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Abstract 18 

The relative molecular weight distribution of soluble barley beta-glucans (SBB) was 19 

monitored through the small intestine in pigs by analyzing water extracts of duodenal-  and 20 

ileal digesta with HPLC-SEC. Variations among four diets, based on four different barley 21 

varieties, were documented as well as variations between animals fed the same diet. The 22 

results showed depolymerisation of the SBB throughout the whole small intestine 23 

independent of diet. The average molecular weight of the SBB was reduced to approximately 24 

50% in duodenum in all the experimental animals.   25 

 26 
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1. Introduction 32 

Dietary fiber will affect digestive physiology in pigs and influence digesta flow, voluntary 33 

feed intake and thus nutritional absorption and feed digestibility (Bach Knudsen, Hedemann 34 

et al. 2012), in addition to manure odor and ammonia emissions (O'Shea, Gahan et al. 2010). 35 

Thus, different factors such as grain type and their chemical composition as well as cereal 36 

derived endogenous enzyme activities will affect gastrointestinal function, bacteria population 37 

and microbial metabolites in the gut (Högberg and Lindberg 2004; Högberg, Lindberg et al. 38 

2004; Bindelle J., Leterme P. et al. 2008; Pieper, Jha et al. 2008). These effects will further 39 

depend on the size, solubility and molecular structure of the dietary fiber (Bach Knudsen, 40 

Jensen et al. 1993; Glitsø, Brunsgaard et al. 1998; Bach Knudsen, Hedemann et al. 2012).  41 

Dietary fiber, here/often referred to as non-starch polysaccharides (NSP), is 42 

depolymerized in the gastrointestinal (GI) tract in different biological systems (Bach Knudsen 43 

and Canibe 2000; Coles, Moughan et al. 2005). It is evident that cereal beta-glucans are 44 

digested in the upper GI tract of pigs at various degrees, and especially in the distal part of the 45 

small intestine (ileum). Digestibility of the cereal beta-glucans will depend on different 46 

factors; not only particle size or the feed matrix is important, but also source of beta-glucan 47 

and diet composition. Also different grain types and varieties with parallel variation in the 48 

fiber content, as well as different biological systems and individual biological differences 49 

between subjects will influence the monitored experimental results. However, not only 50 

digestibility is important, but physiological properties of beta-glucans are also significant for 51 

both animal nutrition and health. Despite different reports on digestion of cereal beta-glucans 52 

based on quantitative recovery (Fadel, Newman et al. 1988; Bach Knudsen, Jensen et al. 53 

1993), there is less information on quantitative changes in their molecular weights (Mw). 54 

There is a few studies showing changes in the molecular size of oat beta-glucans and of wheat 55 

and rye arabinoxylans during digestion in the upper GI tract (Johansen, Wood et al. 1993; 56 
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Johansen, Bach Knudsen et al. 1997; Le Gall, Eybye et al. 2010). However, there is scarce 57 

information in the literature regarding specific information on the Mw changes of soluble 58 

barley beta-glucans during passage in the GI tract and possible variations among/with 59 

different barley varieties. This is important since changes in Mw will affect the physico-60 

chemical properties of the beta-glucans significant for their possible influence on gut health in 61 

both human and animals.  62 

The main objectives of the present experiment were to measure and document the 63 

degree of depolymerization (changes in Mw) of soluble barley beta-glucans in the small 64 

intestine of pigs, and study possible differences between different dietary treatments using 65 

four barley varieties.  66 

 67 

2. Material and methods 68 

2.1 Dietary treatments 69 

Four pelleted diets were produced at the Centre for Feed Technology, Ås, Norway. These 70 

were based on four Norwegian barley varieties: Olve (normal starch), Marigold (normal 71 

starch), Karmosè (high amylose starch) and Magdalena (waxy starch). The barley varieties 72 

were grown at the same location (Landvik, Norway) under the same growth conditions in 73 

2010. The diets were formulated to meet the requirements for all nutrients (Subcommittee on 74 

Swine Nutrition, Committee on Animal Nutrition et al. 1998). The composition of the diets is 75 

given in Table 1.  76 

 77 

2.2 Experimental animals 78 
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The feeding experiment was performed at the Experimental Farm, Department of Animal and 79 

Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway. All pigs were 80 

cared for according to laws and regulations controlling experiments with live animals in 81 

Norway (Animal Protection Act of December 20, 1974, and the Animal Protection Ordinance 82 

concerning experiments with animals of January 15, 1996). 83 

A total of 16 female pigs ((Norwegian Landrace x Yorkshire) X (Norwegian Landrace 84 

x Duroc)) from 4 litters were used in the experiment with an average initial weight at 29.8 kg 85 

and an average final weight at 37.6 kg. They were blocked by litter and by live weight, and 86 

groups of four animals were fed each experimental diet. 87 

 88 

2.3 Experimental procedure 89 

The total experimental period lasted for 14 days; a 5-day adaptation period followed by a 9-90 

day experimental period with collection of faeces the last four days. The pigs were given feed 91 

twice daily according to a restricted Norwegian feeding scale (Øverland, Granli et al. 2000). 92 

The experimental animals were fed in pens designed for individual feeding in a room with an 93 

average temperature of 20.4°C, and had free access to water.  94 

 95 

2.4 Sample collection 96 

The pigs were slaughtered at a commercial slaughter house three hours after the last meal. 97 

The digestive tract was separated from the animal at the slaughter line, and the collection of 98 

digesta from duodenum and ileum was performed immediately. The duodenal samples were 99 

collected from the pyloric ring and 64 cm distally, and the ileal samples from the ileacaecal 100 

opening and 64 cm proximally. The samples were put in closed boxes and kept on ice until 101 
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being frozen at -20°C. The samples were freeze dried and ground homogenously before being 102 

analysed. 103 

 104 

2.5 Analytical methods 105 

The four diets were analyzed for yttrium by inductively coupled plasma mass spectrometry 106 

(ICP-AES analysis, Perkin-Elmer Optia 3000DV; Perkin-Elmer, Wellesley, MA, USA) at 371 107 

nm, after mineralization and solubilization in acid of the pooled sample.  108 

 109 

2.5.1 Extraction of soluble barley beta-glucans for molecular weight determination 110 

-Glucans were extracted as described by Rieder et al. (Rieder, Holtekjølen et al. 2012). The 111 

initial step involved adding 10 mL of 50% ethanol to a 200 mg sample of the ground diets and 112 

of freeze dried duodenal and ileal samples. The mixture was boiled for 15 min., cooled and 113 

centrifuged (2000 g, 15 min; Heraeus Multifuge 4 KR). The supernatant was discarded before 114 

20 mL 2.5 mM CaCl2 and 50 μL thermostable -amylase (Termamyl, Novozymes A/S, 115 

Denmark) was added to each sample. The samples were boiled for 90 min. with mixing every 116 

15 min. After cooling, samples were centrifuged (2500 g, 15 min; Heraeus Multifuge 4 KR) 117 

and the supernatants collected. Another 10 mL of 2.5 mM CaCl2 was added and the procedure 118 

repeated with boiling for 60 min. The supernatants were combined with the previously 119 

obtained supernatants and stored frozen before molecular weight analysis.  120 

Content of soluble beta-glucan was calculated as the difference between total beta-121 

glucan and insoluble beta-glucan determined by a mixed-linkage beta-glucan assay kit 122 

(Megazyme International Ltd., Wicklow, Ireland). Insoluble beta-glucan was determined in 123 

aliquot samples after removal of soluble beta-glucan by extraction. 124 
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 125 

2.5.2 Relative estimation of molecular weight distribution of soluble barley beta-glucans 126 

(Mw-SBB) 127 

The apparent molecular weights of soluble barley beta-glucans (hereafter referred to as Mw-128 

SBB) were determined by HPLC-SEC equipped with a post column addition of calcofluor 129 

combined with fluorescence detection. The HPLC system consisted of a dual pump system 130 

(DIONEX P680) one pump delivering the eluent (50 mM Na2SO4) at a flow rate of 0.5 131 

mL/min and the other delivering calcofluor (Megazyme International Ltd.) solution (25 mg/L 132 

in 0.1 M tris(hydroxymethyl)aminomethane, Sigma, Schnelldorf, Germany) at a flow rate of 133 

0.25 mL/min. A Spectraphysics AS3500 auto injector was coupled to two serially connected 134 

columns (Tosho; TSK G6000PWXL + G5000PWXL (7.8mm ID x 30.0cm) in series equipped 135 

with a TSK Gel PWXL (6.0mm ID x 4.0cm) guard column). 136 

  A T-valve placed in the oven containing the columns (40C) delivered the calcofluor 137 

post column. Injection volume was 20mL and a fluorescent detector (Shimadzu RF-6A, 138 

Shimadzu Europa, Duisburg, Germany) was used with 415nm excitation and 445nm emission 139 

for detection. The HPLC system was controlled with Chromeleon 6.80 (DIONEX, Sunnyvale, 140 

CA, USA). 141 

Beta-glucan Mw standards with average given Mw values s of 35600, 70600, 229000, 142 

26500, 391000 and 650000 were obtained from Megazyme. The standards were solubilised in 143 

the  eluent (50mM Na2SO4) added 0.02% NaN3) by boiling for 5 min. and filtered through a 144 

Millex-AA filter, syringe-driven filter, 33mm, 0.8μm (Merck Millipore Ltd, Ireland). The 145 

standards were then diluted with eluent to give a final concentration of 300μg/mL. A 146 

calibration curve based on the Mp (peak molecular weight) of the Mw standards versus their 147 

elution volume) was established based on the classical principle of narrow molecular weight 148 
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standards.  Weight average Mw distributions of the samples were calculated from this using 149 

WINGPC-6.2 (PSS) offline using a polynomial fitted standard curve. The classification of the 150 

molecular weight distribution into high and low molecular weights (HMw and LMw) was 151 

based on dividing the chromatogram in two regions (by elution time); high (20-30 min.) and 152 

low (30-42 min.). This cutting point corresponded to ca. 250 kDa in the standard curve.   153 

The calculated weight average Mw’s (Mwcalc) only include -glucan molecules large 154 

enough to interact with calcofluor and hence be detected by the resulting fluorescence signal 155 

(Rieder, Knutsen et al. 2012). From in-house experiments this cut-off value is approximately 156 

30.000-40.000, but this value is so far not been exactly determined. The reported values 157 

therefore do not represent the exact weight average Mw of the samples, but rather the 158 

calcofluor based average Mwcalc. Furthermore, since high molecular weight standards (Mw > 159 

650.000) are not available, there is no accurate determination of the molecular weight in the 160 

upper range Mw > 650.000). However, for comparative purposes and assessing relative 161 

changes in Mw, the methodology was considered appropriate. In fact the unique specificity of 162 

the system does not display any or very little interference with starch and other soluble 163 

polysaccharides such as arabinoxylan in the system. Cellulose is not soluble and hence not 164 

detected. 165 

The SBB were solubilized in water as described by Rieder et al. (Rieder, Holtekjølen 166 

et al. 2012) and for the analysis of the actual samples 1.0mL of each water extract was filtered 167 

as above and diluted 1:1 with 0.04% NaN3 before injecting into the system. The results of the 168 

duodenal and ileal samples are an average of 4 biological replicas. The variation between the 169 

technical parallels was less than 10% with a few exceptions.  170 

 171 

2.6 Data analysis 172 
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Analysis of variance and significant differences among means were tested by one-way 173 

ANOVA, using Minitab (version 16; Minitab Inc., State College, PA). Significant differences 174 

were declared at P < 0.05.  175 

 176 

3. Results and discussions 177 

3.1 Molecular weight distribution of soluble barley beta-glucan (Mw-SBB) in the diets 178 

The SBB in the four experimental diets exhibited similar monomodal size distribution as seen 179 

in Figure 1. The Mw-SBB of the four diets however varied and the diet including the barley 180 

variety Magdalena (hereafter referred to as Diet-Mag) had a significantly higher average Mw-181 

SBB than the rest of the diets. The diet including the barley variety Karmosè (hereafter 182 

referred to as Diet-Kar) had the lowest Mw-SBB of the four diets (Fig. 1).  183 

 184 

3.2 Effect of digestion on molecular weight distribution of soluble barley beta-glucans (Mw-185 

SBB) 186 

3.2.1 Duodenum – beginning of the small intestine 187 

The results show a significant depolymerisation of the SBB already at the beginning of the 188 

small intestine (duodenum) (Fig. 2). The average molecular weight (average of all diets and 189 

all pigs) (AMw-SSB) decreased from approximately 1050 kDa in the diets to ca. 460 kDa in 190 

the duodenal samples, a reduction of 55%. There was also a shift in retention time and a 191 

broadening of the peak into a bimodal size distribution in the duodenal samples independent 192 

of diet (Fig. 2). This showed that the Mw-SBB was depolymerized and that the reduction 193 

resulted in two significantly different populations; one population of high molecular weight 194 

SBB (HMw-SBB) and one of low molecular weight (LMw-SBB). In the literature there are 195 
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many studies on fermentation pattern and degradation rate of barley beta-glucans in pigs. 196 

However, there is scarce information regarding changes in molecular weight of barley beta-197 

glucans. For oat beta-glucans similar depolymerisation pattern has been observed (Johansen, 198 

Wood et al. 1993; Johansen, Bach Knudsen et al. 1997).  199 

The average HMw-SBB size distribution (as average of all diets and all pigs) was 940 200 

kDa and it accounted for ca. 45% of the molecular size distribution in the duodenal samples, 201 

while the average LMw-SBB was 105 kDa with a 55% share. Also oat beta-glucans showed 202 

depolymerisation in the upper small intestine of pigs (up to 55%) (Johansen, Bach Knudsen et 203 

al. 1997).  204 

 All diets showed the same change into a bimodal size distribution. Still, some 205 

significant differences were seen depending on the diet. Overall, diet-Mag had the 206 

significantly highest average Mw-SBB, followed by diet-Kar and diet-Olv, with diet-Mar 207 

having the lowest. Also, the portion of high molecular weight SBB (HMw-SBB) differed and 208 

the largest part of HMw-SBB was found in the Diet-Mag (51%), while diet-Mar had the 209 

lowest (32%).  210 

 211 

3.2.2 Ileum – end of the small intestine 212 

The average molecular weight of SBB in ileum showed a significant decrease 213 

compared with the duodenal samples, from 460 kDa to 250 kDa respectively (P< 0.05). The 214 

corresponding decrease in AMw-SBB compared to the original diets was 75%. 215 

The results showed that the SBB was depolymerized throughout the small intestine 216 

with a shift towards a higher portion of LMw-SBB in the ileal samples (Fig. 3) compared with 217 

the duodenal samples. Thus, the low molecular weight portion increased moving through the 218 

small intestine from the duodenum to the ileum. The share of HMw-SBB decreased equally, 219 

and again, diet-Mag had the highest Mw-SBB and the largest portion of HMw-SBB (only 220 
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28%) in the ileal samples, with diet-Mar the lowest (15%) (Fig. 3). This is consistent with 221 

findings for oat. Johansen et al. (1997) showed an increased depolymerisation for oat beta-222 

glucans going from the proximal to the distal small intestine in pigs. Thus, the oat beta-223 

glucans in the distal small intestine after 3h post-prandial showed higher depolymerisation, 224 

decreasing the share of high Mw oat beta-glucan.  225 

 226 

3.3 Variations among pigs in distribution of molecular weight distribution of soluble barley 227 

beta-glucans (Mw-SBB) in the duodenal and ileal samples 228 

Some variations were seen among the experimental animals fed the same diet (see figure 4 229 

and 5). Figure 4 shows the variations found in the duodenal samples within pigs fed Diet-230 

Mag, while Figure 5 shows the variation among the ileal samples of the pigs fed the Diet-231 

Mag. The observed variations among pigs fed the same diet might relate to differences in the 232 

microorganisms present in their gastrointestinal tract. It could also be associated with 233 

variation in the matrix of the pellets after chewing as well as different drinking pattern. The 234 

variations between the biological parallels make it important to include a sufficient number of 235 

biological parallels to obtain reliable data as well as to verify the results when working with 236 

animals and animal trials. Still, despite some variation among pigs fed the same diet, the 237 

effect on SBB is evident. The molecular weight of the SBB is reduced and the 238 

depolymerisation starts at duodenum and continues all the way through the small intestine. At 239 

ileum the Mw-SBB is reduced up to 80% compared to the original diet.   240 

 241 

4. Conclusion 242 

Soluble barley beta-glucan (SBB) is depolymerized during digestion in pigs and there is a 243 

significant depolymerisation of SBB naturally occurring already in the upper GI tract, in the 244 
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small intestine. Our results show that depending on variety, the SBB is depolymerized up to 245 

60% in the duodenum and 80% in the ileum. Thus, before the SBB has reached the hindgut 246 

and is fermented, its Mw has already been significantly reduced into a larger share of low 247 

molecular weight SBB (ca. 100 kDa). The depolymerisation of the beta-glucan might be due 248 

to hydrolytic enzymes excreted by microbiota in the upper digestive tract of the 249 

animal. However, retained endogenous hydrolase activities in the barley material may be 250 

present despite barley processing and transit through the upper GI-tract.  251 



13 
 

 

References  

Bach Knudsen, K. E. and N. Canibe, 2000: Breakdown of plant carbohydrates in the digestive tract of 
pigs fed on wheat‐ or oat‐based rolls. J. Sci. Food Agric. 80, 1253‐1261. 

Bach Knudsen, K. E., M. S. Hedemann and H. N. Lærke, 2012: The role of carbohydrates in intestinal 
health of pigs. Anim. Feed Sci. Technol. 173, 41‐53. 

Bach Knudsen, K. E., B. B. Jensen and I. Hansen, 1993: Digestion of polysaccharides and other major 
components in the small and large intestine of pigs fed on diets consisting of oat fractions 
rich in β‐D‐glucan. British Journal of Nutrition 70, 537‐556. 

Bindelle J., Leterme P. and Buldgeh A., 2008: Nutritional and environmental consequences of dietary 
fibre in pig nutrition. A review. Biotechnol. Agron. Soc. Environ. 12, 313–324. 

Coles, L. T., P. J. Moughan and A. J. Darragh, 2005: In vitro digestion and fermentation methods, 
including gas production techniques, as applied to nutritive evaluation of foods in the 
hindgut of humans and other simple‐stomached animals. Anim. Feed Sci. Technol. 123–124, 
Part 1, 421‐444. 

Fadel, J. G., C. W. Newman, R. K. Newman and H. Graham, 1988: Effects of Extrusion Cooking of 
Barley on Ileal and Fecal Digestibilities of Dietary‐Components in Pigs. Canadian Journal of 
Animal Science 68, 891‐897. 

Glitsø, L. V., G. Brunsgaard, S. Højsgaard, B. Sandström and K. E. Bach Knudsen, 1998: Intestinal 
degradation in pigs of rye dietary fibre with different structural characteristics. British Journal 
of Nutrition 80, 457‐468. 

Högberg, A. and J. Lindberg, 2004: Influence of cereal non‐starch polysaccharides on digestion site 
and gut environment in growing pigs. Livest Prod Sci 87, 121 ‐ 130. 

Högberg, A., J. Lindberg, T. Leser and P. Wallgren, 2004: Influence of Cereal Non‐Starch 
Polysaccharides on Ileo‐Caecal and Rectal Microbial Populations in Growing Pigs. Acta 
Veterinaria Scandinavica 45, 87 ‐ 98. 

Johansen, H. N., K. E. Bach Knudsen, P. J. Wood and R. G. Fulcher, 1997: Physico‐Chemical Properties 
and the Degradation of Oat Bran Polysaccharides in the Gut of Pigs. J. Sci. Food Agric. 73, 81‐
92. 

Johansen, H. N., P. J. Wood and K. E. B. Knudsen, 1993: Molecular weight changes in the  (1‐‐>3),(1‐‐
>4)‐beta.‐D‐glucan of oats incurred by the digestive processes in the upper gastrointestinal 
tract of pigs. J. Agric. Food. Chem. 41, 2347‐2352. 

Le Gall, M., K. L. Eybye and K. E. Bach Knudsen, 2010: Molecular weight changes of arabinoxylans of 
wheat and rye incurred by the digestion processes in the upper gastrointestinal tract of pigs. 
Livestock Science 134, 72‐75. 

O'Shea, C. J., D. A. Gahan, M. B. Lynch, J. J. Callan and J. V. O'Doherty, 2010: Effect of β‐glucan source 
and exogenous enzyme supplementation on intestinal fermentation and manure odour and 
ammonia emissions from finisher boars. Livestock Science 134, 194‐197. 

Pieper, R., R. Jha, B. Rossnagel, A. G. Van Kessel, W. B. Souffrant and P. Leterme, 2008: Effect of 
barley and oat cultivars with different carbohydrate compositions on the intestinal bacterial 
communities in weaned piglets. FEMS Microbiol. Ecol. 66, 556‐566. 

Rieder, A., A. K. Holtekjølen, S. Sahlstrøm and A. Moldestad, 2012: Effect of barley and oat flour types 
and sourdoughs on dough rheology and bread quality of composite wheat bread. J Cereal Sci. 
55, 44‐52. 

Rieder, A., S. H. Knutsen, S. Ballance, S. Grimmer and D. Airado‐Rodríguez, 2012: Cereal β‐glucan 
quantification with calcofluor‐application to cell culture supernatants. Carbohydr. Polym. 90, 
1564‐1572. 

Subcommittee on Swine Nutrition, Committee on Animal Nutrition and National Research Council, 
1998: Nutrient Requirements of Swine: 10th Revised Edition. The National Academies Press. 



14 
 

Øverland, M., T. Granli, N. P. Kjos, O. Fjetland, S. H. Steien and M. Stokstad, 2000: Effect of dietary 
formates on growth performance, carcass traits, sensory quality, intestinal microflora, and 
stomach alterations in growing‐finishing pigs. J. Anim. Sci. 78, 1875‐1884. 

 

Funding 

This research was financially supported by the Fund for the Research Levy on Agricultural 

Products and by The Norwegian Research Council (NFR 190280/I10). 

 

 

Conflict of interest statement 

The authors confirm no conflict of interest with this article.  

   



15 
 

Tables 

Table 1. Composition of the four diets and their amount of soluble beta-glucan (%)  

  Diet 1  Diet 2  Diet 3  Diet 4 

Barley  Marigold  83.47       
Barley Magdalena     83.47     
Barley Karmosè      83.47   
Barley Olve        83.47 
Soybean meal (HiPro)  15.0  15.0  15.0  15.0 
Limestone meal (CaCO3)  1.3  1.3  1.3  1.3 
Mineral premix  0.16  0.16  0.16  0.16 
Vitamin premix  0.06  0.06  0.06  0.06 
Y2O3

*  0.01  0.01  0.01  0.01 

Soluble beta‐glucan  1.6  3.0  2.6  2.6 
*Yttrium oxide was used as the indigestible dietary marker.
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Figure legends 

Figure 1: Chromatogram showing the relative molecular weight profile of the soluble barley 

beta-glucans (Mw-SBB) in the diets based on the different barley varieties including their 

calculated average Mw-SBB as bar graphs. The error bars represent the standard deviations 

(two technical parallels).  

 
Figure 2: Chromatogram showing the relative molecular weight profile of the soluble barley 

beta-glucans (Mw-SBB) in the different duodenal samples including their calculated average 

Mw-SBB as bar graphs. The degree of depolymerisation compared to the Mw-SBB in the 

corresponding diets are given (in %) above the bars. The error bars represent the standard 

deviations (four biological replicas (pigs)).  

 
Figure 3: Chromatogram showing the relative molecular weight profile of the soluble barley 

beta-glucans (Mw-SBB) in the different ileal samples including their calculated average Mw-

SBB as bar graphs. The degree of depolymerisation compared to the Mw-SBB in the 

corresponding diets are given (in %) above the bars. The error bars represent the standard 

deviations (four biological replicas (pigs)).  

Figure 4: Example of the variation found in the relative molecular weight profile of duodenal 

samples among the four pigs (1-4) fed the same diet (Magdalena). The two overlapping 

chromatograms represent the two technical parallels. 

 
Figure 5: Example of the variation found in the relative molecular weight profile of ileal 

samples among the four pigs (1-4) fed the same diet (Magdalena). The two overlapping 

chromatograms represent the two technical parallels. 
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