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Measuring dynamic and static
eco-e�ciency in Norwegian dairy
farms: a parametric approach

Habtamu Alem*

Division of Food Production and Society, Norwegian Institute of Bioeconomy Research (NIBIO), Ås,
Norway

Eco-e�ciency is gaining popularity tomeasure the agricultural system’s economic
and environmental performance. The dynamic eco-e�ciency of the agricultural
system is assessed in this study using a parametric frontier framework that
considers the inter-temporal nature of production decisions and methane
emissions. We also estimated the static eco-e�ciency model for comparison. The
empirical analysis is based on 30 years of unbalanced panel data from 692 dairy
farms (1991–2020). The generalized method of moment estimation is used to
compute dynamic models. Both dynamic and static models show that dairy farms
in the study area used available technology ine�ciently, which means that some
farmers produced lower outputs per input than the best-performing farmers.
According to the dynamic eco-e�ciency score, dairy farms only generate 94%
of the maximum viable output for the input used. If all dairy farms became eco-
e�cient, an average dairy farm could raise its output by about 6% using the
existing technology. According to the projected scores, farmers might improve
their eco-e�ciency by 10% on average without using more inputs in a static
condition. Policymakers should encourage dairy farms to share information with
the best-performing dairy farms on how to improve production while considering
environmental concerns.
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1. Introduction

Growing concern for the sustainability of current agricultural systems and livestock
farming has triggered intensive research in the field. Policymakers encourage farm businesses
to adopt sustainable decisions and behaviors to maintain long-term food security while
protecting the environment (Alem, 2023). Evaluating food production system performance
while considering environmental issues is critical for designing policies and practices that
sustain long-term agricultural growth (Pacini et al., 2003; Alem, 2021). Eco-efficiency, also
known as economic-ecological development, became popular in the 1990s to attain long-
term agricultural growth (Gołaś et al., 2020). Eco-efficiency is a management strategy that
focuses on increasing agricultural output while utilizing fewer resources, decreasing waste,
and cutting emissions (Peças et al., 2019).

The issue of eco-efficiency in the dairy industry is addressed by several frameworks in the
literature, such as those from Pelletier et al. (2008), Picazo-Tadeo et al. (2011), Shortall and
Barnes (2013), Madau et al. (2017), Wettemann and Latacz-Lohmann (2017), Adenuga et al.
(2018), Cecchini et al. (2018), Le et al. (2020), Le et al. (2020), and BaleŽentis et al. (2022).
Different methods were employed in earlier studies to calculate eco-efficiency scores. Both
the ratio and frontier approaches can be used to calculate overall eco-efficiency, and each
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has advantages and disadvantages (see for detail Song and
Chen, 2019). According to Kuosmanen and Kortelainen (2005),
eco-efficiency is the proportion of economic value acquired
to the environmental effect generated. Cost-benefit assessments
commonly use life cycle costs to determine the economic value
contributed (Huppes and Ishikawa, 2005; Shortall and Barnes,
2013). The most common environmental impact is an aggregation
figure of material use, energy use, pollutants, and wastes (Shortall
and Barnes, 2013). Environmental impacts are challenging to
classify and combine using ratio techniques (see Huppes and
Ishikawa, 2005; Song and Chen, 2019 for detail). On the other
hand, the parametric approach using stochastic frontier analysis
(SFA) bases its definition of eco-efficiency on the ratio of actual
production to frontier output (both desirable and undesirable) for a
certain farm (see Orea andWall, 2017; Song and Chen, 2019; Stetter
and Sauer, 2022). Frontier-based techniques can be classified into
three categories: parametric, semi-parametric, and non-parametric
methods. If a farm is on the frontier, its real production point is
entirely eco-efficient; if it is below the frontier, it is eco-inefficient.
The pros and cons of each estimating strategy have been a topic of
discussion in the economics literature. Given that it can consider
measurement errors, stochastic effects, and single-step estimations
of inefficiency effects, an SFA appears to be the best methodology
for agricultural research to account for the whole farming system
(see for details Cabrera et al., 2010; Alem, 2018).

To assess the dynamic eco-efficiency of resource use, a non-
parametric approach such as the Data Envelopment Analysis
framework has been widely used in the economics literature (see
for example Gómez-Calvet et al., 2016; Pishgar-Komleh et al.,
2021; Jiang et al., 2022). This paper contributes to the literature
in the following ways. We estimated the dynamic model using
the parametric approach, but unlike Alem (2020), we evaluated
eco-efficiency by the including both desired (main output) and
undesirable (environmental effect) outputs. Since environmental
outputs like CH4 are a cost to society rather than a cost to the dairy
farm, the output should be adjusted to reflect this. To the best of
our knowledge, no previous research has investigated the dynamic
of eco-efficiency using a parametric framework approach that
accounts for the entire farming system.We estimated a static model
for comparison. In addition, we had the advantage of working with
a large panel dataset of the dairy farm system from 1991 to 2020.

The rest of this article is organized as follows. The
characteristics of Norwegian agriculture and greenhouse gas
emissions are discussed in Section 2. Section 3 explains the
theoretical framework for modeling environmental production
technology and its dynamic applications. The empirical model and
estimation procedures are described in Section 4, and the data are
presented in Section 5. In Section 6, the findings are highlighted
and addressed. Concluding remarks are included in Section 7.

2. Norwegian agriculture system and
greenhouse gas emissions

In Norway, agriculture is typically small and run by family
members who are primarily concerned with keeping the business
running. Farmland accounts for only 3% of Norway’s total land
area with adequate climatic conditions for agriculture (Alem, 2023).

These farmlands are often scattered, small, and steep. Rogaland (in
southern Norway) is the principal farming region of the nation
(SSB, 2022). In many regions of Norway, the single crop is the
production of fodder, which is primarily made of grass, and the
basis of Norwegian agriculture is grass-based animal husbandry.
This explains why animal production has grown to be Norway’s
most important agricultural product, with the dairy farming system
employing close to a quarter of all farmers (Alem et al., 2019;
Alem, 2023). Agriculture in Norway has been and continues to be
heavily regulated and subsidized because of unfavorable conditions,
and farmers are subject to complex agricultural legislation that
have a substantial impact on their output choices (Bonesmo
et al., 2013). Norway’s agricultural sector contributes to global
climate change by emitting greenhouse gases into the environment
and contributes to the environmental problem by emitting 4,5
million tons of equivalent CO2 in 2020 (SSB, 2022). Livestock
farming has substantial environmental consequences, including
GHG emissions (BaleŽentis et al., 2022). Methane emissions were
the largest among all sources of greenhouse gases emitted into the
atmosphere during the previous 40 years (SSB, 2022). Norwegian
agriculture released 2.51 million tons of methane in 2018, more
than any other industry (CAIT Climate Data Explorer, 2022). As
a result, the purpose of this research is to estimate the performance
of dairy farms while accounting for environmental output (CH4).

3. Conceptual model

We used Alem (2020) approach but modified the output to
be more environmentally friendly. That is using the following
production function.

Q∗
it = f (xit;β) (1)

where Q∗
it is the difference between desirable outputs (Q) and

undesirable outputs (b) such as methane (CH4) emissions. The
function form used, such as Translog or quadratic is denoted by
f (xit;β); t is the time (year); β is an estimation of technological
parameters; i signifies the farm unit. ConsiderQ∗

it be the real output
generated after deducting environmental expenses or undesirable
output (b). We consider also θ to be the rate at which outputs
are adjusted.

qit = θQ∗
it (2)

Q∗
it − qit = Q∗

it (1− θ) (3)

If the adjustment speed is <1, the total performance will be
lower than the expected output (Alem, 2021). The actual output
(qit) for the first period of production is just θ of the expected
output (Q∗

it). The fraction of potential output (Q∗
it) for upcoming

periods of production is just θ as important as the proportion of
Q it∗ for past periods of production. Therefore, using Alem (2020),
the dynamic output generation technique may be described:

qit+1 = θQ∗
it + θQ∗

it (1− θ) orqit+1 = θQ∗
it + (1− θ) qit (4)

qit = θQ∗
it + (1− θ) qit−1 (5)
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Substituting Equations (4)–(8),

qit = θf (xit;β) + θ (1− θ) f (xit−1;β) (6)

The current environmental adjusted output depends on
the current and previous inputs, as shown in Equation
(6). We estimated CH4 emissions (b) using the Tier 2
approach which includes country-specific estimates from the
Norwegian Environment Agency (NIR, 2020) and follows
the Intergovernmental Panel on Climate Change technique
(IPCC, 2006). According to IPCC (2006) and Alem (2023), the
basic equation for estimating the emission factor for enteric
fermentation is as follows

Factors influencing dairy CH4 emissions (EFD)

= (
GED∗Ym∗365

days
year

55.65
Kg CH4

) (7)

GED =137.9 + 0.0249 ∗ Milk 305 ∗ 0.2806 × Concentrate
proportion; and Ym = 7.38 – 0.00003 × Milk 305 – 0.01758
× Concentrate proportion. GED = gross energy intake for dairy
farms, MJ/day; Ym=methane conversion rate, %. The factor 55.65
(MJ/kg CH4) is the energy content of methane. Milk305= 305 days
lactation yield of energy-corrected milk (ECM).

The concentration proportion is the percentage of concentrates
in the diet calculated using net energy, and Equation (7) assumes a
year-long emission factor. Moreover, we estimated Dairy farm CH4
emissions Kg/year using Alem’s (2023) approach.

4. Empirical static and dynamic models

4.1. Model specifications

We choose a translog (TL) specification and following Alem
(2020) method, Equation (3) is expressed in TR and log form as:

lnQ∗
it = α0 +

4
∑

k=1

βk ln xk,it +
1

2

4
∑

K=1

4
∑

j=1

βkjlnxk,itlnxj,it

+

4
∑

k=1

4
∑

j=2

βkjlnxk,itlnxj,it +
4

∑

k=1

βkt ln xk,itDt+
1

2
βttD

2
t + ωi + εit (8)

where Q∗
it is a vector of outputs adjusted for environmental

output (market value of methane), xkjt denotes the inputs used;
Dt denotes the variable for years, and the Greek letters are
variables that can be calculated. εit is the sum of two error
terms (εit = vit − uit) . vit is the error term and we assumed
vit

iid ∼ N
(

0, σ 2
v

)

. uit is eco-efficiency while ωi captures
unobserved heterogeneity. The model was estimated following
Greene (2005) procedures.

The sluggish adjustment of inputs is incorporated into the
dynamic stochastic production frontier as:

ln qit = (1− θ) lnQ∗
it−1+ θ(α0 +

4
∑

k=1

βk ln xk,it

+
1

2

4
∑

K=1

4
∑

j=1

βkjlnxk,itlnxj,it +
4

∑

k=1

4
∑

j=2

βkjlnxk,itlnxj,it

+

4
∑

k=1

βkt ln xk,itDt+
1

2
βttD

2
t )+ ωi + εit (9)

4.2. Estimation of the dynamic model

The generalized method of moments (GMM) estimator was
used for the analysis because the dependent and the lagged
dependent variables are both a function of the error component
(Arellano and Bond, 1991; see for detail Blundell and Bond, 1998;
Alem, 2020). A one-step GMM estimator is used to calculate
Equation (9). We ran several tests to ensure that the model was
valid. The Arellano and Bond (1991) test is used to determine
the residual in the difference of second-order autocorrelation.
Furthermore, the validity of the over-identifying limitations is
tested using Sargan’s J. We used Battese and Tim (1988) procedure
to calculate the eco-efficiency score for both dynamic and static
models. We used data from Norwegian dairy farms for our
empirical application.

5. Data

The dataset used in this study is based on a farm-level survey
conducted by the Norwegian Institute of Bioeconomy Research
(NIBIO). For the case study and empirical analysis, we used an
unbalanced panel of 6,229 observations from 692 dairy farms from
1991 to 2020. To guarantee that milk production is the primary
agricultural output, we select farms where milk sales represent
at least 80% of total farm income. To represent environmental
production technology, two outputs (desirable and undesired) and
four inputs (land, labor, materials, and capital) are employed.
Desirable output (dairy output) consists of dairy output, which
reflects overall farm revenue in dairy farming (Q). Undesirable
output (CH4 emission) is estimated following Alem (2023) and
the Intergovernmental Panel on Climate Change (IPCC, 2006)
methodology incorporating the country-specific estimates from
the Norwegian Environment Agency (NIR, 2020). The value of
farm-level CH4 emissions was calculated using data from Statistics
Norway (SSB, 2022). The empirical model (9) specifies the Translog
function, which has four inputs that follow the literature (Lien
et al., 2018; Alem et al., 2019). Agricultural land (x1) is measured
in hectares, and labor (x2) is defined as the total work hours spent
on the farm. Materials (x3), which includes feed, energy, and power
expenditures; and Capital assets (x4) which comprises the implicit
quantity index value of machinery, buildings, and cattle. All figures
were calculated in NOK and adjusted for 2015 prices. We only
considered farms with at least 3 years of data in the analysis to
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TABLE 1 Statistical descriptions.

Mean Label Unit Mean Std. dev

Desirable output Dairy output 1,000 NOK 1,466.50 1,167.49

Undesirable output CH4 emission Ton/year 0.99 0.61

Undesirable output Price CH4 emission NOK/ton 0.045 0.013

Undesirable output value CH4 emission 1,000 NOK 0.042 0.029

Inputs x1 Land 100 dekar 3.31 2.02

x2 Labor 100 h 35.62 10.74

x3 Material costs 1,000 NOK 480.06 453.45

x4 Capital costs 1,000 NOK 404.63 415.66

Time Trend (1= year 991)

Observation Sample size 6,229

NOK, Norwegian Kroner and 1NOK= 10 euro; 1 hectare= 10 dekar.

contain panel characteristics. Table 1 provides a summary of the
input and output variables.

Norway’s dairy farms are small. The average annual dairy
revenue was roughly 1.5 million NOK and has increased over time,
resulting in an average annual CH4 emission of 0.99 tons. However,
because of price differences over time, the average annual CH4
emission value fluctuates. All production inputs used in the dairy
farm increase over time (Figure 1).

6. Main results and findings

The parameter values for the stochastic frontier dynamic
analysis are shown in Table 2. We did many specification tests to
decide on the proper function and empirical model for the survey
data. The test showed that most of the total error variation is
because of technological inefficiencies. The testing of a translog
simplification of the Cobb-Douglas functional form for stochastic
models was rejected. As a result, for this analysis, the functional
form of the translog was used.

The Arellano-Bond test statistic for AR (1) (p-value =

0.42) represents that the regression does not have a first-order
autocorrelation problem (Table 1). As a result, white noise to
the sectors is not related sequentially, resulting in consistent
estimates and no significant evidence of serial correlation in
first-differenced errors at order 2. The J-statistic validates the
validity of the instruments (p-value = 0.167) (see for details
Sargan, 1958). Because the GMM estimate relies on internal
instruments, there may be numerous valid instrumental variables.
The parameter estimates for the stochastic frontier static model are
shown in Table 3. The Table shows that all parameter estimates are
statistically significant. All variables are divided by their sample
mean before estimation, so the parameters in Tables 2, 3 can be
directly interpreted as elasticities. Both models have the highest
partial elasticities of material use, which are statistically significant
(P < 0.001). Material inputs had an elasticity of 0.51 to 0.34,
which implies that a 1% increase in material inputs, ceteris paribus,
would lead to a 0.34–0.51% increase in dairy output. According
to the findings, focusing on technology to increase material input

productivity is critical for improving the dairy industry. The time-
trend variable’s first-order coefficient is an estimate of the average
annual rate of technological change (Wang and Ho, 2010; Alem
et al., 2019). The time trend coefficient, which had values of
0.011 for the dynamic model and 0.022 for the static model, was
statistically significant at the 1% level, implying that technological
progress occurred because of the adoption of new environmental
production technology in the dairy industry at a rate ranging from
2.2 to 1.1% per year from 1991 to 2020. Alem (2021) reported on
technological advancements in Norwegian dairy farms from 2000
to 2018.

Table 4 shows the projected eco-efficiency scores. Both dynamic
and static models show that dairy farms in the study area used
available technology inefficiently, which means that some farmers
produced lower outputs per input than the best-performing
farmers. The dynamic model average is 0.94, while the static eco-
efficiency score is 0.90. The dynamic and static eco-efficiency scores
differ considerably according to the Welch test (see Table 4). The
static model understates the efficiency since the dynamic eco-
efficiency ratings are higher.

Dairy farms only produce 94% of the highest feasible
production for the input utilized, according to the dynamic eco-
efficiency score. For example, if every dairy farm became more
ecologically friendly, production could increase by around 6%.
Farmers may improve their eco-efficiency by 10% on average
with the existing input quantity, according to the projected scores
in the static model. Table 2 also displays the distribution of the
sample farms based on their eco-efficiency score. In dynamic
and static models, for example, 25% of farms are 0.92 and
0.87% eco-efficient, respectively, whereas 75% of sample farms are
0.96 and 0.94% eco-efficient. Figure 2 also shows that the static
model’s eco-efficiency estimations are more dispersed than the
dynamic models.

7. Conclusion and policy implications

This study calculates dynamic eco-efficiency on dairy farms
while accounting for intertemporal production decisions and CH4
emissions. We estimate a static model for comparison. Farm-level
panel data from 1991 to 2020 was used to examine the Norwegian
dairy system. Both dynamic and static models show that dairy
farms used available technology in the area inefficiently, i.e., some
farmers produced lower outputs from the inputs they used or
used more inputs to produce the same output compared to the
best-performing farmers. The mean eco-efficiency score for the
dynamic model was 0.94, compared to 0.90 for the static model.
According to the dynamic eco-efficiency score, dairy farms only
generate 94% of the maximum viable output for the input used. If
all dairy farms became eco-efficient, an average dairy farm could
raise its output by about 6%. According to the projected scores,
in a static condition, farmers might improve their eco-efficiency
by 10 % on average without using more inputs. The findings in
both models indicate that Norwegian dairy farms show positive
technological progress.

The analysis in this paper has important policy implications.
First, both models show that resources are being used inefficiently;
therefore, policymakers should encourage dairy farms to share
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FIGURE 1

The median, first, and third quantile values of outputs and inputs are shown in the center, bottom, and top lines, respectively.

TABLE 2 Estimated parameters for the dynamic model.

Variable Elasticities lnx1 lnx2 lnx3 lnx4 Qt−1 t

ln x1 0.129∗∗∗ (0.001) 0.056∗ (0.027)

ln x2 0.026∗∗∗ (0.001) 0.013 (0.018) 0.028∗∗∗ (0.012)

ln x3 0.377∗∗∗ (0.000) −0.071∗∗∗ (0.017) −0.017 (0.016) 0.161∗∗∗ (0.017)

ln x4 0.049∗∗∗ (0.006) 0.023 (0.014) −0.014 (0.014) 0.044∗∗∗ (0.013) 0.035∗∗ (0.013)

Qt−1 0.332∗∗∗ (0.012) −0.004∗∗∗ (0.001) −0.002∗ (0.001) −0.011∗∗∗ (0.001) −0.005∗∗∗ (0.001) 0.048∗∗∗ (0.002)

t 0.011∗∗∗ (0.000) 0.009∗∗∗ (0.002) 0.004 (0.003) −0.009∗∗∗ (0.002) −0.002 (0.002) −0.001∗∗∗ (0.000) 0.001∗∗∗ (0.000)

Arellano-Bond test for AR (1)=−2.14∗∗∗

Arellano-Bond test for AR (2)= 0.248
J-test= 36.23
Number of instruments= 19
N = 6,229

Standard errors are shown in parenthesis; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; x2 = land; x2 = labor, x3 =material, x4 = capita, Qt−1 = lagged adjusted outputs, all in log form.

experience and information with the best-performing dairy farms
on how to improve production while taking environmental
concerns into account. Second, bothmodels have the highest partial
elasticities of the productionmaterial. Policy intervention and dairy
sector improvement focusing on technology related to material
input are critical. Furthermore, we assessed the dairy farm’s
performance by adjusting the societal cost of Ch4 emissions. As

a result, emission-reduction policies and technology development,
such as dairy feed that emits less CH4, improve the overall
performance of dairy farms.

The study looked at the environmental impact of livestock
methane (CH4) emissions in both dynamic and static models. As
a result, future research may look into other environmental issues
like biodiversity, fertilizer consumption, and waste.
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TABLE 3 Estimated parameters for the static model.

Variable Elasticities lnx1 lnx2 lnx3 lnx4 t

ln x1 0.200∗∗∗ (0.001) 0.062∗ (0.031)

ln x2 0.047∗∗∗ (0.000) −0.003 (0.019) 0.045∗∗∗ (0.012)

ln x3 0.507∗∗∗ (0.000) −0.066∗∗∗ (0.018) 0.005 (0.017) 0.159∗∗∗ (0.018)

ln x4 0.083∗∗∗ (0.007) 0.021 (0.015) −0.021 (0.015) −0.044∗∗ (0.014) 0.049∗∗∗ (0.014)

t 0.022∗∗∗ (0.000) 0.010∗∗∗ (0.003) 0.002 (0.003) −0.004 (0.002) −0.006∗∗∗ (0.002) 0.001∗∗∗ (0.000)

Log likelihood= 4,223∗∗∗ γ =
σ 2
u

σ 2
u+σ 2

v
= 0.94 N = 6,229

Standard errors are shown in parenthesis; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001; x2 = land; x2 = labor, x3 =material, x4 = capita, all in logarithmic form.

TABLE 4 Eco-e�ciency values for both static and dynamic models.

Percentile Dynamic model Static model

Mean Std. dev Min. Max Mean Std. dev Min. Max

25% 0.923 0.017 0.864 0.945 0.867 0.023 0.864 0.945

Mean 0.940 0.013 0.879 0.952 0.901 0.015 0.826 0.922

75% 0.962 0.006 0.945 0.973 0.942 0.009 0.920 0.967

Observations 6,229

Welch test comparing mean eco-efficiency 33.83∗∗∗

FIGURE 2

Eco-e�ciency value density for dynamic and static models.
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