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Abstract 

1 The European spruce bark beetle Ips typographus is a damaging pest on spruce in Europe. 

Beetle interactions with tree species originating outside the beetles’ natural range are 

largely unknown and may be unpredictable, since trees without a co-evolutionary history 

with the beetle may lack effective defenses.  

2 We compared the terpenoid composition and breeding suitability to I. typographus of the 

historic host Norway spruce Picea abies with two evolutionary naïve spruces of North 

American origin that are extensively planted in NW Europe, Sitka spruce Picea sitchensis 

and Lutz spruce Picea glauca x lutzii.  

3 The bark of all three species had similar chemical composition and similar levels of total 

constitutive terpenoids, but Norway spruce had higher total induced terpenoid levels.  

4 Beetles tunneling in the three spruce species produced similar amounts of aggregation 

pheromone. Controlled breeding experiments showed that I. typographus could produce 

offspring in all three species, with similar offspring length and weight across species. 

However, total offspring production was much lower in Sitka and Lutz spruce.  

5 Overall, our results suggest that I. typographus will be able to colonize Sitka and Lutz 

spruce in European plantations and in native spruce forests in North America if introduced 

there. 

 

Keywords: Picea abies, Picea sitchensis, Picea lutzii, terpenoids, naïve host  



3 
 

Introduction 

The European spruce bark beetle Ips typographus (L.) is one of the most damaging forest 

pests in Europe and one of the few insects that can kill trees over large areas (Økland and 

Bjørnstad 2006). The beetles mass-attack timber, windthrows or healthy trees and oviposit in 

characteristic breeding galleries in the bark. The larvae tunnel through the bark as they 

develop, and the full development from egg to adult takes one to several months, depending 

on local climatic conditions. The main host of the spruce bark beetle in Europe is Norway 

spruce Picea abies (L.) H. Karst., but the beetle may occasionally reproduce in other spruce 

species (Økland et al. 2011). The relationship between the spruce bark beetle and its main 

host appears to have been shaped by an arms race of chemical warfare during their long co-

evolutionary history (Franceschi et al. 2005). When the beetles tunnel into the bark, the trees 

defend themselves by constitutive defenses, which include storage of toxic terpenoids in 

premade resin ducts, and inducible defenses, such as mobilization of induced terpenoids 

(Keeling and Bohlmann 2006). Studies have shown that a tree’s ability to effectively mobilize 

terpenoid defenses can be a reliable resistance marker, as trees with strong induced defenses 

are more resistant to bark beetle attack than trees with a weaker or slower response (Boone et 

al. 2011; Schiebe et al. 2012; Zhao et al. 2011b). The beetles use specific host terpenoids as 

precursors to produce the aggregation pheromones that coordinate their deadly mass-attacks 

(Blomquist et al. 2010). Because terpenoids have this dual role of defending trees against 

attack and promoting beetle mass-attacks, quantitative and qualitative aspects of the trees’ 

terpenoids are important determinants of host suitability for the spruce bark beetle. 

When bark beetles encounter novel host trees the outcome may be favorable for the 

beetles, since novel hosts without a co-evolutionary history with the beetles are evolutionary 

naïve and may lack effective defenses (Burke and Carroll 2016; Cudmore et al. 2010). Novel 

bark beetle-host tree associations form when trees are planted outside their native range and 

when beetles become invasive in other continents or undergo local range expansion, like the 

mountain pine beetle Dendroctonus ponderosae Hopkins in western Canada (Cudmore et al. 

2010; Erbilgin et al. 2014). The two North American spruce species Sitka spruce Picea 

sitchensis (Bongard) Carrière and the Sitka/white spruce P. glauca hybrid Lutz spruce Picea 

× lutzii Little have been extensively planted within the spruce bark beetle’s range in northern 

and western Europe since the 1960s. Plantations of Sitka spruce now exceed 1.2 million 

hectare (Mason and Perks 2011), mainly in coastal regions of the British Isles (1.07 million 

ha), Norway (50 000 ha), France (50 000 ha), and Denmark (35 000 ha). No outbreaks of the 
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spruce bark beetle are known on Sitka spruce in Europe, although attacks on individual trees 

have been observed in the British Isles and Sweden (Sean Murphy pers. comm.; Ulf 

Johansson pers. comm.). In addition to attacking Sitka and Lutz spruce in Europe, the spruce 

bark beetle could become introduced in the native ranges of these species in North America, 

where it has been intercepted 286 times between 1985 and 2000 (Haack 2001). It is thus of 

great practical interest to determine the spruce bark beetle’s potential to colonize Sitka and 

Lutz spruce.  

Like many other tree-killing bark beetles the spruce bark beetle carries a multitude of 

blue-stain fungi (Kirists 2004; Linnakoski et al. 2016) that are thought to help the beetles 

break down spruce defenses (Krokene 2015). One of the most virulent fungal associates is 

Endoconidiophora polonica (Siemaszko) C. Moreau, which can kill Norway spruce when 

experimentally inoculated into trees (Horntvedt et al. 1983). The ability of beetle-associated 

fungi to colonize and kill phloem tissues may be a critical factor determining beetle 

colonization success in different spruce hosts. The relationship between the spruce bark 

beetle, E. polonica and their historic host Norway spruce is well-documented (Krokene and 

Solheim 1996; Krokene and Solheim 1998; Krokene et al. 2003; Lahr and Krokene 2013). 

However, the interaction between the beetle-fungus complex and the potential hosts Sitka and 

Lutz spruce is almost unknown, except for a small-scale inoculation study on four trees 

indicating that E. polonica is relatively virulent to Sitka spruce (Christiansen and Solheim 

1990). 

As discussed above, conifers without a history of attacks from tree-killing bark 

beetles may be less resistant and have a bark chemistry that is more conducive to beetle 

colonization than trees that have co-evolved with such beetles. Evolutionary naïve trees may 

for example have a terpene composition that promotes beetle pheromone production and 

aggregation (Erbilgin et al. 2014; Raffa et al. 2013). Lack of co-evolved defenses is probably 

contributing to the devastating effects many invasive insects and pathogens have as they 

encounter “defense-free space” on novel hosts in their invasive range (Erbilgin et al. 2014; 

Gandhi and Herms 2009; Ploetz et al. 2013). However, evolutionary naivety goes both ways 

and bark beetles facing novel host trees are also evolutionary naïve and may be discouraged 

from colonizing the trees by different mechanisms of non-host resistance (Kaloshian and 

Walling 2016). Naïve beetles could be less successful in colonizing novel hosts because the 

beetles do not recognize the trees as a breeding substrate or because the trees’ chemical 

composition interferes with beetle pheromone production and reproduction. Because 
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evolutionary naivety goes both ways novel bark beetle-conifer interactions are unpredictable 

with an outcome that could be beneficial to either the trees or the beetles.  

The main objective of this study is to determine if evolutionary naïve Sitka and Lutz 

spruce are chemically suitable hosts for the spruce bark beetle, or if their terpenoid 

composition might be an obstacle for establishment of the beetles’ symbiotic blue-stain 

fungus E. polonica and tree colonization and pheromone production by the beetles. To do this 

we compare the constitutive and induced terpenoid profile of Sitka and Lutz spruce with that 

of the co-evolved historic host Norway spruce. We also determine beetle pheromone 

production, beetle breeding success, and fungal colonization success in the bark of the three 

spruce species. 

 

Materials and methods  

Study area and sampling of trees 

This study was carried out in a 0.75 ha experimental stand established in 1963 near 

Prestebakke in Halden, SE Norway (N 58.999 E 11.522). The stand was planted with Norway 

spruce and different North American conifers, with 60 × 20 meter plots of trees in parallel 

rows with similar densities and growth conditions. On 14 June 2014, we selected 10 trees 

each of Norway spruce (local provenance), Sitka spruce (provenance Alaska 21-05) and Lutz 

spruce (Alaska 21-1.0), measured diameter at breast height (DBH), and removed debris from 

the bark surface of the lower stem using a plastic brush. To determine constitutive terpene 

levels in the trees, we collected four bark samples equally spaced around the stem 

circumference of each tree at 0.5 meter height using a 9 mm cork borer. These constitutive 

samples were pooled, wrapped in aluminum foil and flash frozen in liquid nitrogen. To 

determine induced terpene levels, we treated the same trees with the plant hormone methyl 

jasmonate (MeJA) by placing a filter paper (5 × 5 mm) soaked in a 50 mM MeJA solution in 

each of the four cork borer holes. Previous work has shown that MeJA application only 

affects terpenoid levels in bark tissues close to the application site (< 30 cm away; Zhao et al. 

2010). The cork borer holes were sealed with a 9 mm bark plug taken from a neighboring 

“donor-tree” of the same species that was not used for terpene sampling. One month later (1 

July 2014), new bark samples were collected immediately above the original sampling 

positions using a 9 mm cork borer, the four samples were pooled, wrapped in aluminum foil, 

and flash frozen in liquid nitrogen for later analysis of induced terpene levels (“induced 

samples”). All constitutive and induced samples were stored at -80 ○C until terpene analysis. 
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About 10 months after the final bark sampling (13 May 2015), we felled all the 

experimental trees, cut a 1.2 m long stem section from each tree between 1.0 and 2.2 m above 

ground and brought them to the institute. We sealed the cut ends with melted paraffin wax 

(VWR Chemicals) to reduce desiccation and stored the stem sections outdoors. Four days 

later we divided each stem section into three 0.4 m long bolts, sealed the freshly cut ends with 

melted paraffin wax, and stored the bolts indoors at 4 ˚C. Ten bolts per tree species were used 

to determine beetle reproductive performance, 10 bolts were used to determine fungal 

colonization success, and 10 bolts were used to quantify pheromone production by the spruce 

bark beetle.  

 

Analysis of terpenes 

Sample preparation and extraction. For each sample type (constitutive and induced) we split 

the four bark plugs from each tree in two, returned one half to -80 ○C as a backup, and 

processed the other half for terpene analysis. The cork bark was removed, and the remaining 

phloem was submerged in 1 ml hexane (≥ 95% Sigma-Aldrich) containing 0.20 mg 

pentadecane (≥ 99% Sigma-Aldrich) as internal standard and 3-tert-butyl-4-hydroxyanisole 

(Sigma-Aldrich) as antioxidant. All samples were extracted in hexane at room temperature for 

48 hours before the extracts were filtered, transferred to Agilent MS vials with crimp top, and 

stored at -80 ○C. The phloem was dried at 80 ○C for 24 hours and weighted for absolute 

amount calculation.  
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Terpene analysis by GC-MS. Terpene analysis was carried out on an Agilent 6890 N gas 

chromatograph (GC) connected to an Agilent 5973 mass spectrometer (MS) and fitted with an 

autosampler. The GC was operated in splitless mode at 250 °C with an injection volume of 1 

µL, using a 30-m fused silica Agilent J &W Scientific DB-Wax separation column (Agilent 

Technologies) with an inner diameter of 0.25 mm and film thickness of 0.25 µm. A 2.5-ml 

methyl-deactivated pre-column (Varian Inc., Lake Forest, CA, USA) with the same inner 

diameter was coupled to the analytical column via a press-fit connector (BGB Analytik AG, 

Boeckten, Switzerland). After sample injection, the temperature was held at 40 °C for 2 min 

and subsequently raised 6.9 °C/min to 160 °C and then 21.5 °C/min to 250 °C. The 

temperature was then held constant at 250 °C for 3.6 min, giving a total running time of 27.18 

min. The MS was operated in scan mode from m/z 40 to 550 with a threshold of 50 and 2.86 

scans/s. The transfer line temperatures were set at 280 °C, the ion source temperature at 230 

°C, and the quadrupole temperature at 150 °C. Volatile compounds were identified using a 

Deconvolution Reporting System (DRS, version A.02.00, Agilent Technologies), which 

combines an automatic mass spectral deconvolution and identification software (AMDIS 

version 2.62, NIST) with a mass spectral library (NIST08 database) and GC–MS software 

(ChemStation version D.03.00, Agilent Technologies). The AMDIS database contained 

1100 mass spectra of volatile compounds, 180 of which were connected to Kovats retention 

indexes (Kováts 1958). To obtain comparable retention times for all samples, the retention 

time was locked and referenced according to the internal standard pentadecane at 10.748 min 

by use of the ChemStation retention time-locking program. Peaks that were present in the 

chromatogram but not identified by the DRS were manually interpreted using the NIST08 

database. To ensure reliable identification, a match factor of at least 70 % similarity was used 

(Stein 1999). Compound identification was verified by comparing mass spectra and retention 

times with those obtained for synthetic standards on the same column. Terpenes were 

quantified as pentadecane equivalents by dividing the peak areas from the total ion 

chromatogram of single terpenes by the peak area of the internal standard pentadecane. The 

monoterpene α-pinene was provided by Yngve H. Stenstrøm (Norwegian University of Life 

Sciences, Ås, Norway), whereas all other compounds were acquired as standards from 

Aldrich, Fluka, Chiron AS, Supelco, and SAFC.  
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Chiral terpene analysis. The enantiomeric composition of α-pinene was determined in a 

second GC-MS run to test how precursor terpenes in the host trees influenced pheromone 

production by the spruce bark beetle (Ips typographus). Chiral separation was performed 

using the same Agilent GC-MS setup described above, but equipped with a 30-m Cyclodex-B 

column (Agilent Technologies) with an inner diameter of 0.25 mm and film thickness of 0.25 

µm. After sample injection, the column temperature was held at 40 °C for 0.5 min and raised 

by 2 °C/min to 80 °C, then raised by 10 °C/min to 220 °C and held constant for 1 min, giving 

a total running time of 36 min. The injection volume, injector temperature and MS parameters 

were the same as for the non-chiral analysis. 

 

Beetle pheromone quantification  

On 10 July 2015, spruce bark beetles were introduced into 10 cut bolts per tree species to 

determine the beetles’ ability to produce aggregation pheromones in the different spruce 

species. The beetles were collected in Ås, SE Norway (N 59.677 E 10.772) in early June 

2015, using traps baited with Ipslure pheromone dispensers (Borregaard, Norway), and stored 

at 4 ˚C. Ten vigorous beetles were placed individually on the bark surface of each bolt. Each 

beetle was covered by a glass vial held tightly against the bark by a rubber band extending 

around the bolt. To facilitate beetle entry into the bark a superficial wound was made through 

the cork bark at each position. After 48 hours, beetles that had entered the bark were 

collected, their hind gut was removed, and the guts were analyzed by GC-MS to quantify 

pheromone compounds, following the procedure described above. Since males are the 

pheromone producing sex in the spruce bark beetle only male beetles were analyzed. The 

spruce bark beetle can only be reliably sexed by removing the subgenital plate and aedeagus, 

and during this process the hindgut of males was removed and pooled by bolt (n = 1 to 6 

males per bolt) in 100 µl hexane containing 0.1 µg/ml pentadecane. To compare pheromone 

quantity on a per male basis we divided the total amount of each pheromone compound 

detected in a sample by the number of male hindguts in the sample. 

 

Beetle reproductive performance  

To assess beetle reproductive performance we introduced beetles into 10 cut bolts per tree 

species at a controlled low density (∼0.25 colonization sites per dm2 bark surface) to minimize 

any effects of competition for breeding substrate on reproductive performance. On the 

morning of 27 May 2015, we hung the bolts from the ceiling in the institute’s insectarium and 
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made a superficial wound through the outer bark to facilitate entry of beetles collected in 

pheromone traps a few days earlier. The insectarium is a shed with open wire mesh walls 

providing similar light and temperature conditions as those outside in the shade. We covered 

each bark wound by a glass vial containing four beetles. The vials were held in place by 

rubber bands extending around the bolt. Depending on the circumference of the bolt, 3-4 glass 

vials were evenly spaced around the upper and lower part of the bolt, distributed to minimize 

competition between galley systems. The following morning, we introduced additional beetles 

into each glass if some of the original beetles had not entered the bark. The spruce bark beetle 

cannot be accurately sexed without dissecting the genitalia, and four or more beetles were 

added at each colonization site to ensure that there were enough females (each colonizing 

male can accommodate up to four females). After three days, we removed all glass vials and 

covered each bolt by an emergence net with a collection bottle underneath. The bottles were 

emptied biweekly for emerging offspring that were counted and stored at 4 ᵒC. On 12 October 

2015, we cleared all bark from the bolts, collected and counted all remaining live beetles 

under the bark, and recorded the number of breeding galleries on each bolt. We dried all 

beetles in an oven at 70 ᵒC for 50 hours before we determined dry weight and length for 6-75 

beetles per bolt (267 beetles in total from Norway spruce, 109 from Sitka spruce, and 180 

from Lutz spruce). 

 

Performance of Endoconidiophora polonica  

Ten bolts per tree species were inoculated with the bark beetle-associated blue-stain fungus 

Endoconidiophora polonica at four evenly spaced positions around the middle part of each 

bolt. Inoculations were made by removing a 5 mm diameter bark plug, placing fungal 

inoculum into the hole, and replacing the bark plug. Inoculum consisted of malt agar 

colonized for 21 days at a 20 ᵒC by E. polonica isolate no. 193-208/115 from the culture 

collection of the Norwegian Institute of Bioeconomy Research. This is a virulent isolate that 

has been used in many previous inoculation studies with Norway spruce (e.g. Krokene & 

Solheim 1998; Krokene et al. 2003). The fungus was allowed to colonize the bolts for 90 days 

before the cork bark was removed and the length of the necrotic lesions in the inner bark was 

measured. Two measures were taken: (1) the length of the outer necrosis, which represents the 

full extent of fungal colonization, and (2) the length of the darker inner necrosis, which 

represents the active host defense area.  
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Data analyses 

All statistical analyses were carried out in R (v.3.3.1) (R Core Team 2016) using the packages 

Vegan (v 2.3-5) for Detrended Correspondence Analysis (DCA), Nonmetric 

Multidimensional Scaling (NMDS) and Procrustes analysis (Oksanen et al. 2016) and the 

package ggplot2 (Wickham 2009) for plotting. We used NMDS to visualize differences in 

chemical composition among tree species and treatments (constitutive vs. induced samples) 

based on Bray-Curtis dissimilarities of square-root-transformed concentration data for 107 

compounds from constitutive samples and 127 compounds from induced samples. The NMDS 

model was set to two dimensions, plots were centered, rotated to principal components, and 

axes were rescaled to half-change units. For both constitutive and induced samples 

convergence was found after 20 iterations with a goodness-of-fit measure (called ‘stress’) of 

0.09, which indicates a good fit (Kruskal and Wish 1978). To find the optimal configuration 

we used NMDS in parallel with DCA and Procrustes analysis to see if the two different 

methods revealed the same structure. Since we found no structural differences between 

NMDS and DCA, and since NMDS gave an acceptable representation of the data structure, 

we only present the NMDS results here.  

Mean constitutive and inducible terpenoid amounts were compared between tree 

species, both for individual compounds and for total terpenoids. Treatments were compared 

using one-way ANOVA followed by Tukey honest significant difference test (Tukey HSD) at 

p = 0.05. 

Because (-)-α-pinene in the host tree is the main precursor for the beetle pheromone 

component cis-verbenol (Birgersson et al. 1988), we tested four hypotheses for how cis-

verbenol production might vary with host terpene levels. Data from all three spruce species 

were considered together, as we assumed that effects of terpene levels on pheromone 

production are independent of other host tree qualities. H0: cis-verbenol production is 

independent of the amount of (-)-α-pinene in the bark and there is no correlation between cis-

verbenol and (-)-α-pinene within the range of (-)-α-pinene concentrations found in our 

samples. H1: cis-verbenol production increases with the amount of (-)-α-pinene in the bark 

(positive correlation). H2: cis-verbenol production varies with the relative amount of (-)-α-

pinene in the bark (amount of (-)-α-pinene divided by the total amount of all other terpenes). 

H3: cis-verbenol production varies with the amount of (-)-α-pinene minus the total amount of 

all other terpenes. H2 and H3 takes into consideration that the beetles must detoxify other host 

terpenoids in addition to (-)-α-pinene. H2 assumes a linear effect of other terpenes, whereas H3 

assumes that other terpenes must be detoxified first before the beetles can use (-)-α-pinene to 
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produce cis-verbenol. The function cor.test in R was used to calculate Spearman's rho 

statistics between cis-verbenol and terpene amounts when testing hypotheses H0-H3.  

We tested for differences between spruce species in beetle reproductive performance 

in cut bolts, bolt properties, length and weight of beetle offspring, beetle pheromone 

production, and fungal lesion lengths by using one-way ANOVA followed by Tukey HSD at 

p = 0.05. Variables with multiple measurements for each bolt were averaged before analysis 

(offspring length and weight, fungal lesion length). Correlations between beetle offspring 

production and terpenoid quantities in each bolt were calculated using the function cor.test (R 

Core Team 2016). 

 

Results 

Overall differences in terpenoids between Sitka, Lutz and Norway spruce 

A total of 148 unique terpenoids were identified with >70% certainty in one or more of the 

three spruce species, of which 107 compounds were detected in constitutive samples and 127 

in induced samples. There was no significant difference in total terpenoid levels between 

spruce species in constitutive samples (F2,27 = 1.23, p = 0.31), but Norway spruce had 

significantly higher induced levels than the other species (F2,27 = 7.57, p = 0.0025) (Figure 1). 

All three spruce species had more than 20-fold higher terpenoid concentrations in induced 

samples than in constitutive samples (Figure 1).  

The NMDS plot (Figure 2) shows the overall chemical similarity between tree species, 

i.e. the closer the species are in the plot, the more similar is their terpenoid composition. The 

axis range spanned by the data (ca. 1.5 half-change units), indicates that there were only 

moderate differences between tree species in terpenoid composition, i.e. the tree species 

mostly shared the same compounds. The data for Sitka and Lutz spruce (blue and red areas) 

and their mean site scores (black dots) moved in the same direction from constitutive to 

induced samples, indicating that the terpenoid composition of these species changed in a 

similar way after MeJA treatment. Norway spruce (green areas and arrow) moved away from 

Sitka and Lutz following induction, becoming slightly more different in terpene composition 

after MeJA treatment.  

 

Differences in abundant terpenoids between Sitka, Lutz and Norway spruce 

Most of the 148 terpenoids that were identified only occurred in a few samples from each tree 

species and in trace amounts, and were therefore assumed to be biologically less important. 
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For further comparisons of terpene composition between tree species we included only the 

most abundant terpenoids, i.e. compounds making up 1% or more of the total terpenoid 

volume in constitutive or induced samples in at least one tree species (16 compounds in total). 

In Norway, Sitka and Lutz spruce these abundant terpenoids made up 95, 96 and 96% 

respectively of the total constitutive terpenoid volume and 92, 93 and 92% of the total 

induced terpenoid volume. Fourteen of the 16 compounds were detected in all three spruce 

species. 

The total concentration of the 16 most abundant terpenoids was higher in constitutive 

Norway spruce bark than in Sitka spruce (25% higher) and Lutz spruce bark (51% higher), 

but the differences were not statistically significant (F2,27 = 1.20, p = 0.32). The concentration 

of individual terpenoids in constitutive bark was quite similar across species, but Norway 

spruce had significantly higher concentrations than the two other species for β-pinene, 

thunbergol, germacrene-d, and longifolene and significantly lower concentrations than either 

Sitka or Lutz spruce for β-phellandrene, epimanool, and sabinene (Figure 3A).  

The total concentration of the 16 most abundant terpenoids increased in all three 

spruce species in response to MeJA-treatment, with 20- to 25-fold increases in the different 

species. Total induced terpenoid levels in Norway spruce were significantly higher than in 

Sitka (55%) and Lutz spruce (102%) (F2,27 = 7.27, p = 0.003). There was no significant 

difference between the two North American species. For seven of the 16 most abundant 

compounds Norway spruce had significantly higher concentrations than Sitka and Lutz spruce 

(α-pinene, β-pinene, thunbergol, germacrene-d, longifolene, manooyloxide and 3-carene; 

Figure 3B). Concentrations of the cis-verbenol precursor (-)-α-pinene was significantly higher 

in Norway spruce than in the two North American spruce species in induced samples (F2,27 = 

9.50, p = 0.008) but not in constitutive samples (F2,27 = 0.57, p = 0.57). 

 

Beetle pheromone production 

Beetle pheromone production was highly variable between bolts and there were no significant 

differences in pheromone production between males tunneling in the different spruce species 

(cis-verbenol: F2, 20 = 1.73, p = 0.20; 2-methyl-3-buten-2-ol (methylbutenol): F2, 23 = 1.52, p = 

0.24) (Figure 4). The ratio between methylbutenol and cis-verbenol production was 

significantly higher in Lutz spruce (34.4 : 1) than in Norway spruce (2.4 : 1) and Sitka spruce 

(10.1 : 1) (F2, 17 = 12.11, p = 0.0005).  

Because there were no significant differences in cis-verbenol production by tunneling 

beetles between tree species, the influence of terpenes on the production of cis-verbenol was 
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analyzed using data from all tree species in the same analysis. We found no significant 

correlations between the amount of cis-verbenol produced by the beetles and any of the 

combinations of terpene amounts tested in hypotheses H1-H3 (Table 1). Thus, our results 

supported the null hypothesis H0, stating that the amount (-)-α-pinene in the host does not 

influence beetle cis-verbenol production within the range of (-)-α-pinene concentrations found 

in our samples.  

 

Beetle reproductive performance  

More spruce bark beetle offspring developed successfully in Norway spruce than in Sitka 

spruce (∼5-fold more) and Lutz spruce (∼3-fold more), but the difference was significant only 

between Norway spruce and Sitka spruce (Table 2). The first offspring emerged from the 

bolts on 27 July, and only a small proportion of the total brood had emerged from the bolts 

when the breeding experiment ended 12 October (14% of the total in Norway spruce, 22% in 

Sitka and Lutz spruce). The rest of the live offspring were recovered from under the bark of 

the bolts. The higher offspring production in Norway spruce than in Sitka and Lutz spruce 

corresponded with a significantly higher number of breeding galleries in Norway spruce 

(Table 2). Interestingly, the number of offspring produced per breeding gallery did thus not 

differ significantly between spruce species (Table 2). There was no statistically significant 

difference in mean offspring length between Norway spruce (4.87 ±0.04 mm (±SE)), Sitka 

spruce (4.76 ±0.05 mm) and Lutz spruce (4.77 ±0.05 mm) (F2,16 = 1.82, p = 0.19). Mean 

offspring weight was also similar across spruce species (5.18 to 5.25 ±0.2 mg (±SE) in the 

three species; F2,16 = 0.03, p = 0.97). Bolt properties such as length, diameter, bark surface 

area, and bark thickness were similar for Norway, Sitka and Lutz spruce and a similar number 

of beetles were introduced to each spruce species (Table 2). 

To test if beetle offspring production varied with spruce defense chemistry we 

investigated the relationship between offspring production and terpenoid levels in the bark of 

each bolt. Offspring production was positively correlated with constitute levels of 

thunbergene and thunbergol. Offspring production was also positively correlated with the 

inducibility of thunbergene (r = 0.6, p < 0.0001), thunbergol (r = 0.6, p < 0.0001) and α-

longipinene (r= 0.5, p = 0.004), i.e. with the difference in terpenoid concentration between 

bark where defenses had been induced by MeJA and non-induced control bark. There were no 

other significant relationships between offspring production and terpene chemistry. The 

terpenoids that showed a significant relationship with offspring production made up < 1% of 
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total terpenoids in the different spruce species, except thunbergol which made up about 15% 

of the total in Norway spruce. 

 

Necrosis lengths induced by Endoconidiophora polonica  

Inoculation with E. polonica produced longer necrotic lesions in the bark of Norway spruce 

than in Sitka and Lutz spruce, but the difference was statistically significant only for outer 

necrosis lengths ( F2,27 = 5.62, p = 0.009 (outer); F2,27 = 1.86, p = 0.18 (inner)) (Figure 5). 

There were no significant differences in necrosis lengths between Sitka and Lutz spruce 

(Figure 5).  

 

Discussion 

Our results show that the bark of evolutionary naïve Sitka and Lutz spruce have different sets 

of properties that could make the trees either more or less suitable hosts for the spruce bark 

beetle. Properties that would be beneficial for beetle reproduction included aspects of the 

trees’ terpenoid chemical defenses, such as lower induced terpene concentrations in the bark 

(Figure 2) and a terpenoid composition resembling that of the beetles’ historic host Norway 

spruce (Figure 1). On the negative side, offspring production was lower in the novel hosts 

(Table 2) and growth of the mutualistic beetle symbiont E. polonica was inhibited (Figure 5). 

We also found that although individuals that oviposited produced a similar number of 

offspring in all three spruce species, a much lower proportion of beetle attacks on the novel 

hosts led to oviposition and successful reproduction compared to Norway spruce (Table 2). 

This suggests that physical or chemical properties of the bark of the novel hosts may have 

interfered with host recognition and acceptance by the spruce bark beetle. In the following, 

we discuss the various positive and negative properties of Sitka and Lutz spruce bark as a 

breeding substrate for the spruce bark beetle in more detail. 

 

Constitutive terpenoid chemistry and host suitability 

Sitka and Lutz spruce had lower total constitutive terpene concentrations than Norway spruce, 

although the differences were not significant. Because terpenoids have negative effects on 

attacking bark beetles (Erbilgin et al. 2006; Wallin and Raffa 2000; Zeneli et al. 2006; Zhao et 

al. 2011b), these results suggest that Sitka and Lutz spruce are equally or more suitable hosts 

for the beetles than Norway spruce. However, host suitability to the spruce bark beetle is 

probably also influenced by physical or chemical characteristics of the bark that we did not 
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quantify, such as the abundance of stone cells and the concentration of nutrients and 

secondary metabolites other than terpenoids (Schiebe et al. 2012; Whitehill et al. 2016). 

The concentration of individual terpenoids in constitutive bark suggests that Sitka and 

Lutz spruce should be suitable hosts for the spruce bark beetle, as we found relatively small 

differences in terpenoid composition between the exotic spruces and the historical host. 

Spruce oleoresin is a complex mixture of individual terpenoids and most of these have 

unknown effects on bark beetle behavior (Andersson et al. 2009; Phillips and Croteau 1999). 

Specific volatile terpenoids are used by the beetles as cues in host identification and selection, 

in combination with other visual and olfactory cues from both host and non-host plants 

(Andersson et al. 2009; Campbell and Borden 2006a; Campbell and Borden 2006b). Because 

the exact relationship between the spruce bark beetle and most host terpenoids is unknown it 

is difficult to predict accurately how qualitative differences in terpene chemistry will affect 

beetle colonization biology (Erbilgin et al. 2007b). However, four of the most abundant 

constitutive compounds in all spruce species [(-)-α-pinene, ß-pinene, ß-phellandrene, 

myrcene] elicit strong antennal responses in the spruce bark beetle and are probably important 

in the host selection process (Andersson et al. 2009; Kalinova et al. 2014). The relatively high 

concentrations of these compounds also in Sitka and Lutz spruce suggests that the spruce bark 

beetle will be able to detect and colonize these species under natural conditions.  

Sitka and Lutz spruce had a very similar constitutive terpenoid composition (Figure 1). 

This was expected, since Lutz spruce is a natural hybrid between Sitka spruce and white 

spruce. Norway spruce, that belongs to a different clade in the spruce phylogeny (Lockwood 

et al. 2013), had a somewhat different constitutive terpenoid composition from Sitka and Lutz 

spruce. 

 

Induced terpenoid chemistry and host suitability 

All three spruce species showed a strong induced response to MeJA treatment, with 20- to 25-

fold increases in total terpenoid levels one month after treatment. This massive accumulation 

of terpenoids in the bark probably strongly reduces tree suitability to the spruce bark beetle. 

Previous studies of the spruce bark beetle and other tree-killing bark beetles have shown that 

the beetles tend to avoid trees with very strong or rapid terpene accumulation (Boone et al. 

2011; Schiebe et al. 2012; Zhao et al. 2011a). Norway spruce had higher total induced terpene 

concentrations than Sitka and Lutz spruce (55% and 102% higher, respectively), suggesting 

that the novel hosts should be a more favorable substrate for the spruce bark beetle than 
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Norway spruce. However, as we discuss below the opposite was true, as the beetles produced 

more offspring in Norway spruce than in Sitka and Lutz spruce. 

Several individual terpenoids, such as α-pinene, β-pinene, 3-carene and thunbergol, 

increased more in Norway spruce than in Sitka and Lutz spruce following MeJA treatment. 

Because these compounds can be toxic or repellent to the beetles and their fungal associates 

the lower levels in Sitka and Lutz spruce suggest that these species may be chemically more 

favorable host trees for the spruce bark beetle. High concentrations of α-pinene, β-pinene and 

limonene have for example been found to reduce establishment of the pine engraver Ips pini 

(Say) on its host trees (Wallin and Raffa 2000). Limonene, myrcene, and 3-carene have also 

been shown to act as repellents and attractants for various bark beetles (Erbilgin et al. 2007a; 

Miller and Borden 2000; Wallin and Raffa 2000) and may also be toxic (Raffa and Berryman 

1982).  

Thunbergol, thunbergene and α-longipinene were much more abundant in induced 

and constitutive bark of Norway spruce than in Sitka and Lutz spruce. In fact, thunbergol and 

thunbergene were not detected at all in Sitka spruce (Figure 3). The effect of thunbergene and 

α-longipinene on the spruce bark beetle is unknown, but thunbergol has been suggested to 

inhibit growth of the beetle’s fungal associate E. polonica (Zhao et al. 2011a; Zhao et al. 

2010). Considering the negative effects of thunbergol we were surprised to find a positive 

relationship between constitutive levels of thunbergol and offspring production.  

 

Pheromone production 

Spruce bark beetle males produced comparable amounts of the two main components of their 

aggregation pheromone, methylbutenol and cis-verbenol, in the novel hosts Sitka and Lutz 

spruce as in the historical host Norway spruce. Methylbutenol is by far the most abundant 

component in the spruce bark beetle pheromone blend. It is produced de novo by the beetles 

(Birgersson et al. 1988) and released in substantial amounts in the early phase of tree 

colonization, equaling >3% of beetle body weight over the first week of an attack (Birgersson 

and Bergstrom 1989). This substantial metabolic cost probably means that only 

physiologically fit males are able to produce methylbutenol in high amounts. The fact that the 

beetles produced high amounts of methylbutenol in all three spruce species suggests that the 

chemical defenses of these species represented a comparable physiological challenge for the 

beetles. 

Cis-verbenol and methylbutenol play different roles in spruce bark beetle 

aggregation: cis-verbenol is used for long-range orientation towards attacked trees, whereas 
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methylbutenol is as short-range orientation or arrestment stimulus that concentrates beetles on 

an attacked tree. Different methylbutenol to cis-verbenol ratios are believed to affect beetle 

orientation, attraction and ability to mass attack trees, with higher ratios being more attractive 

to flying beetles (Schlyter et al. 1987). Thus, the methylbutenol to cis-verbenol ratios we 

observed in our experiments suggest that beetles colonizing Sitka and Lutz spruce produce a 

more attractive pheromone blend (10.1 and 34 : 1 ratios, respectively) than the blend 

produced in Norway spruce (2.4  : 1). Cis-verbenol is produced from (-)-α-pinene ingested by 

the males as they tunnel into the host tree (Birgersson et al. 1988). However, even though 

Norway spruce contained more (-)-α-pinene than Sitka and Lutz spruce we found no 

significant differences in cis-verbenol production in beetles colonizing different tree species. 

Furthermore, we did not find support for any of the three hypotheses we tested of how 

concentrations of (-)-α-pinene and other terpenes in the host bark might affect cis-verbenol 

production. This lack of correlation between pheromone production and host tree chemistry 

contrasts with the results of Burke and Carroll (2016) on the mountain pine beetle. They 

found a significant correlation between pheromone production and the ratio of (-)-α-pinene to 

other terpenes and thus support for the equivalent of our hypothesis H2. We suggest that 

terpene levels in the host influence cis-verbenol production also in the spruce bark beetle, but 

only when (-)-α-pinene levels are either very low or very high, and thus beyond the levels 

detected in our experiment. 

 

Beetle reproductive performance 

The total number of offspring produced in the novel hosts Sitka and Lutz spruce was much 

lower than in Norway spruce because much fewer of the beetles entering Sitka and Lutz 

spruce established successful breeding galleries (Table 2). In Norway spruce one in two 

entrance holes led to successful breeding, but in Sitka and Lutz spruce the ratio of breeding 

galleries to entrance holes were as low as 1 : 7.8 and 1 : 4.5, respectively. The lower 

establishment success and offspring production in Sitka and Lutz spruce suggests that  

terpenoids or other chemical or physical defenses made these hosts a less suitable breeding 

substrate for the beetles. It is also possible that the beetles did not recognize these exotic 

spruces as good hosts, perhaps due to a lack of positive host signals such as thunbergene and 

thunbergol. However, offspring quality was equally good in the novel hosts as in the beetle’s 

historic host Norway spruce with respect to offspring length and weight. The fact that 

offspring size was similar across spruce species indicates that the bark of the different spruce 

species offered comparable nutritional quality for the beetles. Thus, the beetles appeared to 
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behave naively in their interaction with these species. Because beetles choosing to oviposit in 

Sitka and Lutz spruce produced as many offspring as beetles ovipositing in Norway spruce we 

speculate that over time the beetles may increase their preference for Sitka and Lutz spruce in 

areas where the beetle co-occur with these spruce species.  

Previous breeding experiments by Økland et al. (2011) in Norway and Sweden have 

demonstrated that the spruce bark beetle can develop successfully in several North American 

spruce species, including Sitka and Lutz spruce. However, because these experiments did not 

control the beetles’ colonization density they could not conclude whether offspring 

productivity in the different spruce species was determined by differences in substrate quality 

or differences in intra-specific competition due to different colonization densities. In the 

present study we standardized the colonization density by caging beetles onto the bark and 

could therefore determine beetle reproductive performance more precisely. However, since 

such no-choice conditions may cause bark beetles to enter different hosts in equal numbers 

(Raffa et al. 2013) it is possible that we have overestimated the beetles’ propensity to enter 

Sitka and Lutz spruce.  

 

Performance of E. polonica 

Endoconidiophora polonica is an important associate of the spruce bark beetle that can 

colonize healthy bark and sapwood and kill Norway spruce trees when experimentally 

inoculated into the stem (Krokene and Solheim 1996). The fungus is associated with Norway 

spruce and a few other Eurasian spruce species and has never been recorded outside Eurasia 

(Kirisits 2004). In non-host Sitka and Lutz spruce the fungus performed much more poorly 

than in Norway spruce, inducing necrotic lesions that were less than half as long as those in 

Norway spruce (Figure 5). This contrasts with the results of Christiansen & Solheim (1990), 

who found E. polonica to be relatively virulent to Sitka spruce and produce comparable 

symptoms as in Norway spruce. The explanation for the relatively low virulence that we 

found in Sitka and Lutz spruce could be that the innate immunity of these non-host spruce 

species more efficiently confined the fungus through mechanisms of non-host resistance (Gill 

et al. 2015).  

If the spruce bark beetle gets little assistance from E. polonica in breaking down tree 

resistance in Sitka and Lutz spruce the beetles may be disadvantaged if they attack these 

species. However, the spruce bark beetle carries many other fungal associates that may assist 

in breaking down host tree defenses (Krokene and Solheim 1996; Linnakoski et al. 2016) and 

it is possible that some of these are more virulent to Sitka and Lutz spruce than E. polonica.  
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Conclusion 

Sitka and Lutz spruce appear to be chemically suitable hosts for the spruce bark beetle with a 

similar terpenoid composition as Norway spruce, including the presence of key compounds 

that are attractive to the spruce bark beetle (Andersson et al. 2009; Kalinova et al. 2014). The 

spruce bark beetle bred successfully in both Sitka and Lutz spruce and produced offspring of 

comparable quality as that produced in the historic host Norway spruce. However, the beetles 

established fewer galleries and produced fewer offspring in Sitka and Lutz spruce, possibly 

because they did not recognize these spruce species as good hosts due to a lack of positive 

host signals or because host suitability was reduced by physical or chemical properties we did 

not quantify. Similarly, the beetles’ phytopathogenic fungal associate E. polonica performed 

worse in Sitka and Lutz spruce than in Norway spruce. Thus, both the beetles and the fungus 

appeared to be evolutionary naïve in their interaction with the exotic spruce species.  

Our results suggest that the spruce bark beetle will be able to mass attack and 

reproduce in Sitka and Lutz spruce also under field conditions. This European bark beetle 

may thus be attacking spruce forests in North America (Økland et al. (2011), where the beetle 

has been intercepted many times (Haack 2006) but has not yet established. In Europe, range 

shifts facilitated by climate change may bring the beetle into contact with Sitka and Lutz 

spruce in north-western maritime climates where these tree species have been extensively 

planted. This could lead to substantial economic damage unless traditional forest management 

practices to reduce the impact of the spruce bark beetle are implemented in high-risk Sitka 

and Lutz spruce plantations. 
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Tables 

 

Table 1 Spearman's rho and P-value for rank correlations between the amount of cis-

verbenol produced by the spruce bark beetle and H1: the amount of (-)-α-pinene, H2: the 

amount of (-)-α-pinene divided by the amount of other terpenes, and H3: the amount of (-)-

α-pinene minus the amount of other terpenes in the bark of Norway, Sitka and Lutz spruce 

Hypotheses Rho P 

H1: (-)-α-pinene concentration influences cis-verbenol production 0.06 0.75 

H2: (-)-α-pinene/other terpenes influences cis-verbenol production  -0.31 0.10 

H3: (-)-α-pinene - other terpenes influences cis-verbenol production 0.02 0.92 
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Table 2 Bolt properties and reproductive performance of the spruce bark beetle in cut bolts from three different spruce species. All 

values are given as mean per bolt (n = 10 bolts per spruce species) and SE. Means with different letters are significantly different 

following ANOVA and Tukey HSD (p < 0.05). 

 

Species Bolt length 

(cm) 

DBH 

 (cm) 

 

Surface 

area (dm2) 

 

Bark 

thickness 1 

(mm) 

 

Number of    

beetles 

introduced 

Number of 

entrance 

holes 

Number of     

offspring 

Number of 

offspring 

per surface 

area (dm2) 

Number of 

gallery 

systems 

Number of 

offspring 

per gallery 

system 

Norway spruce 41.1 ±0.7 22.7 ±0.9 29.4 ±1.4 5.3 ±0.2 32.5 ±3.6 14.3 ±1.60a 179.6 ±48.8a 6.2 ±1.7a 6.7 ±1.5a 

 

25.9 ±2.6 

Sitka spruce 40.7 ±0.9 20.9 ±0.9 26.8 ±1.2 4. 7±0.2 27.0 ±2.3 10.1 ±1.04b  37.1 ±16.4b 1.5 ±0.7b  1.3 ±0.6b 27.1 ±5.6 

Lutz spruce 41.5 ±0.5 20.7 ±.0.8 27.1 ±1.4 4.8 ±0.3 25.6 ±2.3 10.4 ±1.09b 65.7 ±32.3ab 2.6 ±1.3ab 2.3 ±0.8b 29.7 ±8.1 

F2,27 0.26 1.78 1.16 1.45 1.71 3.37 4.61 3.58 8.07 0.142 

P 0.77 0.19 0.33 0.25 0.20 0.05 0.02 0.04 0.002 0.87 

1 Measured on the bolts used to determine fungal colonization success. We measured the thickness of four bark plugs removed during fungal inoculation using a 

caliper. 

2 F2,16 because some bolts had no breeding galleries   
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Figures 

 

Figure 1. Total terpenoid concentrations in constitutive and induced bark of Norway, Sitka and Lutz 

spruce. Data are mean + 95% confidence intervals for n = 10 trees per spruce species. Bars with different 

letters are significantly different following ANOVA and Tukey HSD (p < 0.05). 
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Figure 2. Non-metric multidimensional scaling (NMDS) showing the overall compositional terpenoid 

similarity between Norway, Sitka and Lutz spruce in constitutive bark samples (tint colors; 107 individual 

compounds) and induced bark samples (darker colors; 127 compounds). Black dots indicate mean site 

scores and arrows indicate direction of change from constitutive to induced samples. The polygons 

circumscribe the distribution of n = 10 samples for each tree species and bark sample type.  
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Figure 3. Concentrations of the 16 most abundant terpenoids in constitutive and induced bark of 

Norway, Sitka and Lutz spruce. Data are mean + 95% confidence intervals for n = 10 trees per spruce 

species. For each compound and panel bars with different letters are significantly different following 

ANOVA and Tukey HSD (p < 0.05). 
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Figure 4. Mean pheromone content in hind guts of spruce bark beetles tunneling in cut bolts from three 

different spruce species. Error bars are + 95% confidence intervals, n = 10 bolts per spruce species.  
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Figure 5. Mean lengths of necrotic lesions in the inner bark of cut bolts from three different spruce 

species 90 days after inoculation with the blue-stain fungus Endoconidiophora polonica. Inner necrosis 

represents the maximum extent of active host defenses, whereas outer necrosis represents the full 

extent of fungal colonization. Error bars are + 95% confidence intervals, n = 10 bolts per spruce species. 

Bars with different letters are significantly different following ANOVA and Tukey HSD (p < 0.05). 
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