realiza-

tion that evolutionary changes are important at ecological time

scales (Kopp and Matuszewski 2014; Reznick et al. 2019) and

the subsequent development of the eco-evolutionary dynamics

(Hendry 2017) underscore the relevance of quantitative genet-

ics theory to microevolution beyond animal and plant breed-

ing. The utility of quantitative genetics to ecology and manage-

ment rests on its ability to predict short-term evolution, however,

and both empirical and theoretical studies have cast doubt on

whether sufficient accuracy can be expected to allow meaningful
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forecasting in specific cases (e.g., Hansen et al. 2019; Shaw 2019;

and see Hendry 2017, chapter 3 for a review of the performance

of the Lande equation in predicting short-term evolution in natu-

ral populations).

The breeder’s equation also has somewhat mixed perfor-

mance in predicting the outcome of univariate selection experi-

ments in the lab (Sheridan 1988; Eisen 2005; Walsh and Lynch

2018, chapter 18), and its success in predicting correlated re-

sponses in traits under indirect selection is generally considered

to be poor (e.g., Bohren et al. 1966; Rutledge et al. 1973; Palmer

and Dingle 1986; Gromko et al. 1991, 1995; Cortese et al. 2002;

Roff 2007). This is a serious concern, because indirect selection

may well be the major component of selection on most traits in

natural populations. The main advance brought by the G-matrix

was the ability to predict correlated responses, and if this cannot

be done reliably, then inferences about genetic constraint based

on G must be poor.

Most assessments of evolutionary predictions have been

qualitative, however, and when prediction uncertainties are pre-

sented, they are usually given as estimation errors in realized

heritabilities based on very simple models of the underlying ge-

netic architecture, and further reduced to statements about “sig-

nificant” difference between predictions and observations (e.g.,

Hill and Caballero 1992; Walsh and Lynch 2018, chap. 18). For

correlated responses, uncertainties have almost never been pre-

sented, and claims of poor prediction of correlated responses are

based largely on qualitative assessments (e.g., Roff 2007).

There are three main sources of error in predicting evolu-

tionary responses: (i) errors due to discrepancies between the

model used for prediction and the actual evolutionary process;

(ii) errors made in estimating the parameters in the chosen pre-

diction model, and (iii) errors due to inherent stochasticity in the

response.

Deterministic discrepancies from simple predictive models

such as the Lande or breeder’s equation are unlikely to be sub-

stantial in the first few generations, but as selection extends over

more generations, the response may deviate due to a number of

issues related to details of genetic architecture, inbreeding and

counteracting natural selection (Le Rouzic et al. 2011). In princi-

ple, more detailed models can be fitted to evolutionary time series

to estimate parameters describing such effects (e.g., Le Rouzic

et al. 2010, 2011; Walsh and Lynch 2018, chapter 19), but this

has rarely been done.

Various methods have been suggested to assess the effects of

sampling error in quantitative genetic parameters on prediction

variance (Tai 1979; Knapp et al. 1989; McCulloch et al. 1996;

Conner et al. 2011). Stinchcombe et al. (2014) used a Bayesian

approach and combined the Price equation with the Lande equa-

tion to estimate uncertainties of the predicted response to a sin-

gle generation of selection from the posterior distribution of

the G-matrix and the selection gradients (see also Careau et al.

2015).

As for the last source of error, few studies have assessed

the effects of genetic drift on the prediction uncertainty. Build-

ing on Prout (1962) and Hill (1971), Hill (1974) provided an

estimate for the drift variance of selection lines, and Sorenson

and Kennedy (1983,1984) showed how pedigree information an-

alyzed with mixed-effect models could be used to incorporate

these effects into the estimation of realized genetic parameters

(see also Walsh and Lynch 2018, chapter 19). Combined with a

Bayesian approach, this method has been used to estimate genetic

parameters when the pedigree is known, but to our knowledge, it

has not yet been implemented to estimate prediction intervals of

selection responses.

In this paper, we report the results of a selection experiment

on floral traits replicated in two taxa of the Dalechampia scan-

dens (Euphorbiaceae) species complex and use these to illustrate

some difficulties in predicting multivariate selection responses

from estimated G-matrices. We present a simple pedigree-free

equation to calculate the expected variance in the discrepancy be-

tween predicted and observed responses under truncation selec-

tion that incorporates both stochasticity in the observed response

and uncertainty in the predicted response. With this, we assess

the relative importance of the different sources of error in short-

term selection experiments. To assess the discrepancy between

the evolutionary model chosen to make the predictions (i.e. the

Lande equation) and the evolutionary process that produced the

selection responses, we further analyze the temporal dynamics of

responses with structural-equation models that assume different

genetic architectures. Finally, by reviewing parameter uncertain-

ties in breeding experiments and the design of artificial-selection

studies, we show that the large prediction uncertainties found in

our experiment are not unusual for artificial-selection studies on

plants.

Theory: Prediction Error in Artificial
Selection
Consider a focal trait, z, which can be under direct selection with

selection gradient βz, or under indirect selection due to its corre-

lation with another trait, y, under selection with gradient βy. The

Lande equation (Lande 1979; Lande and Arnold 1983) predicts

the mean of the focal trait, z, in generation t as

μt = μt−1 + VAβz + Gzyβy, (1)

where VA is the additive genetic variance in z, Gzy is the addi-

tive genetic covariance between z and y. Motivated by our selec-

tion experiment with Dalechampia, we focus on the situation in

which only one of the two traits is under selection, but we give the
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key equations with selection on both traits to allow general appli-

cation. We assume that the G-matrix and the selection gradient

stay constant and hence do not include time notation on these.

Equation 1 gives the partial change in the mean additive genetic

value due to selection. In absence of other effects on mean pheno-

type (e.g., biased transmission, migration from genetically differ-

entiated populations, non-random mating, or non-additive gene

action), this change in mean genetic value will be the expected

change in mean phenotype, around which the realized mean will

be distributed due to sampling effects. Additionally, uncertainties

in the estimation of genetic and selection parameters may lead

to errors in the prediction that need to be considered. To com-

bine these uncertainties, we derive the variance of the deviation

between the predicted, μ, and observed, z̄, trait means at a given

generation as:

Var[z̄ − μ] = Var[z̄] + Var[μ], (2)

which assumes that the statistical error in the prediction is inde-

pendent from stochasticity due to sampling in the observed re-

sponse. If the selection gradient is known without error and the

G-matrix stays constant throughout the experiment, the variance

in the prediction after t generations is:

Var [μt ] = (
Var [VA] β2

z + Var
[
Gzy

]
β2

y + 2Cov
[
VA, Gzy

]
βzβy

)
t2, (3)

where Var[VA], Var[Gzy], and Cov[VA, Gzy] are the sampling vari-

ances and covariance in the estimates of genetic parameters. With

selection on one trait only, this expression reduces to Var[μt ] =
Var[VA]β2

z t2 for the direct response and Var[μt ] = Var[Gzy]β2
y t2

for the correlated response. If all potential parents are phenotyped

and their fitness known, as in our study, uncertainty in the selec-

tion gradient is small and limited to the measurement error of the

phenotype. Known changes in the selection gradient from gen-

eration to generation can be accommodated by replacing the ex-

pressions β 2t2 with (
t∑

i=1
β(t ))2.

The variance in the observed selection response due to sam-

pling is more complex. First, note that there are two distinct sam-

pling effects on the mean of a quantitative trait. The first is the

sampling of alleles we call genetic drift, and the second is the

“sampling” of environmental effects to form the phenotypes in

the new generation. We model the latter as the sampling variance

of a mean from a normal distribution, which is Ve/N, where Ve

is the environmental variance, and N is the population size (i.e.,

number of offspring). In contrast to genetic drift, this component

does not accumulate over time.

In appendix 1, we derive the following equation for the vari-

ance in the per generation changes of an additive trait due to ge-

netic drift under truncation selection in which exactly Np parents

Figure 1. Genetic drift under truncation selection: The solid line

gives the sampling variance in mean breeding value plotted

against heritability of the trait under selection based on equation 4

in the main text with approximation for variance of genotypic fit-

ness as given in Appendix 2. The upper dashed line gives the sam-

pling variance under random sampling (VA(1/NP − 1/2N)), and the

lower dashed line gives the sampling variance under deterministic

sampling (VA/2N). The plot is based on a population size of N = 64

and a number of selected parents of Np = 16, as in our experiment.

The additive variance is set to VA = 1 for illustration.

are picked from a population of N individuals to make exactly

2N/Np offspring each:

Var [�z̄] ≈ VA

(
1

NP
− 1 + 3F

2N (1 + F )
− Var [w]

N

)
, (4)

where F is the average inbreeding coefficient of the population,

and Var[w] is the variance in relative fitness among the genotypes

in the population. The derivation assumes two alleles per locus

and infinitesimal effects so that changes in allele frequency due

to selection can be ignored. Linkage disequilibrium, dominance,

and epistasis are also ignored.

Two special cases can help illustrate this equation. First, if

there is no selection and parents are picked at random, then the

variance in relative fitness is zero, and if also F = 0 then

Var [�z̄] ≈ VA

(
1

NP
− 1

2N

)
, (5)

which can be used to estimate the effect of genetic drift in control

lines. Because the variance in relative genotypic fitness is small

for low heritabilities, this equation will also be a good approx-

imation under selection if the heritability of the selected trait is

less than about 30% (Fig. 1). Note also that assuming N = ∞
yields the standard equation for the drift variance (Lande 1976):

Var[�z̄] = VA/Np. Second, if there is truncation selection and

the heritability in the population is unity, so that the genotypic

value equals the phenotypic value, then the variance in relative
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Figure 2. The Dalechampia blossom and the traits analyzed in this study. Gland area (GA) is the product of the average of the left and

right gland height (GHl and GHr) and the total gland width (GW), and upper bract area (UBA) is the product of the upper bract width

(UBW) and length (UBL) (Drawing by M. Carlson, Photo by E. Albertsen).

fitness of genotypes is Var[w] = (N - Np)/Np, and if F = 0,

equation 4 reduces to

Var [�z̄] ≈ VA

2N
. (6)

In this case, the sampling of parental genotypes is deterministic,

and the only stochasticity comes from sampling alleles from par-

ents during mating. If the heritability is not unity, then a given

genotype may or may not be picked as a parent in different re-

alizations due to its random environmental effect, and this will

reduce the variance in relative fitness. Hence, the sampling vari-

ance of the mean will be bounded between equations 5 and 6

and move from equation 5 towards equation 6 as heritability of

the selected trait increases (Fig. 1). In Appendix 2, we outline

an approximation to the variance in relative genotypic fitness as

a function of the heritability of the trait under selection that we

used to make prediction intervals.

To summarize, the expected variance of the prediction error

after t generations is

Var [z̄t − μt ] = Var
[
Gzy
]
β2

yt2

+ VA

(
1

NP
− 1 + 3F

2N (1 + F )
− Var [w]

N

)
t + Ve

N
, (7)

where Gzy is the additive covariance between the focal trait, z,

and the trait under selection, y (which could be the focal trait

itself). The variance in fitness is a function of the heritability of

the trait under selection, which is not necessarily the focal trait.

This prediction ignores the effects of selection and genetic drift

on the G-matrix, which is assumed to stay constant throughout

the experiment. Ideally, drift variance in the G-matrix should be

added to the variance in the first term. The prediction also ignores

the effects of sampling on the realized selection gradient, which

will vary stochastically in a finite population, but this effect is not

an error in the prediction from an observed selection gradient.

Materials and Methods
STUDY SPECIES AND TRAIT MEASUREMENTS

Dalechampia scandens (Euphorbiaceae) is a perennial Neotrop-

ical vine with flowers arranged in pseudanthial inflorescences

(blossoms), each consisting of a male subinflorescence of 10

staminate flowers and a female subinflorescence of three pistil-

late flowers (Fig. 2). The male subinflorescence also contains a

gland producing a triterpenoid resin as reward for pollinating bees

that use resin in nest construction (Armbruster 1984, 1985, 1986,

1988, 1993), and the amount of resin offered to the pollinator de-

pends on the gland size (Armbruster 1984; Pélabon et al. 2012).

In interpopulation and interspecies comparisons, blossoms with

larger resin glands tend to attract larger pollinators (Armbruster

1985, 1988). The blossom is subtended by two large involucral

bracts, which are white or light green in the study species. Pheno-

typic selection studies on several Dalechampia species and pop-

ulations have shown that pollinators choose blossoms based ei-

ther on the size of the involucral bracts (the signal), or on the

size of the gland (the reward), thus causing selection on these

traits (Armbruster et al. 2005; Bolstad et al. 2010; Pérez-Barrales

et al. 2013; Albertsen et al. 2021). Additionally, the Dalechampia

blossom is an integrated structure in which involucral-bract size

is phenotypically and genetically correlated with resin-gland size

(Armbruster 1991; Hansen et al. 2003b; Armbruster et al. 2004;

Pélabon et al. 2012). In this study, we performed artificial selec-

tion on the size of the resin-producing gland and recorded the
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direct response in gland size and the correlated response in bract

size.

Gland size was measured as the area of the resin-secreting

surface (Gland Area, GA), and bract size was measured as the

area of the upper bract (Upper Bract Area: UBA, see Fig. 2 for

measurements details). Blossoms go through a series of ontoge-

netic stages during which they increase in size (Armbruster 1991;

Opedal et al. 2016b). To reduce ontogenetic variation in size, we

measured the blossoms on the first day of the bisexual phase, that

is, when the first one-to-three male flowers were open. Measure-

ments of the blossoms in the two diallels, the starting generation

(F0) and the first three episodes of selection were performed by

one observer (CP) using 5× stereo magnifying lenses (Optivisor)

and digital calipers with 0.01 mm precision. Measurements of the

last generation were done by one observer (EA) using the same

measuring devices. There was no evidence of systematic differ-

ence between observers in measurements on a common subset

of blossoms, and because all selected lines were measured by a

single observer at each generation, we do not expect the different

observers to have affected the outcome of the study. During the

diallels and the artificial-selection experiment, plants were placed

randomly on four tables in a single room in the greenhouse of the

Department of Biology, NTNU (Trondheim, Norway) and moved

regularly during the measurement period to reduce positional ef-

fects.

Interpopulation crosses (Pélabon et al. 2004a, 2005) and

molecular studies (Falahati-Anbaran et al. 2013, 2017) have

shown that D. scandens is a complex of two or more distinct, yet

undescribed species. In this study, diallels and artificial-selection

experiments were performed on two populations from distinct

species. Individuals from the first species are descended from

seeds collected near Tulum, Mexico (20°13’ N; 87°26’ W), and

individuals from the second species are descended from seeds

collected near Tovar, Venezuela (8°21’ N; 71°46’ W).

DIALLEL EXPERIMENT

We estimated the G-matrix for several blossom traits in the two

species with two diallels completed in 1999 to 2000 and in 2005

to 2006 for Tulum and Tovar, respectively. Methods and results

of these diallels are presented in Bolstad et al. (2014). Briefly,

seeds collected from different blossoms in the field were sown

in the greenhouse and, upon maturity, plants were crossed in a

partial diallel design with twelve and nine 5 × 5 blocks for Tu-

lum and Tovar, respectively. Self and reciprocal crosses were in-

cluded. Two seeds per cross were sown to produce the offspring

generation (Tulum: n = 523 individuals; Tovar: n = 419 individ-

uals) and two blossoms per individual were measured.

SELECTION EXPERIMENT

We conducted four episodes of selection on each species. Due to

space limitation in the greenhouse, we alternated by generation

the species being grown and measured, but the up- and down-

selected lines as well as the control line from a given species were

always grown simultaneously in the same room in the greenhouse

with plants from the different lines placed randomly on the tables.

To form the starting populations (F0), we performed a stratified

sampling of 100 individuals among the diallel blocks and families

to have populations as similar as possible to the ones from which

G-matrices were estimated. We did not include the diagonal of

the diallel (i.e., selfed offspring) in this sampling. For Tovar, we

sampled plants directly from the diallel experiment. For Tulum,

whose diallel was completed first, all plants were selfed at the end

of the diallel experiment and preserved as seeds until the start

of the selection experiment. We sampled among these seeds to

form the F0 in Tulum, grew them, and measured their blossoms

at maturation. Hence, the first episode of selection on the Tulum

species was performed on selfed individuals.

This episode of selfing in the Tulum line may affect the re-

sponse to selection by altering the trait mean due to dominance

and by inflating additive variance by a factor of 1.5 for the first

generation of selection (i.e., by 1+F, where F is the inbreeding

coefficient, Lynch and Walsh 1998; Shaw et al. 1998). We thus

multiplied G by 1.5 in our prediction for the first episode of se-

lection in Tulum. We did not correct for dominance effects on the

mean, however, because previous experiments with this species

have shown little evidence of either dominance variance (Hansen

et al. 2003a) or inbreeding effects (Pélabon et al. 2004b; Opedal

et al. 2015).

We performed direct selection to increase or decrease the

area of the resin-producing gland. We started the experiment by

measuring gland and bract area on four blossoms per individual

in the 100 individuals forming the F0 and chose the 16 individ-

uals with the smallest or largest mean gland area to produce the

first generation of the down- and up-selected lines, respectively.

Within each line, 64 new families were produced by pollinating

each of the 16 individuals with pollen from four other individuals

among the 16 selected. Each individual thus contributed equally

to the next generation, four times as sire and four times as dam.

Reciprocal crosses were avoided so that none of the 64 families

shared more than one parent. Details of the crossing method and

seed collection are presented in Pélabon et al. (2015). We kept

track of the pedigree and never crossed individuals with a coeffi-

cient of relatedness higher than 0.10 to reduce inbreeding.

We sowed two or three seeds from each of the 64 families

and kept one individual per family to form the F1 generation.

We then measured three blossoms per individual and selected the

16 (25%) most extreme individuals to produce the next gener-

ation. Selection gradients were calculated at each generation as

the selection differential (mean of the selected individuals mi-

nus the mean of the population before selection) divided by the

phenotypic variance of the line in that generation. From the F1
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generation and onwards, we maintained a population size of 64

individuals, and selected 16 of them. In practice, we kept the 20

most extreme individuals at each generation to replace individu-

als with poor blossom production to assure a total of 16 repro-

ducing individuals. The number of individuals measured in each

selected line at each generation varied slightly due to occasional

failures to flower (Supporting Information S1 and S2).

For each species, we generated a control line from random

crosses among individuals of the F0 to assess phenotypic changes

due to uncontrolled variation in the greenhouse environment.

At each generation, several individuals from these control lines

were grown simultaneously with the selected lines and randomly

crossed while avoiding selfing to provide seeds for the next gen-

eration. For logistical reasons, the size of these control lines var-

ied each generation (Appendix S1 and S2) and we were unable to

measure them at the third generation (F3).

The phenotypic values observed in the last generation (F4)

were unusual, particularly for bract size in the Tulum population

(Appendix S3). This was most likely due to unusual conditions

in the greenhouse. We thus regrew the last generation from seeds

from the same crosses and measured it anew for both species.

This second set of measurements provided qualitatively similar

results as the first set regarding the differences between the up-

and down-selected lines, but the phenotypic values were closer to

the expected ones (see results). Therefore, we used this second

set of measurements for the last generation in the analyses that

follow.

STATISTICAL ANALYSES

Genetic parameters from the diallel experiment
The analyses of the two diallels are presented in Bolstad et al.

(2014). For each species, we estimated the additive genetic vari-

ances and covariance for gland area and bract area together

with their credible intervals. Using the R package MCMCglmm

(Hadfield 2010) we fitted the following model:

zijk = μi + aij + bij + dik + sijk + qijk,

where z is the trait value, μ the trait mean, a the breeding value,

b the non-genetic plant effect, d, is the measurement date, s the

number of male flowers open when the blossom was measured

(1, 2, or 3), and q the within-plant residual effect. The subscripts

i, j and k represent the trait, plant, and blossom, respectively. We

accounted for temporal variation in the greenhouse environment

by including measurement date d as a random factor. The ran-

dom effects are assumed to be distributed as a∼N(0, G ⊗ A),

b∼N(0, B ⊗ I), d∼N(0, F ⊗ I), and q∼N(0, E ⊗ I), where

A is the relatedness matrix, I is the identity matrix and ⊗ is

the Kronecker product. The model estimates the additive genetic

variance matrix G, the among-plant environmental variance ma-

trix B, the among-date variance matrix F, and the residual vari-

ance matrix E. The elements of the relatedness matrix are twice

the coancestry coefficients of the corresponding relatives. The

relevant coancestry coefficients are 1/2 for selfed full sibs, 1/4

for full sibs, and 1/8 for half-sibs. As priors for the Bayesian

mixed models (MCMCglmm), we used zero-mean normal dis-

tributions with very large variances (108) for the fixed effects,

half-Cauchy distributions with scale parameter 20 for the vari-

ance components, and inverse-Wishart distributions for the resid-

ual variance matrices. These models ran for 1,100,000 iterations,

with a burn-in phase of 100,000, and a thinning interval of 1000.

Data were natural-log-transformed before analyses, so that evo-

lutionary changes in the two traits could be interpreted as propor-

tional changes and genetic variances as mean-scaled evolvabili-

ties in the sense of Hansen et al. (2003a, 2011).

While the relatedness matrix accounts for known relatedness

generated by the crosses in the diallel, it assumes that seeds col-

lected in the wild are not inbred. This is problematic because

D. scandens is self-compatible and can readily produce seeds by

autogamy in absence of pollinators (Opedal et al. 2015, 2016a).

Crosses among plants in the diallel experiment will remove this

source of inbreeding, but within-plant crosses (diagonal of the

diallel) may produce individuals with coefficients of coancestry

larger than 0.5 and may upwardly bias the estimation of G. In

absence of information about the level of inbreeding in each pop-

ulation, it is difficult to compute the element of the relatedness

matrix. We therefore assessed the effect of parental inbreeding

by analyzing the data from the two diallels with and without the

selfed crosses. Except for a 40% reduction in the genetic vari-

ance of gland area in the Tulum population, the effects of remov-

ing selfed offspring were minor (Table S4 and Fig. S5). Because

parental inbreeding would predict a proportional decrease of all

elements in G, and because there was no effect in the Tovar pop-

ulation, which was a priori more likely to be inbred in view of its

small herkogamy (Opedal et al. 2015, 2016a), it is unlikely that

the observed differences are generated by inbreeding. We there-

fore used G estimated from the whole data set to calculate the

predicted responses to selection and their intervals.

Comparing observed and predicted response to
selection
We compared the observed responses to selection with the predic-

tions from the multivariate Lande equation (Eq. 1) with genetic

variances and covariances estimated from the two diallels. We

constructed 95% prediction intervals from the variance in equa-

tion 7 by assuming that z̄t − μt is normally distributed with mean

zero. This is an approximation because the estimation errors of

the elements in G are not normally distributed. We assumed no

inbreeding (i.e., F = 0) in Tovar, and in Tulum, we multiplied

G by 1.5 in the F0 to account for the episode of selfing between
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the estimation of G and the start of the selection. Because crosses

among selected parents avoided crosses among relatives, we fur-

ther assumed no inbreeding from the F1 and onward.

To control for variation in the greenhouse environment

across generations, we centered the response to selection on the

mean of the up- and down-selected lines or we corrected the re-

sponses for changes in the control line. In the former case, the re-

sponses of the up- and down-selected lines are forced to be sym-

metrical. This approach also assumes that environmental effects

are identical in the up- and down-selected lines. Correcting for

changes in the control line avoids these assumptions but yields

less precise predictions due to the estimation error in the control

mean.

Analyzing the temporal dynamics of the responses to
selection
In a second set of analyses, we used the R package SRA (Se-

lection Response Analysis; Le Rouzic et al. 2011) to estimate

the realized genetic parameters from the observed response to se-

lection. The SRA package fits deterministic population-genetics

models with different genetic architectures (e.g., epistasis, link-

age disequilibrium, or finite number of loci) to time series of se-

lection responses (Le Rouzic et al. 2010, 2011, Le Rouzic 2014).

These analyses therefore assess the influence of discrepancies be-

tween the model chosen to make the predictions (Lande equa-

tion) and the evolutionary processes that generated the selection

responses. The code was modified to include two traits, one se-

lected and one correlated, and to estimate the genetic covariance

between them (Supporting Information S6). The model estimates

the realized additive genetic variance of the selected trait, VA,

and covariance, Gzy, with the correlated trait, as well as the en-

vironmental variances Ez and Ey. It is not possible to estimate

the realized additive genetic variance for the correlated trait be-

cause direct selection on this trait is assumed to be zero. The full

dataset needed to fit the time-series model included for each gen-

eration, the sample size, the phenotypic means for both traits be-

fore and after selection, and their associated phenotypic variances

(Supporting Information S1 and S2).

Although often assumed to be constant over a few episodes

of selection, G may change due to allele-frequency changes, di-

rectional epistasis, and changes in linkage disequilibrium (the

Bulmer effect; Bulmer 1971). We compared models fitted with

or without a Bulmer effect, but due to the limited number of gen-

erations, we could not fit more complex models including epis-

tasis or major-effect loci. We also tested for the occurrence of

asymmetry in the response to selection (e.g., Bohren et al. 1966;

Frankham 1990; Bell 2008, Walsh and Lynch 2018 chapter 18)

by allowing variances to differ in the two selected directions with

and without correcting for changes in the control line.

At each generation, we calculated the phenotypic correlation

and the slope of the regression of log(UBA) on log(GA) using

mixed-effect models with plant identity as a random effect. All

statistical analyses were performed with R 4.0.2 (R core team,

2020).

Results
GENETIC VARIATION AND EVOLVABILITY

The G-matrices estimated from the two diallels are presented

in Table 1. Because we conducted analyses on natural-log-

transformed data, the additive genetic variances can be inter-

preted as mean-scaled evolvabilities sensu Hansen et al. (2003a,

2011). The unconditional evolvabilities of gland and bract area

were 1.05% and 1.41% in Tovar and 0.73% and 0.84% in Tu-

lum. These are moderately high evolvabilities for morphological

traits (Hansen and Pélabon 2021). The genetic covariances be-

tween the two traits were 0.57 in Tovar and 0.49 in Tulum, which

should generate robust correlated responses to selection. The cor-

relations are not strong enough to constitute a major constraint

on evolution, however, because conditioning traits on each other,

sensu Hansen et al. (2003b), would only reduce their evolvabili-

ties by 22% in Tovar and 40% in Tulum.

DIRECT RESPONSE TO SELECTION

Gland area responded to selection in both species, but the re-

sponse diminished after the second generation (Fig. 3 and 4;

Supporting Information S3), and despite a good fit in the first

generation, responses after four episodes of selection were nearly

half the prediction for the Tovar lines and 30% lower for the Tu-

lum lines. Still, observed responses remained within the 95% pre-

diction intervals, although barely so for Tovar. Thus, if we neglect

the temporal dynamics of the response, the discrepancies could

be explained by a combination of sampling stochasticity in the

response and uncertainty in the prediction due to estimation error

in the additive genetic variance (Table 2). For the mean-centered

responses (Fig. 3), 60% to 70% of the prediction error variance

was due to sampling effects in the first generation, but by the last

generation this has shifted to almost 80% being due to estimation

error in the additive variance. For the control-corrected responses

(Fig. 4), the contribution of the sampling effects was larger and

remained above 50% of the total error variance even after four

episodes of selection (Table 2).

The realized evolvabilities estimated from the selection re-

sponse analysis were smaller than the evolvabilities estimated

from the diallels (Table 3). Including a Bulmer effect improved

the fit for the Tovar data, but had little impact on the estimated

evolvabilities. When corrected for changes in the control lines,

the direct responses in gland area were asymmetrical, with a

larger decrease for both species (Table 3).
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Table 1. Trait means (SD), genetic (G), environmental (E), and phenotypic (P) variance matrices for the Tovar and Tulum populations of

Dalechampia scandens estimated from the diallel experiments with the full data set (including selfed).

Gland area (GA) Upper bract area (UBA)

Tovar mean (SD) 17.56 (3.30) mm2 385.0 (75.7) mm2

G GA 1.05 ±0.20 (0.69; 1.44) 0.57 ±0.15 (0.30; 0.87)
UBA 0.47 ±0.08 (0.30; 0.62) 1.41 ±0.20 (1.07; 1.80)

E GA 2.27 ±0.16 (1.93; 2.55) 1.14 ±0.11 (0.95; 1.35)
UBA 0.57 ±0.03 (0.51; 0.63) 1.76 ±0.12 (1.56; 2.02)

P GA 3.32 ±0.19 (2.98; 3.68) 1.72 ±0.15 (1.44; 1.99)
UBA 0.53 ±0.03 (0.47; 0.58) 3.17 ±0.19 (2.84; 3.60)

Tulum mean (SD) 20.20 (5.26) mm2 407.0 (81.9) mm2

G GA 0.73 ±0.22 (0.37; 1.16) 0.49 ±0.13 (0.23; 0.75)
UBA 0.63 ±0.11 (0.43; 0.82) 0.84 ±0.14 (0.60; 1.13)

E GA 5.63 ±0.30 (5.03; 6.20) 1.60 ±0.15 (1.29; 1.87)
UBA 0.45 ±0.03 (0.38; 0.50) 2.27 ±0.13 (2.06; 2.53)

P GA 6.36 ±0.28 (5.82; 6.91) 2.09 ±0.16 (1.78; 2.37)
UBA 0.47 ±0.03 (0.41; 0.51) 3.11 ±0.15 (2.81; 3.41)

For each matrix, variances are reported on the diagonal, covariances above, and correlations below the diagonal along with their standard error and credible

intervals (genetic; calculated with HPDinterval.mcmc with default probability = 0.95) or confidence intervals (phenotypic) between parentheses. Means and

SDs are in mm2, variances and covariances are in log(mm2) × 100. The E variance matrices are sums of two components: the residual of the diallel model

and the individual error level. Genetic correlations are estimated from the posterior distribution of the MCMCglmmmodels estimating genetic variances and

covariances between GA and UBA. Sample size are 820 for Tovar and 1046 for Tulum.

CORRELATED RESPONSE TO SELECTION

The correlated responses of bract area differed between the two

species. In Tovar, the correlated responses paralleled the direct re-

sponses by matching the prediction in the first generation before

diminishing in the following generations. In Tulum, the corre-

lated responses were smaller than predicted already after the first

episode of selection and were practically absent in the follow-

ing generations (Fig. 3 and 4). Nevertheless, even the weak re-

sponse in Tulum remained within the prediction intervals, which

were large relative to the predicted response. This was particu-

larly striking for the control-corrected responses for which the

error intervals always included zero response (Fig. 4). Accord-

ingly, realized additive genetic covariances estimated from the

selection-response analysis were smaller than the covariances es-

timated from the diallels, especially in Tulum (Table 3).

Neither the among-individual phenotypic correlations nor

the slopes of the regression of bract area on gland area estimated

within each line at each generation changed markedly during the

experiment (Table 4).

Discussion
Discrepancies between observed and predicted responses to se-

lection have been attributed either to imprecise estimation of ge-

netic parameters (Sheridan 1988; Eisen 2005; Roff 2007) or to

changes in G during selection (Hill and Caballero 1992; Roff

2007). Few studies have considered the impact of genetic drift

on the responses to selection, however. This is not because the

importance of drift has gone unrecognized (e.g. Falconer 1973;

Nicholas 1980; Walsh & Lynch 2018), or due to a lack of meth-

ods for assessing its effects (Hill 1974; Sorensen & Kennedy

1983, 1984), but it may be due to the relative inaccessibility of

these methods and the lack of a common framework to account

for the different sources of uncertainty. We have presented a sim-

ple equation for the error variance due to the combined effects of

genetic drift and uncertainty in genetic parameters. Our equation

is still limited to truncation selection and does not incorporate

changes in genetic parameters due to selection or drift, but it can

still be used for a priori pedigree-independent assessment of un-

certainty in predicting short-term responses to selection. When

applied to our own selection experiment, this method showed

how sampling effects may dominate the uncertainty during early

generations, making it difficult to predict selection responses over

few generations, especially for correlated traits.

Our treatment of genetic drift differs in many aspects from

that of Hill (1971, 1974). First, we have based our sampling

on alleles while Hill sampled breeding values. Hill further as-

sumed a normal distribution of breeding values and environmen-

tal effects, while we did not make distributional assumptions

for the breeding values. In contrast, we did assume two alleles
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Figure 3. Observed and predicted response to selection with data centered on the generation mean of the up- and down-selected lines.

For the two species of D. scandens the responses are shown for gland area (GA), which is the selected trait, and bract area (UBA), which is

the correlated trait. Observed responses in trait means (±2SE) are given as the dotted lines. The predicted responses with their prediction

intervals (±2SE) are represented by the black lines and shaded area. Control lines are reported in grey with their prediction intervals in

light grey.

per locus, infinitesimal effects of alleles, and no variation among

selected parents in number of offspring. Second, we sampled par-

ents without replacement from a finite population, while Hill as-

sumed sampling of the measured individuals from an infinite zy-

gote pool. This generates a difference in the equations even in

the absence of selection. The treatment of selection is also dif-

ferent. Hill (1971) and Prout (1962) considered the variance in

breeding values conditionally on phenotypes and thus neglected

a component due to variation in phenotypes among selected par-

ents. Hill (1974) did consider this but used a different approxi-

mation from the one we used and suggested that this effect could

be ignored. We have shown that the effect of selection on the

drift variance is a non-ignorable function of the genetic vari-

ance in relative fitness generated by the selection scheme. Un-

fortunately, under truncation selection, this variance can be given

analytically only in special cases, and we could only provide a

crude approximation for the general case. We also reiterate that

we have not included the effects of either drift or selection on the

G-matrix.

In the additive infinitesimal model, genetic drift will gener-

ate a pattern equivalent to Brownian motions of the population

mean (Lande 1976), and the variance of the mean among inde-

pendent replicate lines should increase linearly with time (i.e.,

generations). Thus, if the mean selection response increases lin-

early with time, the relative prediction error due to drift would

decrease with the square root of time. In contrast, the prediction

EVOLUTION SEPTEMBER 2021 2227



C. PÉLABON ET AL.

Figure 4. Observed and predicted response to selection with responses corrected for changes in the control lines. No results are given

for the 3rd generation due to the absence of a control. See Figure 3 for definitions of symbols and shaded areas.

error due to misestimation of the quantitative genetics parame-

ters scales with the size of the response, which keeps the relative

error constant over time. Thus, genetic drift and environmental

sampling are likely to dominate the imprecision for the first few

generations, but their relative influence will diminish with time

and become less important for long-term predictions. In bidirec-

tional selection experiments, the contribution of the sampling ef-

fects can be further reduced by centering the responses on the

grand mean of the up- and down-selected lines at each genera-

tion. Although this method reduces sampling variance by a factor

of 2, it treats the responses as symmetrical, which is problematic

given the ubiquity of asymmetrical response in artificial-selection

experiments (Frankham 1990; Bell 2008; Walsh and Lynch 2018;

this study).

To estimate asymmetry and correct for environmental varia-

tion and inbreeding, it is customary to subtract the changes from

a control line. This method has the unfortunate consequence of

increasing the imprecision of the predictions because the uncer-

tainty of the control line is then incorporated into the imprecision

of the selected lines (Nicholas 1980, and compare Fig. 3 and 4).

Additionally, the effect of genetic drift is often larger in control

lines due to smaller sample sizes (e.g. Worley and Barrett 2000;

Sarkissian and Harder 2001), and because the more deterministic

choice of individuals in selected lines reduces sampling effects

(compare equations 5 and 6). This problem may be mitigated by

increasing the size of the control line or maintaining replicated

control lines with the same effective population sizes as the

selected lines. This second method allows assessing inbreeding
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depression, although inbreeding may increase faster in the

selected lines (Walsh and Lynch 2018).

In our experiment, with relative errors in genetic parameters

ranging from 18% to 29% and 16 selected individuals at each

generation, the expected relative errors of the direct responses

were never much below 25% for any of the generations, and al-

ways above 50% for the correlated responses. To assess the gen-

erality of these results and evaluate the typical level of error made

in comparable studies, we compiled estimates of the relative er-

ror in genetic parameters reported in quantitative genetic studies

and details of the experimental design of artificial-selection ex-

periments performed on various non-domesticated plant species

(Supporting Information S7 and S8). Figure 5 presents the dis-

tribution of relative errors in evolvability estimates for 519 traits

taken from 40 quantitative genetics studies (Supporting Informa-

tion S7). From this, we see that the median relative error in es-

timates of univariate genetic parameters is 36%, which is larger

than in our study. In 41 selection experiments on plants, we found

a median of 3 (mean of 3.1) episodes of selection with a median

of 14 (mean of 24.1) selected parents at each generation (Support-

ing Information S8). Hence, most selection experiments in plants

are expected to be less precise than our study, and the changes

due to genetic drift are likely to match the size of the predicted

selection response. This means that the combined levels of uncer-

tainty in a typically-dimensioned selection experiment will pre-

clude precise testing of theory, a conclusion in accordance with

McCulloch et al. (1996).

Analyzing the temporal dynamics of our selection responses

revealed that both direct and correlated responses were smaller

than predicted, and that the direct responses were asymmetric

with larger changes to decrease the gland size. While these re-

sponses individually fall within expected levels of uncertainty,

their similarity in the two species suggests some violation of the

assumptions of the Lande equation. We did find evidence for a

Bulmer effect, that is, a decrease in additive variance due to link-

age disequilibrium generated by selection, but this explained less

than 10% of the difference between estimated and realized evolv-

abilities (Table 3).

Directional epistasis (i.e., when allele substitutions that in-

crease a trait systematically increase or decrease effects of al-

lele substitutions at other loci; Hansen and Wagner 2001) could

explain the asymmetrical responses by increasing genetic vari-

ance in one direction and decreasing it in the other (Carter et al.

2005; Hansen et al. 2006; Pavlicev et al. 2010; Morrissey 2015).

It would require strong epistasis to explain changes of this mag-

nitude over so few generations, however, and more complex pat-

terns of epistasis would be necessary to explain why the response

is less than predicted in both directions of selection.

Other mechanisms such as natural selection counteracting

the production of exaggerated traits or inbreeding depression
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Figure 5. Distribution of relative errors in evolvability for 519 estimates from 40 studies. The median is 36% excluding 38 estimates with

a relative error larger than 100% (see Supplement S6 for details). The relative error in the evolvability of gland area obtained from the

diallel experiments were 18% in Tovar and 29% in Tulum. The relative error in evolvability is calculated as 100× the standard error in

evolvability divided by the evolvability.

could also generate asymmetrical responses (Frankham 1990;

Walsh and Lynch 2018 chap. 18 for reviews). Inbreeding depres-

sion is unlikely to explain these patterns because we found no

effects of selfing on blossom traits in these two species (Hansen

et al. 2003a, Pélabon et al. 2004b, Opedal et al. 2015). Similarly,

it is unlikely that natural selection would counteract a change in

gland size in a greenhouse environment. Alternatively, an asym-

metrical response could be generated by changes in the frequency

of rare alleles with large effect (e.g., Frankham and Nurthen

1981; Kelly 2008). Stabilizing selection in natural populations

may generate a negative relationship between allele frequency

and effect size (Zhang and Hill 2005), but the asymmetry in the

response observed here would imply a bias toward low frequency

of alleles that decrease gland size. Although this could result

from sustained directional selection to increase gland size, this

scenario is not supported by observations of pollinator-mediated

selection on gland area in several populations of D. scandens

(Pérez-Barrales et al. 2013; Albertsen et al. 2021). Finally, we

note that the asymmetry is more pronounced on an arithmetic

scale and is thus not restricted to the log-scale we used.

The decrease of the correlated response of bract area ob-

served in the Tulum population is also difficult to explain, be-

cause the underlying mechanism must change the additive ge-

netic covariance of the traits more than it changes the additive

variance in the selected trait. This is particularly puzzling in

the light of our observation of little change in the phenotypic

covariance.

Finally, the lower than expected response to selection may

have resulted from an overestimation of additive genetic vari-

ance in the breeding experiments. Two possible causes of over-

estimation are epistatic variation and inbreeding among the par-

ents used in the diallels. Neither of these mechanisms can explain

the decline in the response only after the first generation, how-

ever. Furthermore, the similarity in the G-matrices estimated with

or without the contribution of selfed individuals does not support

the inbreeding hypothesis in the Tovar population, which was the

one with the largest reduction of the observed responses.

Artificial selection has been instrumental in the development

of the evolutionary theory from Darwin and onward (Robertson

1966; Wright 1977, Hill and Caballero 1992; Bell 2008), and it

still provides valuable insights on the evolvability of quantitative

traits (e.g., Beldade et al. 2002; Carlborg et al. 2006; Le Rouzic

et al 2008; Pavlicev et al. 2010; Carter and Houle 2011; Hine

et al. 2011; Bolstad et al. 2015; Sztepanacz and Blows 2017;

Morgan et al. 2020). The lack of consideration of uncertainty in

this type of experiment, however, has limited our ability to infer

underlying genetic architecture from the discrepancies between

observed and predicted responses. Despite the Lande equation

being 40 years old, models that explicitly incorporate estimation

of uncertainties in the prediction of evolutionary changes or allow

analysis and interpretation of the selection-response dynamics in

terms of genetic architecture are only starting to be developed

(Le Rouzic et al. 2010, 2011; Stinchcombe et al. 2014). We ar-

gue that, with such models, a better and more systematic quan-

tification of the imprecision associated with genetic parameters
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and their predictions will help us to better understand the lim-

itations of the current approaches, and design experiments that

will bring progress in understanding multivariate evolution. This

should also help us in assessing predictability in eco-evolutionary

dynamics.
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Appendix 1: Drift variance under
truncation selection

In this appendix, we derive equation 4 in the main text for the

sampling variance in the mean breeding value of a quantitative

trait after one generation of selection. We assume that exactly Np

parents are picked from a population of N individuals and then

mated deterministically such that each parent produces exactly

2N/Np offspring.

Let the phenotype of an offspring, i, be zi = gi + ei, where

gi is the breeding value and ei an environmental effect with mean

zero and variance Ve. Let ḡ = 1
N

∑
i gi be the mean breeding

value among the N offspring. To compute the variance in ḡ due to

sampling we first write

Var [ḡ] = E [Var [ḡ|P]] + Var [E [ḡ|P]] ,

where |P denotes conditioning on the Np parents of the offspring.

To simplify the computation, we now consider a single locus with

two alleles, B and b, with frequencies p and q, and genotypic

effects 2a, a, and 0 for BB, Bb, and bb, respectively. Assum-

ing additivity and linkage equilibrium, the total genetic sampling

variance will be the sum of the contribution from each locus. For

each locus we have

E [ḡ|P] = 2ap′,

Var [ḡ|P] = a2H ′/2N,

where p’ and H’ are the allele frequency and the heterozygosity

among the parents. The first equation follows because each parent

contributes exactly 2N/Np alleles to the offspring’s total of 2N

alleles, and each of the 2Np’ B-alleles contribute an effect a. To

derive the second equation, note that every homozygous parent

always contributes the same allele type to the offspring and thus

no sampling variance. A heterozygote parent will contribute a

variance of a2/4. There are H’Np heterozygote parents, each being

the parent of 2N/Np alleles, so we get

Var [ḡ|P] = Var

[∑
i

gi/N |P
]

=
∑

i

Var [gi|P] /N2

= (
a2/4

) (
H ′Np

) (
2N/Np

)
/N2 = a2H ′/2N.

This is the variance due to random sampling of alleles from indi-

vidual parents during mating. Putting the two equations together

we get

Var [ḡ] = (
a2/2N

)
E
[
H ′]+ 4a2Var

[
p′] .

We now need to compute E[H’] and Var[p’] over samples of par-

ents. We start with the case of no selection, as in our control

lines. Here, parents are picked at random without replacement.

The joint distribution of the numbers of BB homozygotes and Bb

heterozygotes in the sample is multivariate hypergeometric with

moments

E
[
N ′

BB

] = Np pBB,

E
[
N ′

Bb

] = Np pBb,

Var
[
N ′

BB

] = Np pBB (1 − pBB)
(
N − Np

)
/(N − 1),

Var
[
N ′

Bb

] = Np pBb (1 − pBb)
(
N − Np

)
/(N − 1),

Cov
[
N ′

BB, N ′
Bb

] = − Np pBB pBb
(
N − Np

)
/(N − 1),

where pBB and pBb are the frequencies of the two genotypes in

the population before sampling. Using these moments, and pBB

= p2 + Fpq and pBb = 2pq(1 - F), where F is the coefficient of

inbreeding in the population before sampling, we derive

E
[
p′] = p,

Var
[
p′] = pq (1 + F )

2

N − Np

Np (N − 1)
,
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E
[
H ′] = 2pq (1 − F ) .

This yields

Var [ḡ] = pqa2 (1 − F )

N
+ 2pqa2 (1 + F )

(
N − Np

)
Np (N − 1)

= 2pqa2 (1 + F )

(
1 − F

2N (1 + F )
+ N − Np

Np (N − 1)

)

≈ VA

(
1

Np
− 1 + 3F

2N (1 + F )

)
,

because the additive variance contributed by the locus is VA =
2pqa2(1+F). If the population we sample from is in Hardy-

Weinberg equilibrium (i.e., F = 0), this reduces to Var[ḡ] ≈
VA(1/Np − 1/2N ).

To compute E[H’] and Var[p’] in the case of truncation se-

lection, we need to make some approximations. The most im-

portant is that each locus has small effects such that we can

ignore the effects of selection on the expected genotype fre-

quencies. Hence, we assume E[N’BB] = NppBB and E[N’Bb] =
NppBb. We do, however, need to consider that individual par-

ents differ in their probabilities of being selected. If we take

the extreme case of a population in which all variance is ad-

ditive genetic, then the probability of a given genotype being

selected under truncation selection is either zero or one. This

means that if we repeat the sampling, we will always pick ex-

actly the same parents, and then Var[p’] = 0. If there are envi-

ronmental sources of variation, then the probability of a given

genotype being picked is uncertain and there will be sampling

variance in p’. To quantify this, we need to compute the probabil-

ity of picking a given genotype in the presence of environmental

variance.

The number of BB individuals in the selected sample

can be written as N’BB = �iyi, where yi is an indicator for

whether individual i was included or not, and the sum is over

all NBB individuals that could be selected. The variance of this

is

Var
[
N ′

BB

] = Var

[
NBB∑

i

yi

]
=

NBB∑
i

Var [yi] +
NBB∑

i

NBB∑
j �=i

Cov
[
yi, y j

]
.

The yi are each sampled without replacement, and in each of the

Np sampling events this happens with a probability of wi/N, where

wi is the relative fitness of the individual genotype. From this we

can derive

Var
[
yi
] = Np

N
wi

(
1 − Np

N
wi

)
,

Cov
[
yi, y j

]
i �= j = −wiw j

Np

N2

(
1 −

(
Np − 1

)
2N

(
wi

1 − wi/N
+ w j

1 − w j/N

))
.

Fitting this in yields

Var
[
N ′

BB
] = NpPBB

(
1 − PBB − Np − 1

N
(1 + Var [w])

+ PBB

(
Np − 1

N

)
E

[
w2

1 − w/N

]

−
(

Np − 1

N2

)
E

[
w3

1 − w/N

])
,

where variance and expectation are over relative fitness in the

population before selection, and we have used E[w] = 1. To ob-

tain an approximation in terms of the variance of fitness, we use

a second-order Taylor approximation of the expectations around

the mean relative fitness:

E

[
w2

1 − w/N

]
≈ N

N − 1
+ N

N − 1

(
1 + (N − 1)4 (2N − 1)

N6

)
Var [w] ,

E

[
w3

1 − w/N

]
≈ N

N − 1
+
(

N (3N − 2)

(N − 1)3

)
Var [w] .

Fitting in, collecting terms, and ignoring some terms of

lower order in 1/N yields

Var
[
N ′

BB

] ≈ NpPBB (1 − PBB )

(
N − Np

N − 1

)(
1 −

(
Np − 1

N − Np

)
Var [w]

)
.

Hence, increasing variance in relative fitness, stronger se-

lection will reduce the sampling variance from the expectation

under random sampling. Eventually, when selection becomes de-

terministic, the sampling variance becomes zero. The variance

in relative fitness under deterministic truncation selection is (N -

Np)/Np. Using this in our equation, we find that the sampling vari-

ance is reduced with a factor 1/Np relative to random sampling.

Provided the number of selected parents is not extremely small,

this is close to zero, and thus shows that the approximations are

good even far from random sampling. Using the same approach,

we compute

Var
[
N ′

Bb

] ≈ NpPBb (1 − PBb)

(
N − Np

N − 1

)

×
(

1 −
(

Np − 1

N − Np

)
Var [w]

)
,

Cov
[
N ′

BB, N ′
Bb
] = −NpPBBPBb

(
N − (

Np − 1
)

E

[
w2

1 − w/N

])

≈ −NpPBBPBb

(
N − Np

N − 1

)

×
(

1 −
(

Np − 1

N − Np

)
Var [w]

)
.

Using these we get

Var
[
P′] = Var

[
N ′

BB + 1
2 N ′

Bb

Np

]

≈ pq (1 + F )

2

N − Np

Np (N − 1)

(
1 −

(
Np − 1

N − Np

)
Var [w]

)
.
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If we ignore the effects of selection on inbreeding and

allele-frequency change, we can use this together with

E[H’] = 2pq(1-F) to calculate

Var [ḡ] = a2E
[
H ′]

2N
+ 4a2Var

[
p′]

≈ pqa2 (1 − F )

N

+2pqa2 (1 + F )
(
N − Np

)
Np (N − 1)

(
1 −

(
Np − 1

N − Np

)
Var [w]

)

= 2pqa2 (1 + F )

×
(

1 − F

2N (1 + F )
+ N − Np

Np (N − 1)

(
1 −

(
Np − 1

N − Np

)
Var [w]

))

≈ VA

(
1

Np
− 1 + 3F

2N (1 + F )
− Var [w]

N

)
,

where we have ignored terms of lower order in 1/N and 1/Np. If

the population we select from is in Hardy-Weinberg equilibrium,

this reduces to

Var [ḡ] ≈ VA

(
1

Np
− 1 + 2Var [w]

2N

)
.

Appendix 2: An approximation for
the genotypic variance in fitness

While the variance in relative fitness of phenotypes under

truncation selection is exactly (N - Np)/Np, what we need in the

equations is the variance of the relative fitness of genotypes. This

is not easily expressed in terms of observable population param-

eters. For our purpose, to make prediction intervals, we use a

crude approximation based on dividing the population into three

groups, one with breeding values for the selected trait at least

one environmental standard deviation above the selection cutoff,

k, one with breeding values at least one environmental standard

deviation below the selection cutoff and one with breeding val-

ues in between. The two first groups we assign fitness of one and

zero, respectively. For the intermediate group, we assign fitness

equal to the mean fitness (Np/N). We do this even if the fitness of

a breeding value exactly at the cutoff is 1/2, because in our sit-

uation with Np = N/4 most of the probability mass of the group

will be below the cutoff. Using the mean fitness will also make

the variance in fitness converge correctly to zero when the her-

itability goes to zero. We assume that the breeding values and

the environmental effects of the selected trait are normally dis-

tributed. If F(g) is the cumulative normal probability function for

the breeding values, we can write

F
(
k ± √

Ve
) = 1

2

(
1 + Erf

[
k − ḡ ± √

Ve√
2VA

])

= 1

2

(
1 + Erf

[
k − ḡ√
2h2VP

±
√

1 − h2

2h2

])
,

where Er f [x] = 2√
π

x
∫
0

e−t2
dt is the error function. The prob-

ability masses of the three categories are 1 − F (k + √
Ve),

F (k − √
Ve), and F (k + √

Ve) − F (k − √
Ve), respectively, and

using these we can write

Var [w] ≈ 1

E [W ]2

(
1 − F

(
k + √

Ve
)

+ (E [W ])2
(
F
(
k + √

Ve
)− F

(
k − √

Ve
)))− 1

= N2

2N2
p

(
1 −

(
1 − N2

p

N2

)
Er f

[
k − g√
2h2VP

+
√

1 − h2

2h2

]

−N2
p

N2
Er f

[
k − g√
2h2VP

−
√

1 − h2

2h2

])
− 1,

where W is absolute fitness. From the assumed normal distribu-

tion of the breeding values we have

F (k) = N − Np

N

which yields

k − ḡ = √
VAF−1

(
N − Np

N

)
=
√

2VAEr f −1

[
2

(
N − Np

N

)
− 1

]
,

where
√

2Er f −1[x] is the probit function. Fitting this in we get

Var [w] ≈ N2 − 2N2
p

2N2
P

−
(

N2 − 2N2
p

2N2
p

)
Er f

[
Er f −1

[
2

(
N − Np

N

)
− 1

]
+
√

1 − h2

2h2

]

−1

2
Er f

[
Er f −1

[
2

(
N − Np

N

)
− 1

]
−
√

1 − h2

2h2

]
,

which can be computed from the heritability of the selected trait.

This approximation gives the correct values of (N - Np)/Np when

h2 = 1 and zero when h2 = 0. We used this variance computed

from the estimated heritability of the selected trait in equation 7

to make prediction intervals.
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Supplement S1: Descriptive statistics for the selection experiment in Tovar
Supplement S2: Descriptive statistics for the selection experiment in Tulum
Figure S3. Observed response to selection of gland area (GA), and correlated response of upper bract area (UBA), in two species of D. scandens

Table S4. Genetic (G), environmental (E), and phenotypic (P) variance matrices for the Tovar (small-glanded species) and Tulum (large-glanded species)
populations of Dalechampia scandens estimated from the diallel experiments when selfed individuals (diagonal from the diallel) are excluded from the
analysis
Figure S5: Visual representation of the changes G when selfed individuals (diagonal of the diallel) are included (solid line) or not (dashed line) in the two
species
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