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Highlights
• Hyperspectral imagery can be used to detect Root, Butt, and Stem Rot in Picea abies with 

moderate accuracy.
• Spectral derivatives improved classification accuracy.
• Bands around 540, 700, and 1650 nm tended to be the most important for classification models.

Abstract
Pathogenic wood decay fungi such as species of Heterobasidion are some of the most serious 
forest pathogens in Europe, causing rot of tree boles and loss of growth, with estimated economic 
losses of eight hundred million euros per year. In conifers with low resinous heartwood such as 
species of Picea and Abies, these fungi are commonly confined to heartwood and thus external 
infection signs on the bark or foliage of trees are normally absent. Consequently, determining the 
extent of disease presence in a forest stand with field surveys is not practical for guiding forest 
management decisions such as optimal rotation time. Remote sensing technologies such as air-
borne laser scanning and aerial imagery are already used to reduce the reliance on fieldwork in 
forest inventories. This study aimed to use remote sensing to detect rot in spruce (Picea abies 
L. Karst.) forests in Norway. An airborne hyperspectral imager provided information for clas-
sifying the presence or absence of rot in a single-tree-based framework. Ground reference data 
showing the presence of rot were collected by harvest machine operators during the harvest of 
forest stands. Random forest and support vector machine algorithms were used to classify the 
presence and absence of rot. Results indicate a 64% overall classification accuracy for presence-
absence classification of rot, although additional work remains to make the classifications usable 
for practical forest management.
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1 Introduction

Root, butt, and stem rot (RBSR) caused by pathogenic white-rot fungi is a major problem in 
conifers with low resinous heartwood, such as species of Picea and Abies. Most of the damages 
are caused by basidiomycetes in the genera Heterobasidion and Armillaria. Since in stems these 
fungi are primarily confined to heartwood, the affected trees can survive even decades of infection 
as long as the root system remains sufficiently functional and the water-conductive sapwood does 
not become too diminished.

Approximately 80% of RBSR infection in Norway, at least at low altitudes, is caused by fungi 
from the genus Heterobasidion (Huse et al. 1994). Two species within this genus cause RBSR in 
Norway spruce (Picea abies L. Karst.) in northern Europe: Heterobasidion parviporum Niemelä 
& Korhonen and Heterobasidion annosum s.s. (Fr.) Bref. Of the two, H. parviporum is more wide-
spread within Norway and is able to colonize a larger portion of the tree bole, commonly reaching 
heights of 4–7 m (Solheim 2006). Heterobasidion species spread through two mechanisms. Primary 
spread to a healthy forest stand occurs via airborne basidiospores released from fungal fruiting 
bodies on infested trees. These spores land on tree wounds, or on fresh stumps after trees have 
been harvested. The secondary spread of the pathogen in an infested stand takes place via vegeta-
tive spread of its mycelia through root contacts between neighboring trees (Asiegbu et al. 2005).

Armillaria is the second most common genus of RBSR fungi in Norway, with four species 
known to be present (Roll-Hansen 1985). Unlike Heterobasidion, it is usually confined to the lower 
1–2 meters of the tree bole (Solheim 2006). Armillaria causes the heartwood of spruce trees to 
completely rot away, leaving a hollow core. Spread occurs in a similar manner to Heterobasidion, 
although Armillaria rhizomorphs can spread through the soil (Redfern and Filip 1991), whereas 
mycelial spread of Heterobasidion in spruce forests is believed to require direct root contact 
(Hodges 1969).

In Norway, RBSR fungi primarily infect Norway spruce, although Scots pine (Pinus sylves-
tris L.), and birch species are also susceptible. By damaging wood in the lower bole, the fungus 
renders potential sawtimber suitable only for pulpwood or energy purposes, as rotten wood lacks 
the strength required for sawtimber. This reduces the economic value of the infected tree. Further-
more, infection by RBSR can reduce the growth rate of trees, leading in turn to both economic 
losses and reduced carbon sequestration (Oliva et al. 2012). Within Norway, RBSR is estimated 
to infect one out of every five Norway spruce trees, leading to about 10 million Euros worth of 
economic damage every year (Huse et al. 1994).

Heterobasidion and Armillaria are also serious forest pests outside of Norway. In Europe as 
a whole, damage from Heterobasidion is estimated to be greater than 800 million Euros per year 
(Asiegbu et al. 2005). Heterobasidion annosum s.s. is particularly destructive due to its tendency 
to kill infected pine trees. Other Heterobasidion species are present in North America, where they 
are native to both the western and eastern parts of the continent. In central North America, Heter-
obasidion irregulare Garbel. & Otrosina is invasive (no native Heterobasidion species are present 
in the region), and currently poses a threat to native pine trees (Otto et al. 2021). Heterobasidion 
species are difficult to eradicate from a stand due to their ability to survive in roots after trees have 
been cut, and certain species are capable of virtually destroying pine plantations.

Field identification of RBSR-infected spruce trees is difficult. At an advanced stage of root 
and stem decay, trees may show visual signs of infection such as increased resin production and 
occasionally yellowing of tree crowns. However, Vollbrecht and Agestam (1995) found that pro-
fessional foresters were unable to outperform random selection when identifying RBSR-infected 
spruce trees at a series of sites in Sweden. Kurkela (2002) found similar results for Scots pine in 
Finland: while visible crown variables such as density, crown length, and foliage color were cor-
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related with infection severity, attempts to classify infected trees in the field yielded poor results. 
Since there may not be visual signs of infection, detection of RBSR infection requires coring trees, 
a costly procedure when applied on a large scale. Furthermore, the cost of field surveys means that 
only selected field plots can be sampled during normal forest inventory procedures, limiting our 
ability to map the presence of RBSR at a landscape scale. These points suggest that remote sens-
ing may be a useful alternative or complement to field surveys. Since remotely sensed data can be 
collected wall-to-wall throughout a study area, it may be possible to map the presence of RBSR 
throughout any particular stand. The ability to identify infected trees could inform treatment and 
forest management decisions. For example, heavily infected stands may require early tree harvest-
ing to minimize economic losses from RBSR. In some cases, it may be desirable to plant a mix 
of tree species to reduce the prevalence of the disease. Finally, early detection of invasive RBSR 
fungi in areas where they are not endemic could allow for control measures to be taken to limit the 
spread and ensuing ecological damage. The current spread of H. irregulare in Italy (Gonthier et al. 
2012), a North American species introduced accidentally to Europe, serves as one example here. 
Possible control measures include logging during periods of low spore abundance and treating cut 
stumps with borax to prevent spore germination (Garboleto and Gonthier 2013).

Hyperspectral imagery and other remote sensing technologies have been well studied as a 
means to identify plant health issues, including plant diseases. Some of the health issues which 
have been studied with remote sensing include bark beetle infestations (Meddens et al. 2013), stress 
from elevated soil carbon dioxide (Male et al. 2010), nutrient levels (Peng et al. 2020), and water 
stress (Fensholt et al. 2010; Behmann et al. 2014). With reference to optical remote sensing in 
particular, there are several portions of the electromagnetic spectrum which can provide informa-
tion on plant health. The visible portion of the spectrum is influenced by the amount of chlorophyll 
and other pigments in foliage. Chlorophyll absorbs blue and red light most strongly, leading to 
low reflectance in these bands. In the near-infrared (NIR) portion of the spectrum, reflectance is 
primarily determined by the cellular structure of leaves. The boundaries between mesophyll cells 
and air scatter infrared light, while there is little absorption from plant pigments. Consequently, 
healthy vegetation will have high reflectance in the NIR. Unhealthy vegetation with lower chlo-
rophyll content or altered internal leaf structure will tend to have a smaller difference between the 
red and near-infrared reflectance than healthy vegetation (Male et al. 2010). Specific bands in the 
red and red-edge are influenced by chlorophyll fluorescence, which in turn reflects the health of 
vegetation. Shortwave infrared (SWIR) bands may respond to plant water content, which is often 
reduced in stressed vegetation. Water is particularly absorbent in bands around 1450 nm and 1800 
nm, and healthy vegetation with high water content may show reduced reflectance in these bands 
compared to stressed vegetation (Fensholt et al. 2010).

To date, there has been relatively little research focused on the detection of root and stem 
rot fungi in trees via remote sensing. Much of the work which has been done has focused on detec-
tion of decay associated with white-rot fungi of the genus Ganoderma in oil palm plantations. 
Ganoderma species can kill oil palm trees quickly (within 6–12 months) and cause severe yel-
lowing of the foliage which is observable by humans during field inspection (LeLong et al. 2010). 
LeLong et al. (2010) classified the presence of this disease according to the severity of infection 
and obtained classification accuracies greater than 90%, showing that some fungal diseases of trees 
can be identified with remote sensing.

Leckie et al. (2010) classified the severity of infection with the white-rot basidiomycete 
Phellinus weirii (Murill) Gilb. in Douglas fir forests of British Columbia, Canada using a multi-
spectral sensor. Their classification scheme included eight classes, and they achieved a classifica-
tion accuracy of 62.5%, rising to 82% when errors of +/–1 severity class were tolerated. Similarly 
to Ganoderma spp. on oil palm, P. weirii can cause extensive needle yellowing and defoliation, 
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and even tree death. In Norway spruce, Heterobasidion and Armillaria often produce no visual 
changes to foliage, and rarely cause death. As a result, P. weirii should be expected to be easier to 
detect with remote sensing than Heterobasidion and Armillaria species infecting Norway spruce. 
Kankaanhuhta et al. (2000) used multispectral imagery in an area-based framework to detect 
RBSR on Norway spruce and Scots pine in southern Finland, and the results of this study confirm 
this expectation. Their method failed to detect infection in spruce trees but succeeded at detecting 
Heterobasidion infection in pine. This result is likely due to the greater effect which Heterobasidion 
has upon foliage color and crown density in pine than in spruce. Heterobasidion associates strongly 
with sapwood in pine (but not in spruce), triggering excessive resin production in response which 
disrupts water transport in sapwood, which in turn affects foliage health.

In contrast to Kankaanhuhta et al. (2000), who relied on multispectral imagery, our study 
uses hyperspectral imagery. Hyperspectral sensors gather information across a wider portion of 
the electromagnetic spectrum than multispectral sensors, which are limited to a small number of 
bands covering a narrow portion of the spectrum. The continuous spectral coverage of hyper-
spectral sensors allows for the detection of spectral differences which may not be detected with 
multispectral sensors.

There were two primary goals to this study. The first was to assess whether hyperspectral 
imagery would allow for the identification of RBSR infected trees. Secondarily, the study aimed to 
discover which spectral bands respond the most strongly to RBSR infection, either due to changes 
in plant pigments or water content. Determining the most important spectral bands could help to 
guide future instrument selection for remote sensing-based studies of RBSR prevalence.

2 Material and methods

2.1 Study area

The study area is located in Etnedal municipality, southeastern Norway (60°53´N, 09°42´E), cover-
ing 1020 hectares (Fig. 1). The area has steep terrain, with elevation ranging from ~300 to 750 m. 
Forest cover is dominated by Norway spruce, with Scots pine and birch species also present.

2.1.1 Ground reference data

Ground reference data were collected by a cut-to-length harvester equipped with accurate position-
ing systems (Noordermeer et al. 2020). The harvest machine was equipped with a high accuracy 
differential Global Navigation Satellite Systems (GNSS) receiver. As the harvester head grabbed 
each tree, sensors recorded the location of each tree relative to the machine cabin. In this way, a 
complete stem map of each harvested stand with single-tree coordinates with sub-meter accuracy 
can be provided (Noordermeer et al. 2020). All harvesting was conducted within six months after 
the remotely sensed data were collected. This method resulted in the collection of data from 7288 
spruce trees within our study area. Field control measurements of 288 randomly selected trees using 
survey-grade GNSS receivers have shown a mean distance of 0.88 meters between the harvester 
positioning and the control measurements. Of these control trees, 140 were located within the area 
of the current study. For these trees, distances between harvester positioning and control measure-
ments ranged from 0.20 to 1.27 m, with 0.69 and 0.71 m as mean and median, respectively (Site 6, 
Noordermeer et al. 2020). These figures should be generally representative of the accuracy of the 
harvester-derived tree positions. One caveat, however, is that the harvester has a telescopic boom 
which varies in length from 0 to 2.14 m, and this length is not recorded by any sensor. When tree 
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positions are determined, the boom is assumed to be in the middle position (1.07 m), as visual 
assessments during the field work indicated that most control trees were felled with the telescopic 
boom in an approximate middle position. In very steep terrain, the telescopic boom may be fully 
extended more frequently, and the accuracy of the tree locations may suffer somewhat. At most, 
mean positioning errors could increase to 1.07 m, and this would only occur if the boom was fully 
extended all of the time, which is an unlikely scenario.

As the trees were cut, the machine operator recorded the presence or absence of RBSR by 
visual assessment, as well as a quantitative visual assessment of rot severity, expressed as a per-
centage of the cross-sectional area of the tree, in two classes (0–50%, 51–100%). Furthermore, 
tree diameter was recorded automatically at 10 cm intervals along the bole, allowing for estimates 
of tree height and volume to be made with the use of allometric models. Rot height was estimated 
for each of the two rot classes by taking the halfway point between the last cut with rot in a given 
category, and the subsequent cut. For example, suppose that a cut was placed at a height of 5 m, 
and the area covered by rot was between 0 and 50% of the stem area, while the next cut was placed 
at a height of 9 m, and no rot was present. The maximum rot height for the 0–50% class would be 
recorded as 7 m. This method implies there is an uncertainty associated with the rot height, but it 
is the best estimation method possible with the data. Further, this error is likely purely random, 
i.e., without any systematic component.

Of the 7288 spruce trees in the dataset, 1652 suffer from RBSR. Without genetic analysis, it 
is impossible to ascertain the fungal species responsible for infection. However, unpublished data 
from a study by Huse et al. (1994) indicates that in Etnedal municipality, 62% of RBSR-infected 
trees were infected with Heterobasidion alone, 15% with Armillaria alone, and 13% with both 
Heterobasidion and Armillaria. Other fungal species accounted for only 11% of infection in their 
data. Thus, it is likely that the majority of RBSR-infected trees in our study area are infected with 
members of the genera Heterobasidion and Armillaria.

Fig. 1. Map of root, butt, and stem rot study area (yellow) in Etnedal. Location within Norway shown on left.
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2.1.2 Remotely sensed data

Hyperspectral images were collected for the study area on August 3rd, 2019 using a fixed wing 
aircraft carrying two HySpex sensors: VNIR-1800 and SWIR-384. The flying altitude was 1150 m 
above the ground, and a terrain-following strategy was utilized. VNIR images contained 186 
bands covering 400 nm to 1000 nm, with a bandwidth of 3 nm and spatial resolution of 30 cm. 
SWIR images consisted of 288 bands spanning from 950 nm to 2530 nm with a bandwidth of 
approximately 5 nm and a spatial resolution of 80 cm. For the purposes of analysis, the SWIR 
images were resampled to 30 cm to match the pixel sizes for the shorter wavelengths. Resampling 
was performed via the nearest neighbor method to avoid alteration of values. The images were 
provided in the form of strips corresponding to each flight line and were subsequently mosaiced 
together. Images were normalized to one another based on pixel values in the overlap zones to 
correct for illumination differences between flightlines (Yuan and Elvidge 1996; Yu et al. 1999). 
No further atmospheric correction was applied, as all images were collected on one day within an 
86 minute period and each flight-line took only four minutes to fly. Previous studies have found 
minimal benefits to atmospheric correction when only one date of imagery is used (Lin et al. 2015). 
Airborne laser scanning (ALS) data were collected during the same flight with a point density of 
17.6 pts m–2 using the Leica ALS70-HP system.

2.2 Data preparation

For this study, an individual tree crown (ITC) approach was utilized. ITCs were delineated based 
on the ALS data collected concurrently with the hyperspectral data. ITCs were generated with the 
R package itcSegment (Dalponte 2018). This package creates a canopy height model (CHM) on 
the fly at a spatial resolution set by the user. Fine resolutions increase processing time, while coarse 
resolutions may lead to reduced segmentation accuracy. We set the resolution at 25 cm, based on 
experimentation which found this resolution to be satisfactory for producing accurate segments 
without excessive consumption of computing power. A 9 × 9 moving window was used to identify 
peaks in the CHM which correspond to the apexes of tree crowns. The ITCs were then grown 
outward until a maximum size was reached, or the CHM height fell below a certain percentage of 
the apex height (70% in this case).

Harvester data and remotely sensed data were linked via a matching procedure. The distance 
between each tree location from the harvester data and the centroid of each ITC was calculated in 
the X and Y directions. The difference in the Z direction was also calculated to reduce the chances 
of matching understory trees when overstory trees are a more appropriate match. The value of the 
CHM at each centroid was used as the height value for the ITCs, while heights for each tree were 
estimated from the diameter profiles recorded in the harvester data, using allometric models. Which-
ever tree was closest in terms of three-dimensional Euclidean distance was matched to that ITC. 
Only matches with distances <3 m were kept. This practice is intended to reduce faulty matches, 
which may be caused by inaccuracies in the tree positioning, or the ITC generation process.

For each ITC which possessed a matching harvested tree, the mean value of each spectral 
band from the hyperspectral data were computed, using the pixels falling within each ITC. Pixels 
with NDVI values less than 0.55 were treated as shadows and excluded from this mean value to 
reduce the effect of tree shadows on the means. Based on these mean values, several spectral indices 
were computed, and these are listed in Table 1. Spectral indices can help to account for variations 
in reflectance which are due to lighting, terrain, and other variables besides the inherent proper-
ties of the vegetation itself. Each index will also correlate with some vegetation property such as 
chlorophyll or water content, making these indices useful predictors of plant health (Zhou et al. 
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2020). The first and second derivative values for the spectral profile were also computed. Wu et 
al. (2020) used first derivatives and spectral indices to detect the presence of pine wood nematode 
(Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle) in Pinus massoniana Lamb., a disease 
which causes yellowing of foliage and rapid tree death. Their work motivated our interest in testing 
spectral derivatives. Similarly to spectral indices, spectral derivatives can correct for variations 
in lighting across an image, as derivatives measure not the value of spectral reflectance, but how 
quickly the reflectance is changing from one band to the next. Furthermore, some important spectral 
features, such as the “red edge” are defined in terms of spectral derivatives (Curren et al. 1991).

2.3 Statistical analysis

Classification analysis was conducted for this study, with the presence or absence of RBSR treated 
as the response variable. Spectral band values, indices, and spectral derivative values were the 
predictor variables. Two non-parametric modelling methods were utilized for classification: sup-
port vector machines (SVM) and random forest (Cortes and Vapnik 1995; Breiman 2001). Both of 
these methods have been shown to function well when input data exhibit multicollinearity, which 
is quite common for spectral data. We chose to use two modelling methods to see if one delivered 
superior classification results to the other. Including random forest modelling allowed us to gener-
ate variable importance metrics, which could potentially help guide the selection of spectral bands 
and indices for future research.

The full dataset was divided into training and testing datasets using a 70/30 split respec-
tively. Because non-RBSR trees were more abundant than RBSR trees, it was necessary to correct 
for imbalanced class sizes when performing classification. In the absence of such correction, the 
accuracy of the more abundant class would be maximized at the expense of the less abundant class. 
This was accomplished by resampling the data in a stratified manner with equal class sizes. Sample 
weights, which reduce the influence of outliers in the data, were also tested for SVM classification 
to see if they improved classification accuracy. Feature selection was also performed to reduce 

Table 1. Spectral indices and derivatives calculated from hyperspectral data.

Abbreviation Variable name Reference

NDVI* Normalized Difference Vegetation Index Rouse et al. 1973
SRI Simple Ratio Index Birth and McVey 1968
ARVI* Atmospherically Resistant Vegetation Index Kaufman and Tanre 1992
RENDVI Red Edge Normalized Difference Vegetation Index Sims and Gammon 2002
MRESRI Modified Red Edge Simple Ratio Index Datt 1999
MRENDVI Modified Red Edge Normalized Difference Vegetation Index Datt 1999
VREI1 Vogelmann Red Edge Index 1 Vogelmann et al. 1993
REPI Red Edge Position Index Curran et al. 1995
SIPI Structure Insensitive Pigment Index Penuelas et al. 1995
RGRI* Red Green Ratio Index Gammon and Surfus 1999
WBI Water Band Index Panuelas et al. 1993
NDWI Normalized Difference Water Index Gao 1995
MSI Moisture Stress Index Ceccato et al. 2001
NDII Normalized Difference Infrared Index Hardisky et al. 1983
Dvn1 First Derivative of VNIR Spectra
Dvn2 Second Derivative of VNIR Spectra
Dsw1 First Derivative of SWIR Spectra
Dsw2 Second Derivative of SWIR Spectra  

Astrices (*) indicate a broad-band index. All others are narrow-band.



8

Silva Fennica vol. 56 no. 2 article id 10606 · Allen et al. · Detection of Root, Butt, and Stem Rot presence in …

the dimensionality of the prediction data, using a method based on the Jeffries Matusita distance 
which has previously been used for tree species classification (Dalponte et al. 2008). This method 
does not select a set number of features, but rather selects the variables which provide the great-
est amount of information according to the Jeffries Matusita distance. We also attempted to tune 
the SVM and RF models by experimenting with different parameters. For SVM, the parameter 
C was varied from 1 to 1000. This parameter controls the influence of outlier datapoints on the 
classification mode. For RF, 500 trees were built and the number of variables at each node was 
varied between one and thirteen, with five delivering the optimum performance. Classification 
models were assessed based on the kappa statistic. Overall accuracy and the producer’s and user’s 
accuracies for each class also reported.

Once the classifications were completed, a binary logistic regression was performed to see if 
any characteristics of the trees could explain the likelihood of a tree being correctly or incorrectly 
classified. The predictor variables for this modelling included the Euclidean distance between the 
tree apex and the centroid of the matching ITC, the rot severity class, and tree diameter.

3 Results

Fig. 2 shows the average reflectance values for the various bands for the rot and non-rot class trees. 
The largest absolute differences are generally in the near infrared, along with some wavelengths in 
the shortwave infrared. Differences in the visible portion of the spectrum are rather small, which 
is consistent with the extreme difficulty involved in identifying RBSR infected spruce trees in the 
field from foliar signs alone.

Table 2 shows the five best classifications produced by SVM, as well as the best classifica-
tion without spectral derivatives. The confusion matrices can be found in Supplementary file S1 
available at https://doi.org/10.14214/sf.10606. The highest kappa value was 0.19, and the overall 
accuracy of this classification was 61.94%. All of the five best classifications used spectral deriva-
tives. The most accurate classification without these variables produced an overall accuracy of 
59.90% and a kappa of 0.180, as shown in the last line of Table 2. False positives were prevalent 
whether derivatives were included or excluded and in fact were more prevalent than true positives. 

Fig. 2. Spectral graph of hyperspectral data showing both uninfected (red) and infected (black) trees.

https://doi.org/10.14214/sf.10606
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There were no major differences in the characteristics of the correctly classified trees as opposed 
to those which were incorrectly classified. DBH did not significantly affect the likelihood that a 
tree was classified correctly, and neither did the Pythagorean distance between the tree and the 
ITC centroid of field data to ITC matching. Thus, it does not appear that errors in ITC matching 
can explain classification errors.

Random forest classification produced similar accuracies to SVM. Table 3 shows the confu-
sion matrix from the best random forest classification. The overall accuracy for this classification 
was 64.81%, with a kappa of 0.27. Interestingly, class accuracies were very similar to each other, 
with the producer’s and user’s accuracies of both the rot and rot-free classes falling between 
59.61% and 70.04%.

An advantage of random forest classification is the ability to produce variable importance 
assessments. For this reason, the effect of excluding certain variable classes was not shown as for 
SVM. The mean decrease in accuracy indicates how much the accuracy of the model decreases 
when a specific variable is removed, while the mean decrease in Gini reflects the additional het-
erogeneity introduced into the nodes and leaves of each tree when a variable is removed (Fig. 3). 
Spectral derivatives were the most important variables by far; nine out of the ten most important 
variables were spectral derivatives. This is true whether importance is measured by the contribution 
of the variable to model accuracy or its contribution to node purity. In particular, the derivatives of 
VNIR bands 86–96 (674–708 nm) and 43–44 (537–544 nm) tend to rank highly in importance, as 
do the derivatives of SWIR bands 124–126 (1576–1591 nm) and band 135 (1631 nm). The VNIR 
bands roughly correspond to the “red edge” of the electromagnetic spectrum along with two green 
bands, while the SWIR bands are centered around a local maximum in the reflectance of healthy 
vegetation, located between areas of atmospheric water absorption.

Table 2. Support vector machine (SVM) classification results of rot detection. 

Variable combinations1 PA-No Rot2 PA-Rot UA-No Rot3 UA-Rot OA4 Kappa

VNIR_INDEXES_Dvn2 61.21 64.40 85.44 32.7 61.94 0.190
VNIR_Dvn2 59.74 65.25 85.45 32.24 61.03 0.184
VNIR_SWIR_INDEXES_Dvn1_Dvn2 59.87 65.01 85.37 32.19 61.03 0.183
VNIR_SWIR_Dvn1 59.69 65.13 85.39 32.13 60.92 0.181
VNIR_SWIR_Dvn1_Dvn2 59.30 65.49 85.43 32.05 60.70 0.181
VNIR_SWIR 57.70 67.43 85.80 31.85 59.90 0.180
1 Variable combinations refer to the groups of variables which were included in the model. They are labelled as follows: VNIR: Aver-

age values of VNIR Bands; SWIR: Average Values of SWIR Bands; Dvn1: 1st derivatives of VNIR Bands; Dvn2: 2nd derivatives 
of VNIR Bands; Dsw1: 1st derivatives of SWIR bands; Dsw2: 2nd derivatives of SWIR bands; INDEXES: Spectral indices. For 
example, the model run labelled VNIR_INDEXES_Dvn2 included only VNIR spectral values, spectral indices, and second deriva-
tives of the VNIR bands. 

2 PA: Producer’s Accuracy.
3 UA: User’s Accuracy.
4 OA: Overall Accuracy.

Table 3. Confusion matrix for the best random forest classification of rot presence.

Reference
Prediction No Rot  Rot Total User’s Accuracy (%) 

No Rot 307 141 448 68.52
Rot 208 336 544 61.76
Total 515 477 992
Producer’s Accuracy (%) 59.61 70.04
Overall Accuracy 64.81 κ: 0.27
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4 Discussion

The results from this study suggest that classification of H. annosum presence or absence holds 
some promise, although substantial work remains to produce usable classifications. The primary 
problems with the current classifications are the high rate of false-positives, and the modest accu-
racies achieved by the classifications. While classification accuracies were above 60% overall 
for SVM, a majority of trees classified as infected were actually healthy. This problem was not 
observed in the random forest classification, which delivered balanced class accuracies where a 
majority of positives were true, rather than false. One possible cause of the high false positive rate 
is that some of these trees may have other health issues which are affecting the spectral properties 
of the foliage. Unfortunately, since other tree health issues were not recorded during the harvest, 
this hypothesis was not possible to test at the present time. It is also possible that some trees may 
have fungal infestation in the roots, but no rot within the stem. Since no root excavations were 
performed for this study, these trees would be labelled as healthy in our datasets, even though they 
are infected with RBSR.

Fig. 3. Variable importance plot from random forest classification of rot presence. Variables 
marked “Band” are average reflectance values; “Dvn” refers to a derivative of a band from the 
VNIR sensor, while “Dsw” refers to a derivative of a band from the SWIR sensor. The numbers 
after the variable name refer to the number of each band, or the spectral derivative thereof. 
MeanDecreaseAccuracy: decrease in model out-of-bag accuracy when a specific variable is 
removed. MeanDecreaseGini: additional heterogeneity introduced into the nodes and leaves of 
each tree when a variable is removed.
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Possible methods for reducing false positive rates include utilizing additional remotely sensed 
data and attempting other classification models. ALS data can supply information about tree crown 
shape and foliage density, which may be altered by the presence of RBSR. Zemaitis & Zemaite 
(2018) found that crown foliage density in Norway spruce was affected by RBSR (although the 
effect was rather small), while Pitkänen et al. (2021) found statistically significant differences in 
relative crown length between healthy and RBSR-infected Scots pine in Finland using terrestrial 
laser scanning (TLS) data. Future work should test whether these effects are detectable with ALS 
data. Furthermore, repeated ALS acquisitions could also allow for measurement of height growth 
over time (Noordermeer et al. 2020). If certain trees grow less than others, it could be due to decay 
related reduction in functional root and stem xylem, and allocation of resources to defense response 
at the interface between heartwood and sapwood, or to site conditions such as soil fertility. In this 
way, ALS may allow us to distinguish between trees on productive and unproductive sites, which 
could remove a confounding variable and reduce the false positive rate. This should be tested in 
future work.

False positives were also a significant problem for Leckie et al. (2004) in their attempt to 
classify Phellinus weirii, albeit less so than in our study. False positives were most common for 
lightly infected tree classes, with the false positive rate being much lower for heavily infected 
classes. In contrast to their results, our study did not find any significant difference in classifica-
tion accuracy depending upon the severity of rot infection in a tree. Trees in the low rot severity 
class were just as likely to be classified incorrectly as those in the high rot severity class, and the 
maximum rot height did not have any effect on the probability of incorrect classification.

The results of this study do not give the final answer regarding the most important bands and 
variables for identification of RBSR, but they are instructive. Spectral derivatives appear to increase 
overall classification accuracy and the kappa value. As both SWIR and VNIR band-derived vari-
ables were used for the best models, it appears that both spectral regions are useful for classifying 
the presence of rot, and future attempts to identify RBSR should make use of both, if possible. 
The most important bands (and their derivatives) were generally those around 700 and 1650 nm. 
Consequently, future research should attempt to make use of these bands, regardless of whether 
hyperspectral or multispectral sensors are chosen. An important caveat to these results is that it is 
impossible to know what effect other pathogens or pests may have had on the spectral signatures 
of the infected and the rot-free trees. It is also important to note that our study only focused on 
RBSR in a tree species where it can take several decades of decay fungus colonization to result in 
tree mortality, wind fell or stem breakage. It is possible that efforts to detect RBSR in tree species 
which succumb to infection (such as Pinus sylvestris) may be more successful, although research 
would be required to determine this.

The modest classification accuracies obtained by this study and the relatively high cost of 
collecting hyperspectral imagery should not deter such work. Since certain RBSR fungi are invasive 
species and cause significant ecological damage outside of their native range, the cost of monitor-
ing infection via remote sensing may not be as relevant as in areas where the fungi are native and 
result in minor damage. Heterobasidion irregulare, for example is native to parts of North America 
but is an introduced species in Europe. Within Europe, the disease is currently limited to a small 
area in Italy, and both the ecological and economic costs if it spread beyond that zone could be 
catastrophic. In this context, the cost of hyperspectral imagery can be more easily justified.
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5 Conclusion

The results of this study suggest that it may be possible to use hyperspectral imagery to detect 
RBSR, even in cases where there are no visible signs of infection. Nevertheless, substantial work 
remains before remotely sensed data can be used to inform RBSR control programs. Future work 
should seek to improve classification accuracy by incorporating additional remotely sensed data 
such as ALS, or by testing other classification algorithms. The current classification accuracies 
are likely great enough to estimate the percentage of trees in a stand which are infected, but not 
necessarily great enough for mapping each infected tree with a high level of precision. Since RBSR 
usually does not kill spruce trees and harvest and silvicultural discissions are carried out on stand 
level, it is likely that such stand-level estimates of infection prevalence are adequate for reducing 
economic losses from RBSR in Norway. An economic analysis would be necessary to determine 
the magnitude of the loss reduction. By contrast, for tree species which die from RBSR infection, 
higher classification accuracies will probably be necessary. This is especially true in areas where 
a fungus is invasive, as detection programs will likely aim to identify individual infected trees to 
facilitate their removal and to prevent the fungus from spreading more broadly within a stand of 
trees. Additionally, attempts should be made to use lower-cost multispectral imagery, as the cost 
of hyperspectral imagery serves is a major barrier to its use, particularly in large-area studies. If 
multispectral imagery could be used to detect H. annosum, whether through UAS, airborne, or 
even satellite-based sensors, the prospects for controlling this disease and reducing the economic 
damage caused by it would be significantly improved.
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