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A B S T R A C T   

This study aimed at estimating total forest above-ground net change (ΔAGB; Gg) over five years (2014–2019) 
based on model-assisted estimation utilizing freely available satellite imagery. The study was conducted for a 
boreal forest area (approx. 1.4 Mha) in Norway where bi-temporal national forest inventory (NFI), Sentinel-2, 
and Landsat data were available. Biomass change was modelled based on a direct approach. The precision of 
estimates using only the NFI data in a basic expansion estimator was compared to four different alternative 
model-assisted estimates using 1) Sentinel-2 or Landsat data, and 2) using bi- or uni-temporal remotely sensed 
data. 

We found that spaceborne optical data improved the precision of the purely field-based estimates by a factor of 
up to three. The most precise estimates were found for the model-assisted estimation using bi-temporal Sentinel-2 
(standard error; SE = 1.7 Gg). However, the decrease in precision when using Landsat data was small (SE = 1.92 
Gg). We also found that ΔAGB could be precisely estimated when remotely sensed data were available only at the 
end of the monitoring period. 

We conclude that satellite optical data can considerably improve ΔAGB estimates, when repeated and coin
cident field data are available. The free availability, global coverage, frequent update, and long-term time ho
rizon make data from programs such as Sentinel-2 and Landsat a valuable data source for consistent and durable 
monitoring of forest carbon dynamics.   

1. Introduction 

Forests play a central role in regulating the global climate through 
processes such as carbon uptake, carbon emission, and the regulation of 
the water and energy cycles (Herold et al., 2019). Forest structures are 
dynamic systems varying through space and time. Understanding the 
dynamics of the forest above-ground biomass (AGB) is critical to better 
comprehend the impact of forest management on climate change 
(Duncanson et al., 2021; Eggleston et al., 2006). Repeated national 
forest inventory (NFI) data, along with freely available medium- 
resolution satellite imagery such as Sentinel-2 (Drusch et al., 2012) or 
Landsat data (Wulder et al., 2012), offer unique possibilities for long- 
term monitoring of AGB dynamics (GFOI, 2020). Such medium- 
resolution satellite data are available at a global scale and at high 
temporal resolution (5–16 days at the equator). These missions are 
planned to span across several decades, making them one of the most 
useful source of auxiliary information for national and international 

forest monitoring programs. Despite the current need for globally 
consistent estimates of forest AGB dynamics (Duncanson et al., 2019), 
little is known about satellite optical data’s contribution to AGB change 
estimation in the context of green-house gases inventories. 

1.1. Remotely sensed based ∆AGB estimation 

During the past decade, the majority of the studies aimed at devel
oping methods to map and estimate AGB stocks at specific points in time 
(Zolkos et al., 2013). Only a minority of studies looked at the use of 
multi-temporal remotely sensed data for estimating and mapping AGB 
change (ΔAGB). As a prominent source of auxiliary information for AGB 
estimation and mapping, airborne laser scanning (ALS) data has been 
found useful also in improving the precision of ΔAGB estimates based on 
field reference data alone by factors of 2–9 (Bollandsås et al., 2018; 
McRoberts et al., 2015; Næsset et al., 2013; Næsset et al., 2015; Skow
ronski et al., 2014). Other three-dimensional remotely sensed data, such 
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as digital aerial photogrammetry, have been found useful to fit nation
wide ΔAGB models (Price et al., 2020). Even though such three- 
dimensional remotely sensed data represent the state-of-the-art, their 
use remains limited in terms of large area coverage due to prohibitive 
acquisition costs. 

When aiming at producing consistent estimates on a continental or 
even global scale, satellite data represent a more cost-efficient and thus 
promising data source for the estimation of ΔAGB over extended periods 
(GFOI, 2020). New and upcoming scientific satellite missions such as the 
GEDI and ESA’s BIOMASS have been specifically tailored to the need for 
improving our understanding of near-global forest biomass stocks 
(Duncanson et al., 2019). Even though such missions may improve our 
understanding of the present state of forest AGB stocks, they remain 
characterized by short lifespans (2–5 years) and do not cover the entire 
globe. Amongst the past experiences, both interferometric synthetic 
aperture radar (InSAR) (Karila et al., 2019; Solberg et al., 2014) and 
optical data (Main-Knorn et al., 2013; Powell et al., 2010), such as 
TanDEM-X and Landsat multi-temporal data have been used to map 
ΔAGB. InSAR data has the advantages of being cloud-insensitive and 
allowing the 3D characterization of the forest canopy height. Never
theless, the commercial nature of available InSAR data suitable for forest 
AGB estimation (e.g. TanDEM-X), limits their use across space and time. 
While freely available Sentinel-1 InSAR data could be of interest, their 
use has only been tested for mapping AGB stocks (Laurin et al., 2018; Li 
et al., 2020) and no study has yet assessed the use of Sentinel-1 for AGB 
change mapping and estimation. 

Amongst the broad panorama of the currently available remotely 
sensed data, medium-resolution (10–30 m) optical data represents one 
of the most promising sources of auxiliary data as they allow virtually 
anyone to access near-real-time as well as archive imagery over any 
point on earth and free of cost. The long term lifespan of these missions 
makes them particularly suitable for continuous monitoring of forest 
AGB dynamics. 

1.2. ΔAGB using open satellite optical data 

In the realm of optical data, time series of reflectance data from 
Landsat have been and continue to be effectively used to monitor the 
global extent and patterns of forest cover disturbance and recovery 
(Cohen et al., 2010; Hansen et al., 2013; White et al., 2018). Concerning 
the quantification of the carbon uptake and emission, methods to esti
mate AGB losses from carbon density maps have been proposed (Baccini 
et al., 2012; Csillik et al., 2019). While such maps may be used to 
quantify forest carbon emissions, they lack information on the carbon 
sequestration potential and thus the net ΔAGB. Only a handful of studies 
used time-series of Landsat data to model AGB over time and conse
quently derive AGB changes (Main-Knorn et al., 2013; Matasci et al., 
2018; Nguyen et al., 2020; Powell et al., 2010; Wulder et al., 2020). Even 
though useful to characterize areal changes based on the loss or accu
mulation of forest AGB, the previously proposed methods lacked a 
rigorous assessment of the uncertainty of the ΔAGB estimates and thus 
do not comply with guidelines for estimation of emissions and removals 
of greenhouse gasses in forests indicated by the Global Forest Obser
vation Initiative GFOI (2020). Knowledge of the ΔAGB estimates’ un
certainty is essential for current green-house gasses inventories, and 
according to good practice, the estimates should be neither systemati
cally over- nor under-estimating the true ΔAGB and they should be 
precise so far as practicable (IPCC 2019). To meet these criteria, it is thus 
important to adopt unbiased estimators and to report the uncertainty of 
an estimate, without which it is not possible to assess the precision of an 
estimate. 

1.3. Methods for change estimation 

In forest inventories supported by remotely sensed data, the esti
mation of ΔAGB and its uncertainty may be done either through model- 

assisted or model-based estimators (Gregoire, 1998; Ståhl et al., 2016). 
Both rely on the use of models linking field reference data with remotely 
sensed auxiliary data to improve the precision of purely field-based es
timates. The model-assisted estimator is preferred when a probability 
sample of field observations is available as it is nearly-unbiased even if 
the model has a lack of fit (Särndal, 1984). 

Concerning the models used, ΔAGB may be estimated either using a 
direct or indirect modeling approach (McRoberts et al., 2015). The 
former consists in directly modeling ΔAGB, while the latter consists in 
modeling AGB state in the two points in time (T1 and T2) separately and 
estimating ΔAGB as the difference between the AGB in T2 and the AGB 
in T1. When repeated and coincident field plot data are available, the 
direct approach is often preferred as it relies on a single model and thus a 
single error source (Bollandsås et al., 2013; Fuller et al., 2003; McRo
berts et al., 2015; Skowronski et al., 2014). Within the direct approach, 
one may consider using either bi-temporal or only uni-temporal 
remotely sensed data. The use of the bi-temporal approach represents 
a familiar approach (Bollandsås et al., 2018; McRoberts et al., 2015; 
Næsset et al., 2015), which intuitively relies on the temporally matching 
field and remotely sensed data in both T1 and T2. The uni-temporal 
approach is representative of those cases when remotely sensed data 
are available only for T2. Thus, AGB changes are explained only as a 
function of a snapshot (e.g., satellite image) at the end of the monitoring 
period. While unexplored, this approach is relevant for satellite optical 
data in those cases without available images in T1 due to cloud-cover or 
to the fact that the satellite was not even launched. Direct ΔAGB models 
relying on uni-temporal remotely sensed data could broaden the time 
window available for estimating ΔAGB and thus provide an under
standing of past forest AGB dynamics. 

1.4. Field reference data 

An important limiting factor to direct ΔAGB modeling lies in the lack 
of repeated and coincident field reference data at different times (Næsset 
et al., 2015). Consequently, the gain-loss method often represents the 
only solution (GFOI, 2013; McRoberts et al., 2020). Continuously 
updated NFIs represent a unique data source to estimate ΔAGB based on 
a stock-difference method. As an example, the Norwegian NFI is 
composed of a systematic network of more than 22,000 permanent field 
plots. Every five years, a fifth of the plots are re-measured, allowing to 
estimate ΔAGB over the past five years period (Breidenbach et al., 
2020a). The scope of NFIs is mainly to provide nationwide and regional 
statistic, however they can also provide an important contribution to 
global efforts to monitor forest carbon dynamics. The availability of 
nationwide, repeated, and geolocated AGB observations offers unique 
possibilities for the direct estimation of ΔAGB using satellite optical 
data. 

1.5. Study objective 

Our study is part of the ongoing global research effort aiming on 
improving methods for reliable and consistent greenhouse gras in
ventories in order to fully understand and utilize the climate mitigation 
potential of forests (e.g., Harris et al., 2021). The objective of this study 
was to compare the precision of ΔAGB estimates for a period of five 
years (2014–2019 or 2010–2015) using bi-temporal NFI data and either 
bi-temporal (T1 = 2015 and T2 =2019) or uni-temporal (T2 =2019 or 
2015) Sentinel-2 or Landsat data. Direct estimates of the total net ΔAGB 
were obtained according to a model-assisted estimator, and the results 
compared to estimates based on a basic expansion estimator (BE) using 
the NFI data alone. 
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2. Materials 

2.1. Study area 

The study area was in south-eastern Norway and comprised a total 
area of 13,659 km2 (see Fig. 1). This specific area was selected as it was 
one of the largest contiguous areas in Norway where Sentinel-2 data 
were available and free of cloud cover during 2015, which was also the 
first year that the Sentinel-2 A satellite was operational (i.e., limited 
number of images). The forest area estimated using all NFI plots within 
the AOI is nearly 70% of the total area. The AOI is characterized by a 
large proportion of forest (nearly 70%) actively managed for timber 
production. The forest composition was typical of boreal forest charac
terized by a prevalence of coniferous species (88%). In our study area, 
the dominant species was Picea abies (67%), followed by Scots pine 
(21%), and deciduous species (12%). With the absence of substantial 
forest fires or insect outbreaks in the study area, forest harvest repre
sents the primary source of disturbance. 

2.2. National Forest Inventory data 

The Norwegian NFI is based on a five-year repeat cycle according to 
which a fifth of the plots are visited annually (Breidenbach et al., 
2020a). The permanent plots were established in 1986–1993 and since 
1994, one fifth of the plots are re-measured in a regular five-year cycle. 
The availability of repeated and coincident field plot data allows the 
calculation of plot-wise ΔAGB (Mg ha− 1) as the difference between the 
AGB stock at the end (T2) and the beginning of the monitoring period 
(T1). Permanent NFI field plots are systematically located in a 3 × 3 km 

grid within the study area. The set of field plots measured each year is 
selected based on a Latin-square design, resulting in evenly distributed 
clusters of 3 × 3 field plots measured each year (Fig. 1). The permanent 
field plots from the five-year cycles 2010–2015 and 2014–2019 were 
used in the present study. 

2.2.1. AGB estimation on the NFI field plots 
Within the 250 m2 circular field plots, the diameter at breast height 

(DBH) of trees with DBH ≥ 5 cm was recorded. Tree height was 
measured on selected trees, according to the NFI field protocol (Brei
denbach et al., 2020a). Field measurements from 2014 and 2019 were 
then used with species-specific allometric models to estimate AGB for 
each field plot at T1 and T2, respectively (Marklund, 1988). Each field 
plot’s center point was positioned using a Global Navigation Satellite 
System receiver, allowing for spatial alignment with satellite data. 

Further details about the field registrations in the Norwegian NFI can 
be found in (Breidenbach et al., 2020a). 

2.3. Remotely sensed data 

2.3.1. Sentinel-2 
Atmospherically corrected Sentinel-2 (level 2A) cloud-free mosaics 

were generated for two points in time: summer 2015 and summer 2019. 
The mosaics were generated using images from August 2 to August 22 in 
2015 and between July 27 and September 20 in 2019. While optimally, 
the remotely sensed data should be temporally matching the field 
reference data in 2014 and 2019, the first Sentinel-2 images were 
available only in 2015. Since Sentinel-2 L2A scenes were not systematic 
in production before May 2017, Sentinel-2 Level-1C scenes in 2015 were 

Fig. 1. Overview of the study area, highlighting the NFI sampling design for the permanent plots measured in 2014 and 2019.  
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atmospherically corrected, using the Sen2Cor processor version 2.8 
(Gascon et al., 2017). 

The acquired 2015 Sentinel-2 L1C and 2019 Sentinel-2 L2A scenes 
were downloaded from the Copernicus Open Access Hub (Copernicus, 
2020). The mosaics contained the bands 2 through 8, 8A, 11, and 12 (see 
Table 1), and was created by the following steps: for each Sentinel-2 L2A 
scene, we created a single PCI Geomatics file containing the bands 
mentioned above. Bands with 20 m resolution were resampled to 10 m 
with nearest neighbor resampling. Then within the AOI, polygons were 
manually drawn over clouds and cloud-shadows and replaced with 
cloudless scenes. The mosaicking was done in the PCI Geomatics Mosaic 
Tool, and we used dodging-points for color balancing, including contrast 
and brightness adjustment, to derive seamless mosaics. A dodging point 
is a focal point on which we can adjust the color balancing. We used 
them only in cases of substantial differences in the reflectance of two 
adjacent acquisition dates. This method, also used in the study by Puliti 
et al. (2020), was adopted as it is part of the processing pipeline used by 
the Norwegian mapping Authority for the yearly production of nation
wide Sentinel-2 mosaics. While services such as the Copernicus Sentinel- 
2 global mosaic (Copernicus, 2020b) allow for producing consistent 
cloud free mosaics anywhere on the globe, and would therefore be a 
suitable data source for this study, no such data were available for 2015. 
For each of the NFI plots, we extracted the Sentinel-2 band values cor
responding with the plot center’s coordinates. 

2.3.2. Landsat 
Landsat Analysis Ready Data produced by the Global Land Analysis 

and Discovery team at the University of Maryland (GLAD ARD, Potapov 
et al., 2020) were used as a source of yearly cloud-free Landsat mosaics. 
For comparison with the Sentinel-2 data, we selected mosaics from the 
same two points in time (i.e., 2015 and 2019). These data represent a 
globally available data source for long term monitoring (1997-present) 
of land cover change mapping. GLAD ARD data are produced by 
drawing upon the entire archive of Landsat data from 1997 to present 
and by selecting the imagery with highest geometric and radiometric 
standards (GLAD ARD, Potapov et al., 2020). The GLAD ARD data are 
produced consistently at a global scale, making them particularly suit
able for ensuring the reproducibility of the estimates. 

The cloud-free mosaics of normalized surface reflectance from 
Landsat data were generated using the phenological metrics type A in 
the GLAD tools for Landsat ARD applications (Glad, 2020). The mosaics 
are gap-filled to remove clouds, snow, and shadows. Each composite 
represents the average reflectance values between the 25th and 75th 
percentile from the gap-filled cloud-free annual observation time-series. 

Specific details of the processing steps involved in GLAD ARD data 
production can be found in Potapov et al. (2020). As for the Sentinel-2 
data, the bands’ values corresponding to each NFI plot centre were 
extracted. 

2.3.3. Forest mask 
A nationally available forest mask was used to define the population 

of interest geographically. The forest mask is based on the Norwegian 
land capability classification system, “AR5” (Ahlstrøm et al., 2014) and 
is currently used for the nationwide mapping of forest resources in 
Norway (Astrup et al., 2019). While dating back to the 1960s, such a 
forest mask currently represents the best source of information on the 
extent and spatial distribution of forests in Norway with an accuracy of 
92% (Breidenbach et al., 2020b). The forest mask is produced from the 
field and aerial surveys and is currently updated based on ALS data. 

3. Methods 

The workflow consists of five steps (Fig. 2), consisting in 1) pro
cessing the remotely sensed and NFI field data, 2) extracting the pre
dictor variables from Sentinel-2 and Landsat for each NFI plot and for 
each point in time; 3) modeling the response ΔAGB according to a direct 
approach using the predictor variables extracted from either uni- or bi- 
temporal satellite imagery; 4) applying the developed models to the 
entire forest population; 5) estimating the total ΔAGB and its uncer
tainty according to model-assisted inference. The performance of the 
method was benchmarked against a basic expansion estimator using 
only NFI plot data and no remotely sensed data. 

3.1. Modeling ΔAGB 

To model ΔAGB, we opted for a direct method according to which 
the remotely sensed auxiliary variables are used to model the change in 
AGB in the NFI plots directly. Two different approaches to modeling 
ΔAGB, namely: 

1. Bi-temporal: such an approach consisted of using explanatory var
iables from Sentinel-2 and Landsat data from both points in time 
(2015 and 2019).  

2. Uni-temporal: this approach assumed that remotely sensed data 
were available only for T2 and thus links AGB changes to the 
reflectance properties of the forest at a single step in time. The uni- 
temporal approach was applied both to estimate changes in the pe
riods 2010–2015 and 2014–2019. 

The models were fitted using explanatory variables independent of 
pairing, meaning that the bands selected for T1 are not necessarily 
selected for T2 and vice versa. This model form was adopted as it was 
found to yield the most precise estimates in a comparative study of 
several different model forms by McRoberts et al. (2015). Using only the 
plots classified as forest in the NFI data, we fitted four separate multiple 
linear models linking the ΔAGB from the NFI data with bi-temporal or 
uni-temporal data either from Sentinel-2 or Landsat. The explanatory 
variables consisted of the bands’ values as well as band indices. Similarly 
to the normalized difference vegetation index (NDVI), the band indices 
were calculated as the ratio between the difference and the sum of band 
pairs. We calculated the band indices from all band combinations (i.e., 
45 and 15 combinations for Sentinel-2 and Landsat for each point in 
time). 

The predictor variables were selected to ensure parsimonious models 
and avoid multicollinearity. First, we performed a branch-and-bound 
search for the best subset based on the Bayesian information criterion. 
Second, the models were penalized for multicollinearity by ensuring that 
the largest variance inflation factor was less than five. 

3.2. Estimation 

An estimate of the total forest net ΔAGB (τ̂) and its variance (V̂ar(τ̂)) 
using a basic expansion (BE) estimator just based on field data and a 
model-assisted (MA) estimator were calculated as presented in the 

Table 1 
Spectral bands (nm) and resolution (m) for the Sentinel-2 and Landsat imagery.  

Band numbera Sentinel-2 Landsat 

B2 Blue (458–523 nm) 10 m Blue (452–512 nm) 30 m 
B3 Green (543–578 nm) 10 m Green (533–590 nm) 30 m 
B4 Red (650–680 nm) 10 m Red (636–673 nm) 30 m 
B5 Red-edge 1 (698–713 nm) 20 m NIR (851–879 nm) 30 m 
B6 Red-edge 2 (733–748 nm) 20 m SWIR 1 (1566–1651 nm) 30 m 
B7 Red-edge 3 (773–793 nm) 20 m SWIR 2 (2107–2294 nm) 30 m 
B8 NIR 1 (785–899 nm) 10 m – 
B8A NIR 2 (855–875 nm) 20 m – 
B11 SWIR 1 (1565–1655 nm) 20 m – 
B12 SWIR 2 (2100–2280 nm) 20 m –  

a The band numbers reported for Sentinel-2 and Landsat data correspond to 
the original order for the respective sensors as described in their respective 
official documentation. 
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following. 
We assumed the field reference data (S) to be a simple random 

sample of size n, resulting in the BE estimator of the total 

τ̂BE =
A
n

∑n

i∈S=1
yi (1)  

where A =1,342,397 ha is the total land area of the study area, and yi is 
the ΔAGB over five years (Mg ha− 1), for the ith NFI field plot (i = 1, …, 
n). The variance of the total was estimated by 

V̂ar
(

τ̂BE

)
=

S2

n
A2 (2)  

where S2 is the sample variance 

S2 =
1

n − 1
∑n

i=1
(yi − y)2 (3)  

and y is the sample mean. 
For MA estimation, the ΔAGB models devised in sub-section 2.4.1 

using bi- or uni-temporal data from Sentinel-2 or Landsat data were 
applied to each pixel in the study area. The pixel-predictions were then 
masked using the available forest mask to exclude non-forest areas 
resulting in a synthetic estimate of ΔAGB. Furthermore, a binary indi
cator variable I defined whether the plot was forested (I=1) or not (I=0) 
according to the NFI. The MA estimator of total ΔAGB was 

τ̂MA = A
1
N

∑N

k=1
ŷk +A

1
n
∑n

i=1
εi (4)  

where ŷk are pixel-level ΔAGB predictions, N is the number of pixels 
within the forest mask and εi is the residual 

εi = yi −

(

ŷiIi

)

(5) 

where ŷi is the plots’ predicted ΔAGB and Ii the indicator variable. 
The first component of eq. 4 represents the synthetic (map-based) esti
mator, and the second component is an estimated correction factor. The 
MA variance was estimated according to 

V̂ar
(

τ̂MA

)
=

A2

n(n − 1)
∑n

i=1
(εi − ε)2 (6)  

where ε is the mean residual. 
Finally, the BE and MA estimates were compared by the relative 

efficiency (RE), calculated as the ratio V̂ar
(

τ̂BE

)

/ V̂ar
(

τ̂MA

)

where the 

latter was estimated either using Sentinel-2 or Landsat data. The RE was 
used to describe the relative improvement in the model-assisted esti
mates’ precision over the direct estimates. As the study population 
included only forest areas, the ΔAGB for plots outside forest areas (ac
cording to the NFI classification) was set to zero (Breidenbach et al., 
2020b). 

4. Results and discussion 

4.1. Models 

The bi-temporal Sentinel-2 model (see sub-section 2.4.1) included 
the index between the red-edge 3 (B7) and SWIR 2 (B12) in 2015 and 
2019 (Table 2). The selection of the same pair of bands in bi-temporal 
Sentinel-2 data is intuitive as it allows to link changes in AGB to 
changes in reflectance. On the other hand, the selected variables in the 
Landsat bi-temporal model were not paired and included the blue (B2) 
from 2015, and the red (B4) and the NIR band (B7) for 2019. The 

Fig. 2. Flowchart illustrating the different steps adopted to obtain estimates of ΔAGB and its uncertainty using either a model-assisted or a basic expansion estimator.  
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Sentinel-2 and Landsat variables in T2 were more strongly correlated to 
ΔAGB than those in T1, justifying the adoption of a uni-temporal 
approach. The maximum correlations were r = − 0.65 for Sentinel-2 
SWIR2 and r = − 0.6 for Landsat’s SWIR2 in T2 and r = − 0.15 for 
Sentinel-2 red and r = − 0.06 for Landsat’s SWIR2 band in T1. When 
using only satellite optical data from T2, the Sentinel-2 model included 
the ratio between the red (B4) and the red-edge 3 (B7), and the ratio 
between the red and a SWIR1 band (B11). The Landsat uni-temporal 
model included the NIR (B5) and a SWIR 2 (B7). 

For the period 2014–2019, the Sentinel-2 models had better model fit 

(Adj.R2 = 0.61–0.64) than the Landsat ones (Adj.R2 = 0.46–0.56). The 
uni-temporal data was characterized by a greater decrease in the 
model’s explanatory power than bi-temporal data. Compared to previ
ous studies adopting a direct modeling approach for ΔAGB estimation in 
boreal forests, the models devised in this study performed better than 
InSAR data (R2 in the range 0.2–0.6) (Næsset et al., 2015) and ALS data 
in montane forests (R2 = 0.28) (Bollandsås et al., 2018). On the other 
hand the model fit was poorer than what was previously found when 
using ALS data in productive forests (i.e., Adj. R2 in the range 0.6–0.9) 
(McRoberts et al., 2015; Næsset et al., 2013). While ALS data are the 
state-of-the-art source of auxiliary information for forest AGB modeling, 
its large acquisition costs make it unsuitable for long-term, continuous, 
and nationwide AGB monitoring programs. 

Interestingly, the uni-temporal ΔAGB models using Sentinel-2 or 
Landsat data for the period 2010–2015 had a notably poorer fit (Adj.R2 

= 0.24–0.25) compared to the 2014–2019 models (Adj.R2 = 0.41–0.61). 
In addition to variations in the quality of the satellite image mosaics in 
2015 band 2019, important factors explaining this decreased model 
performance relate to the differences in harvest extent and intensity, and 
in the NFI sample plots available for the two studied periods. During the 
2010–2015 period, only 20 NFI plots had a negative ΔAGB, compared to 
33 in the 2014–2019 period. Along with an increase in harvested area, 
the available NFI data revealed an increase in the magnitude of the re
movals between the 2010–2015 (− 59.42 Mg ha− 1 on average) and the 
2014–2015 period (− 70.15 Mg ha− 1 on average). These figures suggest 
that the quality of the model fit is somewhat related to the number of 

Table 2 
Summary of the ΔAGB models for Sentinel-2 and Landsat.  

Period of 
interest 

Auxiliary 
data 

Model 
type 

model Adj. 
R2 

2014–2019 Sentinel-2 Bi- 
temporal 

ΔAGB = − 79.86 − 137.32 
B7/12

2015 + 284 B7/12
2019 

0.64 

Uni- 
temporal 

ΔAGB = − 185.93 − 485.72 
B4/7

2019 + 301.76 B4/11
2019 

0.61 

Landsat Bi- 
temporal 

ΔAGB = − 32.53 + 0.071 
B2

2015 − 0.050 B7
2019 −

94.69 B4/7
2019 

0.56 

Uni- 
temporal 

ΔAGB = − 0.04 + 0.0095 
B5

2019 − 0.04 B7
2019 

0.46 

2010–2015 Sentinel-2 Uni- 
temporal 

ΔAGB =− 108.9 + 198.9 B6/ 

12
2015 

0.25 

Landsat Uni- 
temporal 

ΔAGB =36.34 + 0.0068 
B5

2015 − 0.0189 B6
2015 

0.24  

Fig. 3. Observed (NFI) vs. predicted ΔAGB using either Sentinel-2 or Landsat data and using bi-temporal data or uni-temporal data. The perpendicular lines represent 
the 0,0 origin, and the dashed line is the 1:1 line. The inset scatterplots show a detail between − 50 Mg ha− 1 and 50 Mg ha− 1. 
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available field plots with AGB losses and the magnitude of those losses. 
The analysis of the predictions of the Sentinel-2 models (see Fig. 3) 

revealed a general tendency of to under-predict the ΔAGB in plots 
characterized by AGB losses. The Sentinel-2 and the Landsat based 
ΔAGB predictions were negative for 84% and 69% of the plots with 
observed AGB loss. As visible in the detailed scatterplots around ±50 
Mg ha− 1 in Fig. 3, most of the observations consisted in subtle AGB 
gains. 

While the scope of this study was to estimate net AGB changes, 
Table 3 shows that the coefficient of determination (R2) between the NFI 
ΔAGB and the models’ predictions was on average larger for plots with 
AGB loss (R2 = 0.43) compared to plots with AGB gains (R2 = 0.17). 
Such figures indicate a limited ability of the model to support the esti
mation of the gains due to the small magnitude of the gains and the 
difficulty to derive reflectance features that can properly explain 
different forest growth patterns. This highlights an important challenge 
in fitting a single model to data characterized by AGB gains and losses. In 
managed boreal forests, due to the slow growth of the forest, the gains 
are generally of smaller magnitude than the losses, which in contrast are 
mostly abrupt losses of large AGB stocks due to full harvest of the trees. 

An example of the predictions for the bi-temporal Sentinel-2 data is 
shown in Fig. 4. It is possible to clearly identify harvested areas and 
different growth rates in forests with different developmental stage. 
Unlike previous studies on direct ΔAGB estimation (McRoberts et al., 
2015; Næsset et al., 2013), no truncation of the models’ predictions was 
deemed necessary. Only 0.6% and 1.4% of the Sentinel-2 and Landsat 
pixels respectively were outside the range of values in the sample. To 
further use the models devised in this study for estimation purposes, we 
reported the variance-covariance matrices in Annex 1. 

4.2. Estimation 

The BE estimate of ΔAGB based exclusively on NFI data was 0.12 Gg 
with a SE = 2.94 Gg (Table 4). For the studied period, the ΔAGB was 
smaller than any of the previous five-years NFI cycles from 2010 until 
2018 (see Fig. 4). This was mainly due to a larger number of plots with 
AGB loss during the studied period (2014–2019) compared to the earlier 
periods. Compared to previous studies conducted on a smaller scale in 
Norway using airborne laser scanning, our estimate of the average 
yearly ΔAGB (0.03 Mg ha− 1 year− 1) was smaller than the one reported 
by Næsset et al. (2013) (2000–2010 period; 1.78 Mg ha− 1 year− 1), by 
Bollandsås et al. (2018) (2008–2012 period; 0.21 Mg ha− 1 year− 1), and 
by Strîmbu et al. (2017) (2006–2011 period; 1.27 Mg ha− 1 year− 1). Even 
though the above-mentioned studies were conducted in different areas 
and for different periods, their estimates were of similar magnitude as 
the BE estimates for the period 2010 and 2019 in this study (see Fig. 5). 

The model-assisted estimates of the total ΔAGB using the bi-temporal 
model were of 2.57 Gg (SE = 1.7 Gg) and 1.83 Gg (SE = 1.92 Gg) when 
using either Sentinel-2 and Landsat, respectively (see Table 4). When 
using uni-temporal data to estimate ΔAGB in the 2014–2019 period, the 
uncertainty of the estimates increased both for Sentinel-2 (SE = 1.84 Gg) 
and Landsat (SE = 2.16 Gg), with the latter being characterized by a 
larger change. While all the model-assisted estimates for total ΔAGB 
were larger than the direct estimate, they were well within its 95% 
confidence interval (see Fig. 5) and thus not significantly different from 

the direct estimate. On the other end, none of the estimates were 
significantly different from zero at 95% confidence level and the di
rection of the change could only be determined at 85% and 65% con
fidence levels for Sentinel-2 and Landsat data, respectively. For the BE 
estimates, the direction of the change could be determined at a confi
dence level of only 3%. In line with a previous study by Ene et al. (2017), 
our results reflect an important challenge in estimating ΔAGB in situa
tions where the magnitude of ΔAGB is small which requires very precise 
estimates to allow for determining the direction of the change with 
sufficient confidence. In our specific case, the small magnitude of the 
estimated ΔAGB could be mainly attributed to an active management of 
the forests for timber production with the removals approximately 
equaling the forest growth. 

Because the estimators used in this study were either unbiased or 
nearly unbiased (Särndal, 1984), the point estimates’ differences can be 
attributed to random variations (McRoberts et al., 2015). A potential 
reason behind such variations may be due to the nature of the satellite 
cloud-free mosaics, which, by blending multi-date imagery, are char
acterized by heterogeneous sun-target-sensor geometry and atmospheric 
conditions. This variation is further exacerbated when using bi-temporal 
mosaics due to the compound effect of random variations in reflectance 
from two points in time. 

In this study, Sentinel-2 data for T1 were available only from 2015, 
and thus the temporal mismatch between the NFI data collection in 2014 
and the remotely sensed data may have caused a reduction in the 
detectable AGB losses. While this temporal mismatch may be a draw
back of this study, model-assisted estimates based on Landsat data from 
2014 and 2019 (2.38 Gg; SE = 1.89 Gg) were of similar magnitude and 
without an appreciable increase in precision compared to when using 
Landsat data from 2015 and 2019. Such a result shows the viability of 
the proposed method even when the remotely sensed data does not 
perfectly match the timing of the field reference data acquisition. This 
characteristic may be particularly attractive for passive optical data as it 
allows to draw satellite images from a broader time window, thus 
increasing the chances of having a pair of cloud-free mosaics. 

The relative efficiency (RE) of the MA estimates was 2.7 and 2.3 for 
the estimates using bi-temporal data and either the Sentinel-2 or the 
Landsat data, respectively (see Table 5). This translates into the need for 
nearly three times the number of NFI plots to obtain the same accuracy 
level as for the model-assisted estimate based on Sentinel-2 data. The 
relative efficiency found in this study was smaller than the range in REs 
reported by Næsset et al. (2013), Næsset et al. (2015), and McRoberts 
et al. (2015) for the direct model-assisted estimation of ΔAGB over 10 
years using ALS data (RE = 3.1–10). When compared to the RE for InSAR 
data, our study found a larger RE than an earlier study by Næsset et al. 
(2015), where the RE was in the range of 1.8–2.5. Regarding the uni- 
temporal estimates, during the 2014–2019 period there was a 
decrease in RE when using uni-temporal instead of bi-temporal data. The 
decrease in RE was larger for Landsat (21%) than for Sentinel-2, for 
which the RE was only 7% smaller than when using bi-temporal data. 
For the 2010–2015 period the RE was only 1.3, representing a 30% - 
50% reduction compared to the uni-temporal estimated for the 
2014–2019. Such large variability in the precision of the ΔAGB esti
mates trough time may be due to factors related either with the quality 
of the remotely sensed data or the activity data. Based on the high 
quality of the Sentinel-2 mosaics used in this study, which were pro
duced using single date imagery covering most of the study area (2015 
and 2019), we can attribute a good portion of the decreased precision to 
the fact that in the 2010–2015 there was less forest harvesting activity in 
the study area. In line with the better model fit to NFI plots with AGB loss 
compared to gain plots (see Table 3), these results suggest that the 
precision of the estimates increases with the level and intensity of forest 
harvesting, which was also observed by Breidenbach et al. (2021) for 
carbon-stock losses. The better performances may be driven by a 
stronger signal (i.e. steeper AGB change) which can also be more easily 
detected in satellite imagery (i.e. harvested areas) compared to slow 

Table 3 
Coefficient of determination (R2) of the models’ ΔAGB and AGB gains and losses 
using either Sentinel-2 or Landsat data for each of the studied periods.  

Remotely Sensed data 2014–2019 2010–2015 

Bi-temporal Uni-temporal Uni-temporal 

gain loss gain loss gain loss 

Sentinel-2 0.13 0.62 0.19 0.51 0.32 0.23 
Landsat 0.04 0.57 0.14 0.35 0.24 0.33  
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growing forests. The proposed uni-temporal approach is therefore a 
potentially useful solution for those cases where remotely sensed data 
are limited in time or due to frequent cloud cover. Based on our results, 
future studies should further address the underlying causes and possible 
ways to mitigate the variation in the precision of ΔAGB estimates 

through time. 

4.3. Comparison between Sentinel-2 and Landsat data 

Based on this study’s results, we found that Sentinel-2 data produced 
more precise estimates of ΔAGB than Landsat data. This could be partly 
attributable to the finer spatial (Mascorro et al., 2015), spectral, and 

Fig. 4. Predicted ΔAGB based on the bi-temporal Sentinel-2 model over the entire and in a detailed area. Harvested areas are given in shades of red while different 
growth rates for forests are visible in shades of green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 4 
Estimated total change in above-ground biomass (τ̂; Mg).  

Period of 
interest 

Availability of 
remotely 
sensed data 

BE MA Sentinel- 
2 

MA Landsat 

Tot 
(Gg) 

SE 
(Gg) 

Tot 
(Gg) 

SE 
(Gg) 

Tot 
(Gg) 

SE 
(Gg) 

2014–2019 Bi-temporal 0.12 2.94 2.57 1.7 1.83 1.92 
Uni-temporal 1.56 1.84 2.33 2.16 

2010–2015 Uni-temporal 6.12 2.36 4.51 2.03 5.87 2.04  

Fig. 5. Total estimated ΔAGB and 95% confidence intervals for the direct estimate and model-assisted estimates using either Sentinel-2 (MA Sentinel-2) or Landsat 
data (MA Landsat) and using either bi-temporal or uni-temporal mosaics. The gray bands highlight the NFI inventory periods of interest in this study. 

Table 5 
Relative efficiency for the model-assisted estimates of ΔAGB using either 
bitemporal or uni-temporal data from either Sentinel-2 or Landsat.  

Period of interest Availability of remotely sensed data Sentinel-2 Landsat 

2014–2019 Bi-temporal 2.7 2.3 
Uni-temporal 2.5 1.8 

2010–2015 Uni-temporal 1.3 1.3  
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temporal resolution of Sentinel-2 data compared to Landsat data. In 
addition to data-specific differences, variations in the mosaicking 
methods may have affected the model fit of these two models. In 
particular, the Sentinel-2 mosaic was generated from summer-only ac
quisitions, while Landsat GLAD ARD mosaic was generated using an 
average from a gap-filled yearly stack of images. The latter approach 
may have introduced a larger variation in the reflectance values. The 
Sentinel-2 mosaics may have been more phenologically consistent by 
adopting a narrow timeframe, thus explaining the stronger model fit. 
Furthermore, the differences in the mosaicking algorithm may have 
affected different data qualities. While out of this study’s scope, further 
research should assess how the different mosaicking methods used for 
different types of ARD such as the UMD ARD or the Copernicus Sentinel- 
2 global mosaic (Copernicus, 2020b) affect the model fit and thus the 
precision of the ΔAGB estimates. 

Even though estimates based on Landsat data were less precise than 
Sentinel-2, it was encouraging to see that when using globally available 
ARD products (e.g., UMD ARD data), the decrease in precision compared 
to a custom dataset (i.e., Sentinel-2) was only marginal. The main 
advantage of using Landsat data in combination with NFI data is that it 
allows us to retroactively estimate AGB dynamics for past NFI inventory 
cycles, which is impossible for Sentinel-2. Thus, if Sentinel-2 may 
become the standard for future ΔAGB estimation (GFOI, 2020), Landsat 
data can form the backbone for a retroactive estimation of AGB dy
namics. Further efforts should be devoted to exploring synergies be
tween Sentinel-2 and Landsat data concerning the generation of cloud- 
free mosaics drawing both from Sentinel-2 and Landsat (Saunier et al., 
2019; Shao et al., 2019). Such data products could benefit from the 
availability of a denser image time series because of the increased 
chances of cloud-free imagery, thus ensuring a continuous monitoring of 
forest AGB dynamics. 

4.4. Comparison between using bi- or uni-temporal satellite data 

During the 2014–2019 period, we found that there was only a small 
increase in precision when using bi-temporal data compared to uni- 
temporal data, indicating that ΔAGB could also be estimated when 
remotely sensed data are available only from the end of the monitoring 
period. A possible explanation behind such findings is that the magni
tude of change in AGB is partly explained by the forest canopy’s 
reflectance properties in the different developmental stages (AGB gain) 
or of harvested sites (AGB loss). The quantification of the AGB gains 
reflects differences in the reflectance due to the forest’s phenology 
during different developmental stages and thus with different growth 
patterns. On the other hand, the possibility of estimating AGB losses 
might be related to variations in reflectance driven by differences in the 
cover and floristic compositions of post-harvest ground vegetation. This 
is in line with the findings by Bergstedt and Milberg (2001) who, using 
Swedish NFI data, found that post-harvest ground cover vegetation and 
floristic composition were strongly correlated to the logging intensity (i. 
e., extracted timber volume). The main advantages of using remotely 
sensed data for only the end of the monitoring period are: 1) no 
requirement of availability of two cloud-free mosaics, and thus increases 
the years for which ΔAGB estimates may be possible, and 2) retroac
tively estimate ΔAGB for inventory cycles before the existence of a 
particular data source. The latter is particularly relevant for Sentintel-2 
data, which are available only since 2015, and thus only changes after 
2019 can be estimated based on bi-temporal data. On the other hand, 
using uni-temporal Sentinel-2 data allowed us to estimate ΔAGB that 
occurred before 2015 (e.g., NFI cycle between 2010 and 2015). 

4.5. Scalability 

Our study is part of the ongoing global research effort aiming on 
improving methods for reliable and consistent greenhouse gras in
ventories in order to fully understand and utilize the climate mitigation 

potential of forests. Given that Sentinel-2 were available only since 
2015, the main merit of this study is to represent some of the first results 
to understanding how these data can be used for ΔAGB estimation at a 
regional scale. The extent of the study area was constrained by the 
availability of cloud-free Sentinel-2 data in 2015. Even though limited 
compared to the nationwide availability of NFI, the size of our study area 
(13,659 km2) remains the largest amongst other studies estimating 
ΔAGB such as Næsset et al. (2013), Bollandsås et al. (2013)and McRo
berts et al. (2015) (8–10 km2), or even Strîmbu et al. (2017)(9758 km2). 
When considering the geographical scalability of the methods described 
in this study to broader scales, one must be aware of a potentially larger 
heterogeneity in the image mosaics’ quality due to increased cloud 
cover, seasonal variations, and variations in atmospheric conditions. 
The increased variability in the quality of the predictor variables is likely 
to have a negative effect on the model fit and thus on the precision of the 
ΔAGB estimates. Furthermore, more complex vegetation dynamics and 
drivers of change can be expected when increasing the geographical 
extent. As seen by the comparison of the ΔAGB estimates from uni- 
temporal remotely sensed data in the two studied time periods, the 
more precise estimates were found for the 2014–2019 period during 
which there was a larger number of harvested areas and with larger 
biomass removals. This indicated that the method is more efficient in 
areas characterized by active forest management with substantial AGB 
losses compared to un-productive and set-aside areas. Of particular in
terest in regard to satellite imagery is the presence of biotic (e.g. bark 
beetle attacks) and abiotic damages (e.g. forest fire), which can sub
stantially alter the canopy reflectance but have a limited impact on the 
AGB dynamics compared to forest harvest. The extensive presence of 
forest damages could therefore challenge the ΔAGB modeling in certain 
areas and thus the precision of the resulting estimates. 

In this study, a probability sample of field data were available and 
thus we could adopt a model-assisted inferential framework, thus 
providing an understanding of the value of satellite imagery for ΔAGB 
estimation in a best-case scenario. Nevertheless, in most areas in the 
world probability samples with repeated AGB measurements are un
available and therefore different methods and estimators must be 
adopted. In realms without repeated field measurements, the gain-loss 
method should be used (GFOI, 2020) according to which satellite im
agery only provide the activity data regarding the land use changes. 

A further aspect to consider is that we used an existing nationwide 
forest mask to delineate the studied population (i.e., forests) and exclude 
model predictions from non-forest areas. When extending our method to 
areas outside of Norway, there is a need for a global forest mask with 
consistent accuracy. Several options exist nowadays as a global source 
forest non-forest maps such as the tree cover dataset for the year 2000 
produced using Landsat 7 ETM (Hansen et al., 2013), the forest/non- 
forest map produced from TanDEM-X data (Martone et al., 2018) or 
the future availability of the WorldCover map at 10 m resolution (ESA, 
2020). While several masks may be used, further studies should inves
tigate the effect of using different forest masks on the estimates’ 
precision. 

The temporal scalability of the proposed method also is of interest. 
While we only looked at a single five-year period, the described method 
can be applied retroactively to improve the precision of time series of 
∆AGB estimates from past inventories, thus defining more accurate 
baselines. In such a context, Landsat data can prove invaluable as they 
provide a multi-decadal time-series dating back to the 1970s. With that 
in mind, it remains important to acknowledge the varying data quality 
for the different Landsat missions. 

5. Conclusion 

This study is the first example of a direct model-assisted estimation of 
ΔAGB using freely available satellite optical data. Based on the results of 
this study, our conclusion is fourfold: 
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- The use of auxiliary data from freely available satellite imagery can 
boost the precision of regional field-based estimates of forest ∆AGB. 
Such a result is encouraging for future use alongside NFI programs to 
provide a more precise understanding of forests’ role in the carbon 
cycle.  

- The most precise ΔAGB estimates were found to be based on bi- 
temporal Sentinel-2 data, followed by the use of uni-temporal 
Sentinel-2 data. Even though Landsat data resulted in a smaller 
precision of the estimates compared to Sentinel-2, their use for 
improving past AGB estimates could prove to be useful. 

- Uni-temporal data can be used for estimating AGB dynamics in sit
uations where remotely sensed data may be missing at the beginning 
of the monitoring period.  

- The ΔAGB estimates were more precise for the five-years period 
during which more harvested plots and with larger AGB losses 
occurred, indicating a better performance of the proposed methods 
in areas with active forest management or with larger AGB losses. 

This study represents a step towards a better understanding of the 
value of freely available satellite imagery for the future monitoring of 
AGB dynamics. Our results were encouraging on a regional scale and for 
a specific point in time. However, there is need to understand how 
efficient the method is on broader scales with more diverse forest types, 
drivers of change, and variations in quality of the satellite imagery. In 
the future, the increased availability of longer and denser time-series of 
satellite data will allow to address the abovementioned research 
questions. 
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