This is a post-peer-review, pre-copyedit version of an article published in International Journal of Greenhouse Gas Control. The final authenticated version is available online at: http://dx.doi.org/10.1016/j.jjggc.2014.04.010

1	Detection of simulated leaks from geologically stored CO ₂ with ¹³ C monitoring
2	
3	Christophe Moni* and Daniel P. Rasse
4	
5	Bioforsk – Norwegian Institute for Agricultural and Environmental Research. Frederick A.
6	Dahls vei 20, Aas, Norway.
7	
8	*Corresponding author (christophe.moni@bioforsk.no)
9	Phone number: +4792020175
10	
11	Abbreviations: CCS, carbon capture and storage; CRDS, cavity ring down spectrometer
12	
13	Abstract
14	
15	Precise methods for the detection of geologically-stored CO_2 within and above soil surfaces are
16	an important component of the development of carbon capture and storage (CCS) under
17	terrestrial environments. Although CO_2 leaks are not expected in well-chosen and operated
18	storage sites, monitoring is required by legislation and any leakage needs to be quantified under
19	the EU Emissions Trading Directive. The objective of the present research was to test if $^{13}\mathrm{C}$
20	stable isotope motoring of soil and canopy atmosphere CO_2 increases our detection sensitivity
21	for CCS-CO ₂ as compared with concentration monitoring only. A CO ₂ injection experiment
22	was designed to create a horizontal CO ₂ gradient across 6×3 -m plots, which were sown with
23	oats in 2011 and 2012. Injected CO_2 was methane derived and had an isotopic signature of -
24	46.2‰. The CO_2 concentrations were measured within the soil profile with passive samplers
25	and at several heights within the crop canopies. The $\rm CO_2$ fluxes and their ${}^{13}\rm C$ signatures were
26	also measured across the experimental plots. In situ monitoring and gas samples measurements
27	were conducted with a cavity ring down spectrometer (CRDS). The plots displayed hot spots
28	of injected-CO $_2$ leakage clearly detectable by either concentration or isotopic signature
29	measurements. In addition, the ${}^{13}C$ signature measurements allow us to detect injected CO ₂ in
30	plot regions where its presence could not be unequivocally ascertained based on concentration
31	measurement alone.

33 Keywords: CO2 geological storage, leakage monitoring, stable isotopes

34 35

36 1. Introduction

37

38 Precise methods for the detection of geologically-stored CO₂ within and above soil surfaces are 39 an important component of the development of carbon capture and storage (CCS) under terrestrial environments (Winthaegen et al., 2005). Although CO₂ leaks are not expected in well 40 41 chosen and operated storage sites, monitoring is required by legislation and any leakage needs 42 to be quantified under the EU Emissions Trading Directive. Most methods for potential leak detection are geared either towards 1) the rapid detection of the leaking CO_2 itself, 2) changes 43 in soil properties and gas composition or 3) the accumulated impact on plant communities. The 44 45 latter set of methods has seen multiple applications of airborne and ground-based hyper- and 46 multi-spectral imaging of reflectance plant spectra (Bateson et al., 2008; Chen et al., 2012; Hogan et al., 2012; Jiang et al., 2012; Keith et al., 2009; Lakkaraju et al., 2010; Male et al., 47 48 2010; Noomen et al., 2008, 2012; Pickles and cover, 2004; Rouse et al., 2010; Smith et al., 49 2004; Zhou et al., 2012). Direct biological monitoring based on plant survey also been used 50 (Noble et al., 2012; Opperman et al., 2010). Other soil methods include soil resistivity 51 measurements (Strazisar et al., 2009; Zhou et al., 2012), as well as tracers such as, 52 perfluorocarbon, noble gas, radiocarbon and stable isotope (Bachelor et al., 2008; Fessenden et 53 al., 2010; Garcia et al., 2012; Krevor et al., 2010; McAlexander et al., 2011; Magnier et al., 54 2012; Pekney et al., 2012; Strazisar et al., 2009; Watson and Sullivan et al., 2012; Wells et al., 55 2010). Direct CO_2 monitoring methods tested in recent years include eddy covariance mapping of soil fluxes (Lewicky and Hilley 2009; Lewicky et al., 2012), laser based methods for CO₂ 56 57 concentration detection (Barr et al., 2011; Humphries et al., 2008), atmospheric gas 58 concentration ratios analysis (Fessenden et al., 2010; Keeling et al., 2011) and soil gas 59 concentration ratios analysis (Beaubien et al., 2013; Romanak et al., 2012). The stable isotope signature of CO₂, i.e. δ^{13} CO₂, is a method that apportions C sources from multiple source 60 61 components. For natural sources, this method has been used to quantify the heterotrophic vs. 62 autotrophic components of soil respiration (Biasi et al., 2012; Braig and Tupek, 2010). For 63 fossil fuel sources, this method has been successfully used since the early 1980's to quantify accumulated fossil-fuel CO₂ in the atmosphere (Keeling et al., 1979). Recent studies suggest 64 that δ^{13} CO₂ monitoring can be used to detect a geological contribution from soil CO₂ efflux 65 (Krevor et al., 2010; McAlexander et al., 2011; Spangler et al., 2010). The source of 66 accumulated CO₂ uptake by plants can also be traced through the δ^{13} C signature of plant tissue, 67

68	such as shown for a polluted urban area (Lichtfouse et al., 2003). In theory, the isotopic method
69	increases our detection limit as compared to concentration measurements alone, and thereby is
70	especially useful at low concentration and low flux rate values. Although a leak taking place
71	through the soil might have a localized CO ₂ hotspot, low concentrations are expected over a
72	larger affected area as well as in the atmosphere and in the exposed plants. For monitoring
73	purposes, detecting these low contributions from geologically-stored CO ₂ might be critical. The
74	objective of the present study was to quantify geologically-stored CO ₂ contributions with the
75	¹³ C isotopic method across a field-simulated horizontal gradient and along the soil-plant-
76	atmosphere continuum.
77	
78	
79	2. Materials and Methods
80	
81	2.1. Experimental approach
82	
83	A subsurface simulated leakage experiment was designed to create a CO ₂ gradient within the
84	soil and in the near-surface atmosphere to test different levels of exposure in a cropped field.
85	The gradient was created by injecting CO ₂ in a permeable sand layer buried under a less
86	permeable topsoil layer (Fig. 1).
87	
88	Figure 1 and 2
89	
90	2.2. Experimental site and design of the research plots
91	
92	An agricultural silt loam soil (USDA classification) developed on a moraine deposit was
93	selected for the simulated CO ₂ injection. The experimental site, designed to assess the impact
94	of a CO ₂ leakage on field crops, was located 30 km south east of Oslo (59°36'50" N; 11°00'08"
95	E) (Fig. 2). Two plots, each 6×3 m, were excavated down to 85 cm depth. "T" shaped injection
96	pipes were installed at the bottom of the sand layer at one end of the plot. Pits were first refilled
97	with a 45 cm thick layer of sand (hydraulic conductivity $95 \pm 19 \text{ m day}^{-1}$), and then with 40 cm
98	of local topsoil (hydraulic conductivity 11 ± 13 m day ⁻¹) so that plot surfaces were level with
99	the surrounding soil. No impervious barrier was used between sand and subsoil (hydraulic
100	conductivity 0.03 ± 0.04 m day ⁻¹). For the continuous supply of CO ₂ , the research plots were
101	connected via buried pipes to a gas delivery system which consisted of a semi-automatic gas

102	panel designed for uninterrupted gas supply. The gas panel was connected to two bundles of 12
103	bottles of 50 l CO_2 each. Switch-over between the two connected bundles occurred when the
104	pressure of one side (the primary side) fell below a pre-set pressure level. This was achieved
105	by two integrated regulators which were connected at their outlet ports. The CO ₂ selected for
106	injection was produced from natural gas combustion and exhibited a δ^{13} C signature of -46.2 ‰,
107	which is more negative than either atmospheric CO ₂ ($\delta^{13}C \approx$ -8 ‰) or biogenic CO ₂ ($\delta^{13}C \approx$ -
108	26 ‰) at the site.
109	
110	
111	2.3. Experimental plot management
112	
113	In May 2012 experimental plots were disc-ploughed and sown with oats (Avena sativa) at the
114	same time as the agricultural field in which they are located. Plots were equipped along the
115	central transect with soil CO ₂ probes within one week of ploughing and before emergence of
116	the plants. CO_2 injection started in the second half of June in both plots at a rate of 2 l min ⁻¹ and
117	was stopped at the end of the growing season in late August. For plot 1, gassing was interrupted
118	between 29-06-2012 and 11-07-2012 because the gas supply pipe broke. Control values were
119	obtained from side measurements performed in the adjacent oats culture.
120	
121	
122	2.4. Continuous monitoring of meteorological parameters
123	
124	An automatic weather station (Seba Hydrometrie) was installed at the experimental site. The
125	station was equipped with two ultrasonic wind sensors installed at 1 m and 6 m to measure wind
126	speed and direction at canopy height and above the canopy, respectively. The station also has a
127	combined air humidity/temperature sensor located at 20 cm depth, a pressure sensor, a soil
128	temperature sensor, an automated rain gauge, and a global radiation sensor. Data were recorded
129	every 15 min.
130	
131	
132	2.5. Gas measurements systems
133	
134	CO ₂ concentration and isotopic signature analyses were performed with a wavelength scanned
135	Cavity Ring Down Spectrometer (WS-CRDS) manufactured by Picarro (Crosson et al., 2008).

136 The instrument was recalibrated to ensure accurate isotopic measurement for a wide range of 137 CO₂ concentration and the processing software was upgraded to reduce transient concentration 138 response and water vapor interference. Methane interferences were accounted for through direct laser measurements of ¹²CH₄ and built-in automatic post corrections. All upgrades and tunings 139 140 were performed following manufacturer instructions which should ensure precisions of < 0.1141 ppm and 0.25 ppm in CO_2 stable or transient conditions, respectively. For more security, water 142 vapor interference was further accounted for by pre-drying the sampled gas to <1000 ppm_v 143 water with a Nafion filter. The instrument was field installed in a trailer located 10 m from the experimental plots. The gas sampling rate was 24 ml min⁻¹ and measurements were conducted 144 every 2.7 ± 1.2 second. Sampling was conducted at multiple locations in the canopy with a 145 single 20-m long Teflon tube connected to the instrument. The sampling tube was moved manually 146 147 to different sampling points.

For continuous atmospheric CO₂ sampling in plot 1, the gas inlet was placed 5 cm above
ground at a distance of 50 cm from the plot border on the gas-injection side. Continuous
sampling took place in July for selected periods that did not overlap the mapping periods.

151 Soil CO₂ was sampled at 20 cm depth from six silicone probes (Kammann et al., 2001) 152 positioned at 50, 150, 250, 350, 450 and 550 cm from the injection side of the plot along the 153 central transect of each plot. Compared to other soil CO₂ sampling methods, the silicone probe 154 methods present the advantage of not creating mass flow in the soil matrix from undefined 155 location (Kammann et al., 2001). CO₂ samples were collected one month after the beginning of 156 the gassing with a 60 ml syringe and diluted in a flow of CO₂-free air to bring the concentration 157 within the detection range of the CRDS. This was performed to monitor the underground 158 migration of the injected gas. Preliminary results from 2011 showed that equilibrium of soil 159 CO₂ concentration is reached within two weeks for an injection rate of 1 l min⁻¹. Control values 160 for soil CO₂ concentration at 20-cm depth were derived from the 2011 experiment.

161 Atmospheric CO₂ was sampled using a device designed for simultaneous sampling at 12 162 different points within the canopy. Briefly, each sampling line was connected to a gas bag. Each 163 gas bag was itself hermetically enclosed within an individual plastic box. All plastic boxes were 164 connected together to a vacuum pump. At sampling, simultaneous evacuation of the 12 boxes 165 resulted in a simultaneous inflation of the 12 enclosed gas bags. The content of each gas bag 166 was then directly analysed on the CRDS. Atmospheric sampling was carried out 1 month after 167 the beginning of the injection when the plants were 70 cm tall, at the surface of plot 1 following 168 a 50 x 50 cm grid sampling pattern and in the canopy atmosphere at 10, 20, 30 cm from the 169 ground along three longitudinal transects, each of them including seven sampling points. 170 Control values were obtained from the adjacent oats field presenting similar characteristics to171 that of the experimental plots.

172 Soil CO₂ fluxes and their isotopic signatures were mapped after oats harvest on a 60 x 60 cm 173 grid sampling pattern using dark static chambers (60 x 60 x 20 cm) directly connected to the 174 CRDS by a Teflon line. Static chambers were deployed for 7 minutes. Soil CO₂ fluxes were 175 directly derived from the recorded CO₂ accumulation in the chambers, whereas the isotopic signature of CO₂ was derived from changes in both CO₂ content and isotopic ratio by graphical 176 177 resolution of the resulting Keeling plot (Keeling, 1958). Control values were estimated from 178 measurements performed on a zone adjacent to the experimental plot with similar topsoil 179 properties. 180 181 182 2.6. Vegetation sampling

183

184 At the end of the growing season (August/September), each plot was harvested on a 50 x 50 cm 185 grid and each bundle was then dried at 60 °C for 3 days. To determine whether the injected 186 labelled CO₂ had been assimilated by the biomass ten leaves were randomly collected from 187 each bundle, ground to 200 μ m using a ball mill and then analysed for their C content and δ^{13} C 188 signature with a CRDS coupled to a combustion module (Picarro- CM-CRDS).

189

190 2.7. Data treatment

191

To reduce the large number of data generated by the continuous CO_2 monitoring, the original data set was subsampled at a regular 3 min interval. Interpolated maps were obtained by using a default variogram (slope =1, nuggets effect = 0) with Surfer 11.2.848 ©1993-2012, Golden Software, Inc... For interpolation purposes, values measured over a given surface, such as soil CO_2 flux and plant isotopic signature, were attributed to the center of the sampling surface. All other figures were made with SigmaPlot 11.0 ©2008 Systat Software, Inc.

198

3. Results

200

- 201 3.1. Soil CO₂ analysis at 20 cm depth
- 202

- In plot 1, soil CO₂ concentrations ranged between 34%, just above the injection point, and 14% at 450 cm from the gassed side of the plot (Fig. 3). Although the highest concentration was found above the injection point, concentration did not show a steady decrease with increasing distance from the gassed side of the plot. Isotopic signature steadily increased from -47‰ to -43‰ with increasing distance from the gassed side of the plot (Fig. 3).
- In the half of plot 2 nearest to the injection point, CO_2 concentrations ranged between 36% and 55% with a maximum at 150 cm from the gassed side whereas in the second half of the plot CO₂ concentration averaged 2.2 ± 0.3% (Fig. 3). Similarly the soil $\delta^{13}C$ signature averaged -44.3 ± 0.8 ‰ in the gassed half of the plot and -24.5 ± 0.3 ‰ in the second half of the plot (Fig.
- 212 3).

213 Control non-gassed topsoil averaged for the whole growing season a CO₂ concentration of ~3% 214 and isotopic signature of -25‰. Comparing these control values to that of gassed plots indicates 215 that injected CO₂ at 20 cm depth had travelled all along the length of plot 1 and only in the first 216 half of plot 2. Uneven variation of the CO₂ concentrations along the central transect might 217 indicate changes in soil properties, such as compaction, porosity, cracks, or water content. 218 Isotopic values slightly lower than that of injected CO₂ (i.e. -46.2 ‰) were observed during 219 preliminary tests and could be explained by fractionation processes that can occur in the soil, 220 such as partial dissolution of injected CO₂ or at the CO₂ probe level due to differential CO₂ 221 diffusion.

- 222
- 223 224

Figure 3

225 3.2. Soil CO₂ fluxes and associated isotopic signature

Soil fluxes ranged between 404.3 and 2.3 ml $CO_2 \text{ m}^{-2} \text{ min}^{-1}$ in plot 1, between 566.3 and 4.8 ml 226 $CO_2 \text{ m}^{-2} \text{ min}^{-1}$ in plot 2 and averaged 3.7 ± 1.2 ml $CO_2 \text{ m}^{-2} \text{ min}^{-1}$ in the control plots (Fig. 4). 227 These values are equivalent to flux rates ranging between 1088.8 and 6.3 g CO_2 m⁻² day⁻¹ for 228 plot 1, and between 1525.0 and 13.0 g CO_2 m⁻² day⁻¹ for plot 2, with an average control flux of 229 230 9.9 ± 3.1 g CO₂ m⁻² day⁻¹. Flux distribution was spatially uneven with several distinct zones of moderate and high flux, as well as some irregularly-shaped low flux regions. Hotspots were all 231 232 located in the first half of the plot, mostly along the edges of the plots (Fig. 4) but also above 233 the injection point (Fig. 2). In plot 2, extra measurements were performed outside the 234 experimental plots close to the injection point to better define the flux distribution. Low fluxes 235 were mostly in the non-gassed half of the plots. In plot 1, the low flux region seems to extend

- diagonally from the upper border of the plot at 2 m from the injection side to the lower left
 corner of the plot, encompassing most of the upper left corner. Moderate fluxes were observed
 over the remainder of the plot and over most of the plot border even in the upper left corner.
- 239 These results show that the border of the plots, delimited by soil cracks, acted as a preferential
- 240 pathway for CO_2 , and suggests that the limits of the plot were not impermeable to CO_2 . Uneven
- 241 distribution of the fluxes indicates that the soil structure and properties have controlled CO₂

release to the surface.

243 The δ^{13} CO₂ values ranged between -51.0 and -29.9 ‰ in plot 1, between -49.1 and -23.7 ‰ in 244 plot 2, and averaged -30.4 ± 1.7 ‰ in the control (Fig. 4). Isotopic signature lower than that 245 of the source gas (i.e. -46.2‰) were observed only for a few flux hotspots whose value exceeded 200 ml CO₂ m⁻² min⁻¹ while the median value for all measurements was 12 ml CO₂ 246 m⁻² min⁻¹. This suggests that Keeling plots were difficult to establish at very high rates. 247 248 However, at such rates, the isotopic method is actually not needed to ascertain the origin of the CO_2 coming out of the soil. In general, spatial distribution of $\delta^{13}CO_2$ was inversely related to 249 that of the CO₂ fluxes. In plot 1 however, low flux regions were characterized by δ^{13} C values 250 251 significantly lower than that of the control (mean:-39.6 ‰ vs. -30.4 ‰). This result suggests 252 that although surface CO₂ fluxes were not increased, injected CO₂ had still moved into the soil. 253 Contrastingly in plot 2, low flux regions in the half of the plot furthest from the injection point 254 were characterized by δ^{13} C not significantly different from the control, indicating that injected 255 CO₂ had not reached that part of the plot, neither by advection nor diffusion.

256

257

Figure 4

258 259

260 Concerning the CO₂ balance, the total CO₂ flux measured over the entire surface of plots 1 and 2 averaged 1.05 and 0.78 l CO₂ min⁻¹, respectively. These measured CO₂ rates account 261 respectively for 52 and 39 % of the actual CO₂ injection rate, which was 21 CO₂ min⁻¹. Taking 262 263 into account the extra measurements performed close to the injection point of plot 2 (see Fig. 264 4), the figure rose to 82 % for this plot. This shows that flux rates below 100% can partially be explained by a loss of injected CO₂ out of the monitored area. Also, the closed chamber system 265 266 designed for measuring diffusive fluxes can potentially underestimate advective fluxes, such as 267 under injected CO₂ conditions.

268

270

At ground level within the canopy atmosphere, CO₂ concentration and δ^{13} CO₂ ranged from 432 271 272 to 10298 ppm and from -12.6 to -45.6 ‰, respectively (Fig. 5). By comparison, in the control plot, CO₂ concentration and δ^{13} CO₂ averaged 448 ± 50 ppm and -12.9 ± 2.6 % respectively. 273 The highly correlated Keeling plot (i.e. $R^2=0.988$) displaying an intercept value close to the 274 275 δ^{13} CO₂ of the injected CO₂ (i.e. -45.9 ‰ vs -46.2 ‰), clearly evidenced the mixing of injected 276 and atmospheric CO₂ at ground level (Fig. 6) and enabled the characterization of different 277 leakage intensity. CO₂ leakage as detected at ground level in the atmosphere mostly mimicked 278 the map of the flux distribution. Zones where leaking CO₂ could not be detected were associated 279 with low flux regions, whereas zones where it could be detected were associated with enhanced 280 flux zones. Interestingly the peak of injected CO₂ leakage (i.e. 10298 ppm and -45.6 ‰) that 281 occurred just above the injection point on the central transect was collocated with the largest 282 flux hotspot whereas other flux hotspots occurring on the border of the plot could not be 283 detected by ground level atmospheric CO_2 concentration measurement. This edge effect can be 284 attributed to increased atmospheric mixing due to a gap in the canopy at the border of the 285 experimental plot to allow lateral access to the plot. 286 287 Figure 5 288

289

290 Along the three longitudinal transects, each of them composed of 3 sampling heights, CO₂ concentration decreased while δ^{13} CO₂ increased with increasing distance from the gassed side 291 292 of the plot and with increasing sampling height in the canopy (Fig. 5). The influence of leaking 293 CO₂ was most apparent on the central transect just above the injection point. At 30 cm height 294 in the canopy, concentration and isotopic signature ranged between 365 and 542 ppm and from 295 -8.5 and -20.4 ‰, respectively, indicating that leaking CO₂ was still slightly detectable in the 296 canopy at this height. Detection of the injected CO₂ was reduced for parallel transects on either 297 side of the central one. This effect is probably due to the edge effect, which increased 298 atmosphere mixing.

Figure 6

- 299
- 300
- 301

302 3.4. Continuous monitoring of mixing of atmospheric and surface-soil leaked CO2 within303 herbaceous plant canopies

304

305 In absence of gassing, continuous CO₂ measurements at 5 cm from the ground above the 306 injection point on the central transect were strongly controlled by biogenic diurnal cycles (Fig. 307 7). During day time, CO₂ concentration and δ^{13} CO₂ averaged 370 ppm and -10 ‰, respectively (Fig. 7). At night, CO₂ concentrations increased up to ~700 ppm while δ^{13} CO₂ became more 308 309 negative to $\sim -20\%$ (Fig. 7). Plotting CO₂ concentration against wind speed showed that peak CO₂ concentration decreased from 700 ppm in stable low-wind condition to atmospheric 310 concentration for wind speeds equal to 6 m.s⁻¹ (Fig. 8). These results clearly demonstrate that 311 312 turbulent mixing induced by solar radiation tends to enhance the dilution of soil CO₂ in the 313 canopy atmosphere. Simultaneously, reduced CO₂ assimilation by photosynthesis at night 314 induces the accumulation of soil CO₂ in the canopy atmosphere close to the ground. Since soil 315 CO₂ does not share the same isotopic signature as atmospheric CO₂, diurnal variation of the 316 canopy atmosphere only results from differential mixing between days and nights. 317 318 Figures 7 and 8 319 320 Taking advantage of these diurnal variations in CO₂ resulting from the differential mixing of 321 soil and atmospheric sources it was possible to monitor the variation of soil CO₂ isotopic 322 signature with time before and after the gassing to detect the leakage (Fig. 9). Indeed, the 323 average soil CO₂ isotopic signature dropped from -29.8‰ (i.e. C3 plant signature) before 324 injection to -45.8‰ (i.e. injected gas signature) after injection (Fig. 9). 325 326 Figure 9 327 328 3.5. Effect on plants 329 330 Plant isotopic signatures ranged between -28.9 and -32.3 ‰ with an average of -30.9 ‰ (Fig. 331 10). Although differences were not significant, only 5 out of the 72 positions sampled had an isotopic signature \leq -32 ‰, they were all aligned on the central transect between 0 and 2 m 332 333 from the gassed side of the plot, that is to say just above the injection points where CO₂ fluxes 334 and concentration in the near ground atmosphere were maximum. This strongly suggests that

plant were slightly labeled by the injected/leaking CO_2 (i.e. -46.2 %).

336 337

220

338 339

4. Discussion

Figure 10

340 341 In this study we simulated a hypothetical leak by injecting CO_2 at a rate of 2 l min⁻¹ at 85 cm depth under an agricultural soil along a 2.5 m long perforated pipe. Although the injection rate 342 343 selected in the present study was about 10 times lower than that of the simulated leakage 344 experiment carried out at the zero emission research and technology (ZERT) station (Lewicki 345 et al., 2010), surface leakage features were very similar. Considering "hot spots" only, CO₂ concentrations in the first 30 cm of the soil were equivalent for both sites, i.e. 34-55 % this 346 study vs. 50 % at ZERT. At ZERT, surface CO₂ fluxes reached ~3100 g.m⁻².day⁻¹ (Lewicki et 347 348 al., 2010; Strazisar et al., 2009). This value is only 50% higher than our measured fluxes at 349 Grimsrud. Considering that the ZERT facility was designed to simulate a hypothetical leakage 350 from a realistic commercial-scale sequestration project characterized by an annual leaking rate 351 of about 0.001% (Spangler et al., 2010), it can be concluded that our simulated leakage 352 experiment is realistic and representative of a leak of similar amplitude.

353 Our study clearly showed that it was possible to track the three dimensional extent of a realistic 354 simulated leak in the soil-canopy-atmosphere continuum. In the soil, CO₂ leakage was spatially 355 heterogeneous but occurred principally above the injection points. In plot 1, injected CO_2 356 travelled along the entire length of the experimental plot whereas in plot 2 it was not detectable 357 more than half-way through the plot. Plot borders appeared to represent preferential CO_2 358 pathways to the atmosphere. In plot 2, most of the injected CO₂ was leaking from the border or 359 outside the experimental plot, indicating that the edge of the plot was permeable to CO₂. This 360 suggests that preferential flow through soil cracks contributed more to soil CO₂ transport than 361 homogeneous porous-media flow. Monitoring the isotopic signature of CO₂ fluxes enabled us 362 to identify regions of the plots displaying specific CO₂ transfer patterns characterized by either 363 strong or weak advection components. Our results suggest that measuring both the CO_2 flux 364 and its isotopic signature enables identification of 3 topsoil zones: 1) zones where the injected gas does not migrate, 2) zones where the injected CO₂ migrates slowly, presumably dominated 365 by the diffusive component, 3) zones where the injected CO₂ migrates rapidly, where advective 366 transport appears dominant. All of these observations suggested a strong control of the leakage 367 368 pattern by the soil structural properties, such as cracks, compaction, porosity, water content,

- and hydraulic conductivity. This finding is consistent with results from CO₂ leakage modeling
 studies (Oldenburg and Unger, 2003, 2004).
- 371 Once in the atmosphere, leaking CO₂ was quickly diluted by turbulent mixing. Canopy CO₂ 372 concentrations were closer to atmospheric values during daytime than nighttime. In a natural 373 system this effect is well documented and largely due to the absence of CO₂ uptake at night 374 (e.g. Rasse et al. 2002). Here, although photosynthetic uptake during daytime might have 375 reduced somewhat canopy-CO₂ concentrations, our results suggest that most of the diurnal 376 pattern was induced by a difference in turbulent mixing between daytime and night time.
- 377 Maximum canopy CO_2 concentration decreased sharply with increasing wind speed. During 378 daytime, our results show reduced CO_2 concentration with increasing sampling height in the 379 canopy and with the proximity to the edge of the plots. At 30 cm height leaking CO_2 could 380 barely be detected. Finally the accumulation of labeled CO_2 in the canopy resulted in the slight 381 but non-significant modification of the plant isotopic signature, which suggests that uptake of 382 injected CO_2 by the crop canopy was only minimal.
- 383 Isotopic tracing of surface soil CO₂ efflux allowed us to identify soil regions with low surface 384 emission of the leaked CO₂. These regions displayed soil CO₂ fluxes in the natural range and 385 thereby could not have been identified based on soil CO₂ flux measurements alone. With an 386 injection depth of 85 cm, these low-flux affected regions were located approximately 2 to 5 m 387 away from the source (Fig. 4). Whether this would scale up for deep injected CO_2 is difficult to 388 assess, but our results suggest the potential for detection away from the source in larger regions. 389 In high flux hot spots, the isotopic CO₂ tracing did not appear to bring much additional 390 information compared to measuring CO_2 flux alone, as the simulated leak induced surface CO_2 391 fluxes clearly outside the bounds of normal soil respiration rates.
- 392 In our case the delineation of low-leakage regions with isotopic tracing was possible because 393 of the contrasted isotopic signature between our CH₄-based CO₂ source at ~-46.2 ‰ and the 394 natural soil CO₂ at -26 ‰, as measured in our control plot. The ZERT detection study was also 395 based on CH₄-derived CO₂ (Spangler et al., 2010). In addition, the large pilot study of Rousse 396 used CH₄-derived CO₂ (Garcia et al., 2012). Natural gas represents about 20% of industrial CO₂ 397 emissions (Table 1). Cement factories are large single source emitters producing CO₂ at about 0 % (Table 1). The large contribution from liquid and solid fuel combustion, at δ^{13} CO₂ values 398 399 of 36 and 35 % respectively, is however very close to natural values for soils of temperate 400 regions (e.g. Beaubien et al., 2013; Risk et al., 2013). This suggests that, beyond pilot studies, 401 stable isotopic tracing of geological CO₂ would be limited to non-mixed reservoirs from CH₄ 402 combustion or cement production. Detecting a leakage from a reservoir with CO_2 produced

from liquid and solid fuel combustion may however be amenable to other approaches such as gas ratios, noble gas isotopes, or 14 C (e.g. Bachelor et al., 2008; Beaubien et al., 2013; Risk et al., 2013; Romanak et al., 2012).

- 406
- 407
- 408

Table 1

409 Isotopic monitoring of the geological CO₂ within the soil profile did not appear to increase 410 detection sensitivity as compared to surface flux monitoring. Here we used silicon probes for sampling soil CO₂ as in Kamman et al. (2001). Our silicon probes were non movable and appear 411 412 to induce a fractionation bias. A recent study suggests that polypropylene probes would not 413 induce fractionation in soils (Parent et al, in press). Also, the static nature of the soil-installed 414 probes can be overcome with the barholing method, which consists of directly inserting thin 415 metal pipes into the ground to sample soil CO₂ at different depths and locations (Smith et al., 416 2004; Al-Traboulsi et al., 2012).

- 417 Canopy-air ¹³CO₂ monitoring appears to slightly increase detection sensitivity as compared to 418 CO₂ concentration alone (Fig. 5A vs. 5B). However, our results suggest that the sensitivity of 419 the isotopic detection decreases quickly with increasing height in the canopy. Similarly, 420 improved CO₂ detection was reported with isotopic tracing when the inlet was located at 9 and 421 4 cm above the soil surface, as in Krevor et al. (2010) and McAlexander et al. (2011), 422 respectively. This screening technique appears therefore adapted to inlets located right above 423 the soil surface.
- 424

425 **5.** Conclusion

426

427 The ¹³C isotopic method proved to be more sensitive than concentration alone for the detection 428 of injected CO₂. It allowed us to detect low levels of leaking CO₂ when concentration 429 measurements in the range of the natural variation, and enabled the identification of different 430 zones of CO_2 transfer in the soil. In addition, the method enables to identify the source of the CO₂ and thereby confirm a potential CCS origin. While some have suggested that isotopic 431 432 tracing is a practical detection technique applicable to CSS (Krevor et al., 2010), others report 433 that complex mixing and fractionation processes within a reservoir may alter the isotopic 434 signature of the injected CO₂ and thereby limit its application (Magnier et al., 2012). Although these potential fractionation processes might limit the implementation of ¹³CO₂ isotopic tracing 435 436 as an operational monitoring tool, they also call for a better understanding of flux pathways,

transfer and exchanges in geological and soil layers. With respect to this research need, our 437 438 study indicates that isotopic monitoring of soil CO₂ fluxes does increase our detection 439

Table 1

sensitivity and our capacity to map soil regions affected by a simulated CO₂ leakage.

440 441

442 Acknowledgement

443

444 The present study was part of the RISCS (Research into impacts & safety in CO₂ storage) 445 project whose objective is to provide fundamental research on environmental impacts, 446 necessary to underpin frameworks for the safe management of CO₂ storage sites. RISCS is funded by the EC 7th Framework Programme and by industry partners ENEL I&I, Statoil, 447 Vattenfall AB, E.ON and RWE. R&D partners are BGS, CERTH, IMARES, OGS, PML, 448 449 SINTEF, University of Nottingham, Sapienza Università di Roma, Quintessa, CO₂GeoNet, 450 Bioforsk, BGR and ZERO. Four R&D institutes outside Europe participate in RISCS: CO₂CRC 451 from Australia, University of Regina from Canada and Montana State and Stanford Universities 452 from the USA. For more information please go to the website (www.riscs-CO₂.eu) or contact 453 the project coordinator David Jones (e-mail: dgj@bgs.ac.uk tel. + 44 (0)115 936 3576). Partial 454 funding for this project was also provided by the Norwegian Research Council (project GHG-455 NOR, NFR 208424). The authors are grateful to Øistein Johansen, Roald Aasen, Hege 456 Bergheim and Raphael Fauches for logistical and technical supports.

457

458 References

459

- Bachelor, P.P., McIntyre, J.I., Amonette, J.E., Hayes, J.C., Milbrath, B.D., Saripalli, P., 2008. 463 464 Potential method for measurement of CO₂ leakage from underground sequestration fields 465 using radioactive tracers. J. Radioanal. Nucl. Ch. 277, 85-89.
- Barr, J.L., Humphries, S.D., Nehrir, A.R., Repasky, K.S., Dobeck, L.M., Carlsten, J.L., 466 467 Spangler, L.H., 2011. Laser-based carbon dioxide monitoring instrument testing during a 30-day controlled underground carbon release field experiment. Int. J. Greenh. Gas. Con. 468 469 5, 138-145.

⁴⁶⁰ Al-Traboulsi, M., Sjogersten, S., Colls, J., Steven, M., Black, C., 2012. Potential impact of CO₂ 461 leakage from carbon capture and storage systems on field bean (Vicia faba). Physiol. 462 Plant. 146, 261-271.

- Bateson, L., Vellico, M., Beaubien, S.E., Pearce, J.M., Annunziatellis, A., Ciotoli, G., Coren,
 F., Lombardi, S., Marsh, S., 2008. The application of remote-sensing techniques to
 monitor CO₂-storage sites for surface leakage: Method development and testing at Latera
 (Italy) where naturally produced CO₂ is leaking to the atmosphere. Int. J. Greenh. Gas.
 Con. 2, 388-400.
- 475 Beaubien, S E, Jones, D G, Gal, F, Barkwith, A K A P, Braibant, G, Baubron, J C, Ciotoli, G,
 476 Graziani, S, Lister, T R, Lombardi, S, Michel, K, Quattrocchi, F and Strutt, M H. 2013.
 477 Monitoring of near-surface gas geochemistry at the Weyburn, Canada, CO₂-EOR site,
 478 2001–2011. Int. J. Greenh. Gas Con. 16(1), S236-S262.
- 479 Biasi, C., Pitkamaki, A.S., Tavi, N.M., Koponen, H.T., Martikainen, P.J., 2012. An isotope
 480 approach based on C-13 pulse-chase labelling vs. the root trenching method to separate
 481 heterotrophic and autotrophic respiration in cultivated peatlands. Boreal. Environ. Res.
 482 17, 184-192.
- 483 Braig, E., Tupek, B., 2010. Separating soil respiration components with stable isotopes: natural
 484 abundance and labelling approaches. Iforest 3, 92-94.
- Chen, Y.H., Jiang, J.B., Steven, M.D., Gong, A.D., Li, Y.F., 2012. Research on the Spectral
 Feature and Identification of the Surface Vegetation Stressed by Stored CO₂ Underground
 Leakage. Spectrosc. Spect. Anal. 32, 1882-1885.
- 488 Crosson, E.R., 2008. A cavity ring-down analyzer for measuring atmospheric levels of methane,
 489 carbon dioxide, and water vapor. Appl. Phys. B-Lasers O 92, 403-408.
- 490 Fessenden, J.E., Clegg, S.M., Rahn, T.A., Humphries, S.D., Baldridge, W.S., 2010. Novel
 491 MVA tools to track CO₂ seepage, tested at the ZERT controlled release site in Bozeman,
 492 MT. Environ. Earth. Sci. 60, 325-334.
- 493 Garcia, B., Billiot, J.H., Rouchon, V., Mouronval, G., Lescanne, M., Lachet, V., Aimard, N.,
 494 2012. A Geochemical Approach for Monitoring a CO₂ Pilot Site: Rousse, France. A
- 495 Major gases, CO₂-Carbon Isotopes and Noble Gases Combined Approach. Oil. Gas. Sci.
 496 Technol. 67, 341-353.
- Hogan, J.A., Shaw, J.A., Lawrence, R.L., Lewicki, J.L., Dobeck, L.M., Spangler, L.H., 2012.
 Detection of Leaking CO₂ Gas With Vegetation Reflectances Measured By a Low-Cost
 Multispectral Imager. Ieee J-Stars 5, 699-706.
- Humphries, S.D., Nehrir, A.R., Keith, C.J., Repasky, K.S., Dobeck, L.M., Carlsten, J.L.,
 Spangler, L.H., 2008. Testing carbon sequestration site monitor instruments using a
 controlled carbon dioxide release facility. Appl. Optics 47, 548-555.

- Jiang, J.B., Steven, M.D., Chen, Y.H., 2012. Use of Leaf Spectral Ratio Indices to Estimate
 Leaf Relative Water Content of Beetroot Under CO₂ Leakage Stress. Sensor Lett. 10,
 505 501-505.
- Kammann, C., Grunhage, L., Jager, H.J., 2001. A new sampling technique to monitor
 concentrations of CH(4), N(2)O and CO(2) in air at well-defined depths in soils with
 varied water potential. Eur. J. Soil Sci. 52, 297-303.
- Keeling, C.D., 1958. The concentration and isotopic abundances of atmospheric carbon dioxide
 in rural areas. Geochim. and Cosmochim. Acta 13, 322-334.
- 511 Keeling, C.D., Mook, W.G., Tans, P.P., 1979. Recent Trends in the C-13-C-12 Ratio of
 512 Atmospheric Carbon-Dioxide. Nature 277, 121-123.
- Keeling, R.F., Manning, A.C., Dubey, M.K., 2011. The atmospheric signature of carbon capture
 and storage. Philos. T. R. Soc. A 369, 2113-2132.
- 515 Keith, C.J., Repasky, K.S., Lawrence, R.L., Jay, S.C., Carlsten, J.L., 2009. Monitoring effects
- of a controlled subsurface carbon dioxide release on vegetation using a hyperspectral
 imager. Int. J. Greenh. Gas Con. 3, 626-632.
- 518 Krevor, S., Benson, S., Rella, C., Perrin, J.C., Esposito, A., Crosson, E., 2010. Rapid detection
 519 and characterization of surface CO₂ leakage through the real-time measurement of C-13
 520 signatures in CO₂ flux from the ground. Geochim. Cosmochim. Acta 74, A540-A540.
- 521 Lakkaraju, V.R., Zhou, X.B., Apple, M.E., Cunningham, A., Dobeck, L.M., Gullickson, K.,
 522 Spangler, L.H., 2010. Studying the vegetation response to simulated leakage of
 523 sequestered CO₂ using spectral vegetation indices. Ecol. Inform. 5, 379-389.
- Lewicki, J.L., Hilley, G.E., 2009. Eddy covariance mapping and quantification of surface CO₂
 leakage fluxes. Geophys. Res. Lett 7, 137-144
- Lewicki, J.L., Hilley, G.E., 2012. Eddy covariance network design for mapping and
 quantification of surface CO₂ leakage fluxes. Int. J. Greenh. Gas Con. 7, 137-144.
- Lewicki, J.L., Hilley, G.E., Dobeck, L., Spangler, L., 2010. Dynamics of CO₂ fluxes and
 concentrations during a shallow subsurface CO₂ release. Environ. Earth Sci. 60, 285-297.
- Lichtfouse, E., Lichtfouse, M., Jaffrezic, A., 2003. delta C-13 values of grasses as a novel
 indicator of pollution by fossil-fuel-derived greenhouse gas CO₂ in urban areas. Environ.
 Sci. Technol. 37, 87-89.
- Magnier, C., Rouchon, V., Bandeira, C., Goncalves, R., Miller, D., Dino, R., 2012. Surface and
 Subsurface Geochemical Monitoring of an EOR-CO₂ Field: Buracica, Brazil. Oil Gas Sci.
 Technol. 67, 355-372.

- Male, E.J., Pickles, W.L., Silver, E.A., Hoffmann, G.D., Lewicki, J., Apple, M., Repasky, K.,
 Burton, E.A., 2010. Using hyperspectral plant signatures for CO₂ leak detection during
 the 2008 ZERT CO₂ sequestration field experiment in Bozeman, Montana. Environ. Earth
 Sci. 60, 251-261.
- McAlexander, I., Rau, G.H., Liem, J., Owano, T., Fellers, R., Baer, D., Gupta, M., 2011.
 Deployment of a Carbon Isotope Ratiometer for the Monitoring of CO₂ Sequestration
 Leakage. Anal. Chem. 83, 6223-6229.
- 543 Moni, C., Rasse, D.P., 2013. Simulated CO2 Leakage Experiment in Terrestrial Environment:
 544 Monitoring and Detecting the Effect on a Cover Crop Using ¹³C Analysis. Energy
 545 Procedia 37, 3479-3485.
- Noble, R.R.P., Stalker, L., Wakelin, S.A., Pejcic, B., Leybourne, M.I., Hortle, A.L., Michael,
 K., 2012. Biological monitoring for carbon capture and storage A review and potential
 future developments. Int. J. Greenh. Gas Con. 10, 520-535.
- Noomen, M.F., Smith, K.L., Colls, J.J., Steven, M.D., Skidmore, A.K., Van der Meer, F.D.,
 2008. Hyperspectral indices for detecting changes in canopy reflectance as a result of
 underground natural gas leakage. Int. J. Remote. Sens. 29, 5987-6008.
- Noomen, M.F., van der Werff, H.M.A., van der Meer, F.D., 2012. Spectral and spatial
 indicators of botanical changes caused by long-term hydrocarbon seepage. Ecol. Inform.
 8, 55-64.
- Oldenburg, C.M., Unger, A.J.A., 2003. On Leakage and Seepage from Geologic Carbon
 Sequestration Sites: Unsaturated Zone Attenuation. Vadose Zone J. 2, 287-296.
- 557 Oldenburg, C.M., Unger, A.J.A., 2004. Coupled vadose zone and atmospheric surface-layer
 558 transport of carbon dioxide from geologic carbon sequestration sites. Vadose Zone J. 3,
 559 848-857.
- 560 Oppermann, B.I., Michaelis, W., Blumenberg, M., Frerichs, J., Schulz, H.M., Schippers, A.,
 561 Beaubien, S.E., Kruger, M., 2010. Soil microbial community changes as a result of long562 term exposure to a natural CO₂ vent. Geochim. Cosmochim. Acta 74, 2697-2716.
- 563 Parent, F., Plain, C., Epron, D., Longdoz, B., In press. A new method for continuously
 564 measuring the delta13C of soil CO₂ concentrations at different depths by laser
 565 spectrometry. Eur. J. Soil Sci.
- Pekney, N., Wells, A., Diehl, J.R., McNeil, M., Lesko, N., Armstrong, J., Ference, R., 2012.
 Atmospheric monitoring of a perfluorocarbon tracer at the 2009 ZERT Center
 experiment. Atmos .Environ. 47, 124-132.

- 569 Pickles, A., Cover, W.A., 2005. Hyperspectral geobotanical remote sensing for CO₂ storage
 570 monitoring, in: Thomas, D.C., Benson, S. (Eds.), Carbon dioxide capture for storage in
 571 deep geologic formations—results from the CO₂ capture project capture and separation
 572 of carbon dioxide from combustion sources. Elsevier, San Diego, pp. 1045–1070
- 573 Rasse, D.P., Stolaki, S., Peresta, G., Drake, B.G., 2002. Patterns of canopy-air CO₂
 574 concentration in a brackish wetland: analysis of a decade of measurements and the
 575 simulated effects on the vegetation. Agric. For. Met. 114, 59-73.
- 576 Risk, D, Mcarthur, G, Nickerson, N, Phillips, C, Hart, C, Egan, J and Lavoie, M. 2013. Bulk
 577 and isotopic characterization of biogenic CO₂ sources and variability in the Weyburn
 578 injection area. Int. J. Greenh. Gas Con, 16(1), S263-S275.
- Romanak, K.D., Bennett, P.C., Yang, C. and hovorka, S.D., 2012. Process-based approach to
 CO₂ leakage detection by vadose zone gas monitoring at geologic CO₂ storage sites.
 Geophys. Res. Lett., 39, L15405.
- Rouse, J.H., Shaw, J.A., Lawrence, R.L., Lewicki, J.L., Dobeck, L.M., Repasky, K.S.,
 Spangler, L.H., 2010. Multi-spectral imaging of vegetation for detecting CO₂ leaking
 from underground. Environ. Earth Sci. 60, 313-323.
- Smith, K.L., Steven, M.D., Colls, J.J., 2004. Use of hyperspectral derivative ratios in the rededge region to identify plant stress responses to gas leaks. Remote Sens. Environ. 92, 207217.
- Spangler, L.H., Dobeck, L.M., Repasky, K.S., Nehrir, A.R., Humphries, S.D., Barr, J.L., Keith,
 C.J., Shaw, J.A., Rouse, J.H., Cunningham, A.B., Benson, S.M., Oldenburg, C.M.,
 Lewicki, J.L., Wells, A.W., Diehl, J.R., Strazisar, B.R., Fessenden, J.E., Rahn, T.A.,
 Amonette, J.E., Barr, J.L., Pickles, W.L., Jacobson, J.D., Silver, E.A., Male, E.J., Rauch,
 H.W., Gullickson, K.S., Trautz, R., Kharaka, Y., Birkholzer, J., Wielopolski, L., 2010. A
 shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing
 near surface CO₂ detection techniques and transport models. Environ. Earth Sci. 60, 227-
- **595** 239.
- 596 Strazisar, B.R., Wells, A.W., Diehl, J.R., Hammack, R.W., Veloski, G.A., 2009. Near-surface
 597 monitoring for the ZERT shallow CO₂ injection project. Int. J. Greenh. Gas Con. 3, 736598 744.
- Tans, P., 1981. 13C/12C of industrial CO₂, in: Bolin, B. (Ed.), SCOPE16: Carbon cycle
 modelling. John Wiley and sons, England, pp. 127-129.

- Watson, T.B., Sullivan, T., 2012. Feasibility of a Perfluorocarbon tracer based network to
 support Monitoring, Verification, and Accounting of Sequestered CO₂. Environ. Sci.
 Technol, 46, 1692-1699.
- 604 Wells, A., Strazisar, B., Diehl, J.R., Veloski, G., 2010. Atmospheric tracer monitoring and
- surface plume development at the ZERT pilot test in Bozeman, Montana, USA. Environ.
 Earth Sci. 60, 200, 205
- 606 Earth Sci. 60, 299-305.
- Winthaegen, P., Arts, R., Schroot, B., 2005. Monitoring subsurface CO₂ storage. Oil Gas Sci.
 Technol. 60, 573-582.
- 609 Zhou, X.B., Lakkaraju, V.R., Apple, M., Dobeck, L.M., Gullickson, K., Shaw, J.A.,
- 610 Cunningham, A.B., Wielopolski, L., Spangler, L.H., 2012. Experimental observation of
- 611 signature changes in bulk soil electrical conductivity in response to engineered surface
- $612 CO_2 ext{ leakage. Int. J. Greenh. Gas Con. 7, 20-29.}$
- 613
- 614
- 615