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Abstract

This paper shows that a simple scheme of non-linear taxes coupled

with tradable pollution permits can secure the first best outcome even

in absence of information about abatement costs. Evidence of the

existence of a Pareto optimal Nash equilibrium is given. Differential

system theory and stochastic approximation are used to prove that

the outcome is globally and locally stable. Equilibrium is reached

after repeated play. At each round agents make myopic steps and

form local approximations, restricting their attention to one variable

at any stage. The same procedure also applies also when stochastic

elements are involved.

1 Introduction

To mitigate pollution, the scheme proposed in this paper implements a sce-

nario advocated by Weitzman (1978). In this scenario, each firm pays a

non-linear tax that depends solely on its own emission. The advantage of

such a tax is that companies avoid problems with information and strategic

choice. Moreover, if the planner has the necessary information on each firm’s

abatement costs, he can equate individual tax rates with marginal damage.

Firms will then choose their level of emissions such that the realized outcome

becomes Pareto optimal.

For simplicity Weitzman assumed a rather heavy informational burden

on the planner. The format proposed here, in contrast, only requires that

the planner knows marginal damage. He uses that information to levy a non-

linear tax on the industry’s emission which coincides with total damage. The

tax is distributed among firms such that each firm pays a fee that depends

3



solely on its own emission. The individual tax function contains then a

parameter construed as share permit. The role of this parameter is to give

the holder of a specific amount of permits a tax advantage compared to those

firms bestowed with lower share holdings. Consequently, shares are wanted

and they are marketable. In this way the promoted concept of tradable

non-linear fees is justified.

Firms in this scheme are relieved from strategic considerations. Then,

when I assume optimally behaving firms and a competitive market, the Nash

equilibrium, which usually is not Pareto optimal, becomes indeed so. In this

equilibrium, the sum that each firm is willing to pay for permits and the tax

that each firm pays for emissions total what the companies would pay facing

a full information Pigouvian unit tax.

The tradable fee scheme has been suggested in Berglann (2012). However,

as is often the case in economic literature, that paper focuses solely on the

state of equilibrium. It does not address how the socially desirable equilib-

rium is reached, and whether it is locally or globally stable. My motivation

for this paper is to compensate for that shortcoming (or neglect) by showing

that the equilibrium can indeed be reached, and that it is stable. In doing so

I will consider a repeated game where every firm and the regulator are the

players. Each player has limited capabilities to optimize and predict. I will

also assume that firms are able to pay attention to only one variable at any

time, and that they may be plagued with stochastic disturbances.

Section 2 reintroduces the model of Berglann (2012) in an intertemporal

setting, and Section 3 reviews the mode of regulation. Section 4 analyzes

the repeated play towards equilibrium. The game is graphically illustrated

in Section 5. Section 6 contains concluding remarks.

2 The Model

Consider a multi-period model with a finite set I of firms ( |I| ≥ 1). In

periods absent regulation, every company i ∈ I has an activity that in each
year creates emission e0

i of a homogeneous effl uent. In periods when firms

are subject to control, each firm i is encouraged to reduce emission to ei ≤ e0
i
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at a private cost per period given by the function

Ci (ei)

where Ci (e0
i ) = 0, ∂Ci/∂ei < 0 and ∂2Ci/ (∂ei)

2 > 0.

Let e :=
∑
ei denote total emission of the industry in a year under

regulation. This emission, measured in monetary terms, causes social damage

in that period described by the function

D (e)

where D (0) = 0, D′ > 0, and D′′ > 0. The damage function D (·) is similar
for all periods, but the current year’s damage depends on only that year’s

emission.

The full-information welfare optimum for the period is identified by the

problem

min
ei≥0,∀i

{∑
i

Ci (ei) +D (e)

}
. (1)

Assuming interior solutions, the necessary optimality condition is

−∂Ci
∂ei

= D′ (e) (2)

for all i. Strict convexity of the objective in (1) ensures that (2) also is a

suffi cient condition and that the solution is unique.

Environmental regulation is performed by a central agent who knows

nothing about the firm’s abatement cost function Ci (·). This agent does
know, however, the damage function D (·) and he can observe every firm i’s

emission ei for that year. I assume that each company i is a profit-maximizing

body well informed about the data pertaining directly to itself.

In the next section, I review the scheme advocated in Berglann (2012),

which utilizes the fact that non-linear taxes levied on firms each year can be

made tradable.
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3 Tradable Fees: Equilibrium Analysis

Assume that in the beginning of a period every firm i subject to regulation

is informed that at the end of the year it will be charged an individual tax

ti = T (ei, si) := siD

(
ei
si

)
(3)

Here, as previously stated, ei is the (perfectly) observed amount of pollutant

emitted by firm i during the period. The entity si should be construed as firm

i’s holding of share permits at the end of the period. This license authorizes

the firm to refuse any tax claim above the one determined by the schedule (3).

Such share certificates are valid only during the considered period, and firms

buy them in a permit market that has a total supply
∑
si := 1. Note that

a firm’s holdings of ”share”permits need not equal its actual share of total

emission or total tax payments, although it may in equilibrium. Note also

that ∂ti/∂ei = D′ (ei/si). Since the marginal damage D′(·) increases with its
argument ei/si, a higher si value for constant ei means a lower marginal tax.

Thus, a high si holding at the end of the year appears worthwhile to firm i.

As mentioned, firms acquire share certificates in a permit market that is

open during the period. Assuming fully competitive exchanges, there should

be a market-clearing price µ per unit of si, satisfying the complementarity

condition ∑
si − 1 ≤ 0, µ ≥ 0, µ

(∑
si − 1

)
= 0. (4)

Firm i, seeking to minimize its total expenses, faces the decision problem

min
ei≥0,si≥0

{
Ci (ei) + siD

(
ei
si

)
+ µsi

}
. (5)

Assuming interior solutions to (5) the two necessary optimality conditions

are

−C ′i (ei) = D′
(
ei
si

)
(6)
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µ =
ei
si
D′
(
ei
si

)
−D

(
ei
si

)
. (7)

Proposition 1. Conditions (6) and (7) are suffi cient for an interior so-

lution of problem (5). �

Proposition 2. Suppose the constraint
∑
si = 1 is enforced. Then si,

i ∈ I, will be distributed among firms such that consistency is obtained. That
is,

e =
ei
si
for all i. � (8)

The proof of Proposition 1 involves showing that siD (ei/si) is convex (see

Berglann, 2012). The intuition behind the proof of Proposition 2 is as fol-

lows. Derivation of the right-hand side of expression (7) with respect to the

argument ei/si yields
ei
si
D′′
(
ei
si

)
.

From D′′ > 0 it follows that the expression is monotonically increasing in

the ratio ei/si. This ratio must therefore be equal for all firms because they

are all facing the same share permit price µ. The common ratio must also

be equal to the ratio between the sums
∑
ei and

∑
si. Since

∑
si = 1 and

e =
∑
ei the result is

ei
si

=

∑
ei∑
si

= e

which equals Proposition 2. It follows then from (6)

−C ′i (ei) = D′
(∑

ei∑
si

)
= D′ (e)

for all i which is equivalent to (2). This entails

Proposition 3. The tax rule (3) and the enforcement of
∑
si = 1 yield
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a socially optimal level of pollution for all i. That is, the Nash solution is

Pareto effi cient. �

Note that equation (7) is firm i’s inverse demand function for share per-

mits. (8) implies that in equilibrium no firm buys more share permits than

it needs, and that

µ = eD′ (e)−D (e) , (9)

wherefrom follows

Proposition 4. For each firm, the fee (3) plus expenses for si equals the tax
the firm would face under the full-information Pigouvian unit tax τ := D′(e)

determined by

T (ei, si) + µsi = D′ (e) ei = τei. � (10)

The next section is the main body of this paper. It develops a perspec-

tive on how a centralized planner using non-linear taxation of decentralized

emissions may lead firms to reach a Pareto optimal level of emissions. Dif-

ferential system theory, and stochastic approximation are the vehicles used.

4 Stepwise Evolution of Emission Control

Thus far, I have assumed that the market for tax liabilities (recorded as share

permits) is fully competitive. I have also implicitly assumed that each agent

acts rationally based on correct expectations of the other players’behavior.

The Pareto effi cient Nash solution is supposed to be achieved in one single

shot by letting the price µ be determined in the market by the course of

action that makes each firm i choose the appropriate ei and si equilibrium

values.

Noncooperative Game theory, quite reasonably, cannot - and does not -

claim that real, human-like players, when facing complex situations, will set-

tle in Nash equilibrium right away. So the question related to the non-linear
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tax scheme is how eventually the Nash solution can come about. Moreover,

what is the role of the regulator in such a situation?

I assume the following. The regulator has perfect knowledge of the dam-

age function D (·). Being the sole supplier of share permits, he can freely
set permit prices. Thus, he may be construed as a Stackelberg leader who

first sets the price µ in the non-cooperative game where the firms are the

competitive followers.

Once the regulator has determined a price, he must supply firms with

the permit quantity that is demanded at that price. Because the planner

does not have full information about the firms’abatement costs and their

behavior, he is presumably unable to attain the wanted goal
∑
si = 1 in

the first trial. However, he might at least approximate that goal in due time

by learning from previous periods. He then modifies total permit purchases

by adjusting the price µ. A simple model for such price adjustments is a

(one-dimensional) Walrasian tâtonnement process (e.g., Varian, 1992). In

continuous-time format, its simplest form is

∂µ

∂t
= z (µ) (11)

where z (µ) :=
∑
si (µ)−1 is a continuous function interpreted as the excess

demand of permits.

Concerning firms, I realistically assume that they are plagued by uncer-

tainty in abatement costs. Firm i’s expenses caused by the regulatory regime

is then

Φi = Φ (ei, si, ω) := Ci (ei, ω) + siD

(
ei
si

)
+ µsi (12)

where the elementary event ω (common for all firms; e.g. changes in weather

conditions) belongs to a complete probability space (Ω,F , F ). With respect

to this probability space one can take the mathematical expectation E (·) :=∫
Ω
·F (dω). Each function (ei, si, ω) 7−→ Φ (ei, si, ω) ∈ R+ is convex and

continuously differentiable in (ei, si) ∈ R2
+, and integrable in ω ∈ Ω.

Each firm has limited cognitive capabilities to predict how other players’

strategies will unfold. It will, however, persistently keep an eye on its mar-
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ginal expenses because that entity, a so-called gradient, indicates a promising

direction in which the current strategy should be changed (e.g., Corchon and

Mas-Coell, 1996; Flåm, 2002). The adjustments made by firm i of si and ei
can therefore be described by the equations

∂si
∂t

= −∂Φi

∂si
=
ei
si
D′
(
ei
si

)
−D

(
ei
si

)
− µ (13)

and
∂ei
∂t

= −∂Φi

∂ei
= −C ′i (ei, ω)−D′

(
ei
si

)
, (14)

respectively.

Flåm (1998) contended that players might have so-called ”restricted,

cyclic attention”; the dimensionality of individual decision spaces can of-

ten exceed what the agents can handle at one time. With two variables

they must contend with only one decision at a time, scrutinizing the other

variable later. Using Flåm’s approach I model every pair of decisions of si
and ei as each being made by two independent individuals. The immediate

payoff for a firm (in the form of reduced expenses) caused by an adjustment

in one variable at one stage, is then viewed as being obtained by the player

in charge of that variable.

The advantage of the above approach is that I am able to compact no-

tation into a format that analyzes the current situation as a regular game

between a set J of |J | = 1 + 2 |I| non-cooperative players, where each player
has to contend with only one variable. I define then a vector of variables

x ∈ R|J |+ as

x = (xj)j∈J :=
(
µ, s1, s2, ..., s|I|,e1, e2, ...., e|I|

)
and assign for the time derivative of each xj

(ẋj)j∈J :=
(
µ̇, ṡ1, ṡ2, ..., ṡ|I|,ė1, ė2, ...., ė|I|

)
.
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Finally, I assign an adjustment function Mj for each of the variables

(Mj)j∈J :=

(
z,−∂Φ1

∂s1

,−∂Φ2

∂s2

, ...,−
∂Φ|I|
∂s|I|

,−∂Φ1

∂e1

,−∂Φ2

∂e2

, ...,−
∂Φ|I|
∂e|I|

)
.

With the above notation I write

ẋj = Mj (xj, x−j, ω) for j ∈ J , (15)

where xj is the decision variable and x−j := (xl)l 6=j denotes the vector of

choices made by the rivals of j. Discretizing (15) with adjustment variables

(superscript) indexed by the integer k to denote the previous period yields

the process

xk+1
j = PXj

[
xkj + hj,kMj

(
xkj , x

k
−j, ω

k
)]
for j ∈ J . (16)

Here the operator PXj denotes the orthogonal projection onto the nonempty

compact interval Xj := [0, x̄j] where x̄j is a suitable upper bound for variable

j. Stepsize sequences (hj,k)k may vary between each j ∈ J , but a common
feature is that ∑

k

hj,k =∞ and
∑
k

h2
j,k <∞ for all j. (17)

This condition (17) will ensure suffi cient adjustments of strategies in the long

run. In addition, M := (Mj)j∈J is Lipschitz continuous on X :=
∏
j∈J Xj

and there exists a unique Nash equilibrium (Proposition 3). Then, Theorem
2 in Flåm (1998) supports the following.

Proposition 5. (Deterministic case: ω , E [ω]). The repetitive play (16)

between a planner and firms that gives restricted, cyclic attention to their

decisions, converges to the Nash equilibrium. �

The remark on uncertainty in Flåm (1998), asserts (by referring to Flåm,

1996) that the inclusion of stochastic elements (our ω) in the same play gen-
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erates a process that almost surely converges to the Nash equilibrium. The

process may then rightly be called a stochastic approximation of the deter-

ministic case (Benaim, 1996; Benveniste et. al., 1990).

5 Numerical Illustration

My numerical illustration is a simulation of players’behavior in the regulation

game described in the above section. The integer k denotes the number

of regulation periods (e.g., years) since the introduction of the regulatory

regime. The tax (3) is paid at the end of each regulation period and the

permit quantities for the coming period must then be re-purchased.

The damage function is D (e) = e/4 + e2/8. All firms (|I| = 100) in the

regulated industry have access to the same abatement cost function (same

technology), specified as Ci (ei, ω) = ω (1/100− ei + 25e2
i ) for all i. The

distribution of ω is lognormal and has a standard deviation σ = 0.1 and a

mean E [ω] = 1. Feasible domains are specified to Xj ∈ [0, 1] for all j. The

deterministic (ω , 1) Nash equilibrium is ei = 0.01, si = 0.01 and µ = 0.125.

Absent regulation, each firm i emits the quantity e0
i = 0.02. Initial alloca-

tion of shares is determined by the regulator and is set equal to s0
i = 0.01 for

all i. The initial price for permits is specified to µ0 = 0.245. Figure 1 shows

the resulting values for µk. Figures 2 and 3 show ski and e
k
i , respectively, for

the representative firm. All figures has k on the abscissa axes and two curves

are presented. The deterministic curve (labeled ω , 1), and the stochastic

approximation curve (labeled σ = 0.1) where ωk is sampled anew for each k.

For all j stepsizes are chosen according to the formula hj,k = 1/ (50 + k).
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Figure 1. Permit price µ in regulation period k.

Figure 2. Permit holdings si in regulation period k.
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Figure 3. Emissions ei in regulation period k.

6 Concluding Remarks

I have outlined a simple scheme for diminishing pollution created by a multi-

ple firm industry. The planner needs no information about the firms’abate-

ment costs, but does observe emissions at the firm level and knows marginal

damage. The heart of the scheme is the non-linear tax levied on each firm’s

emission. Individual shares that firms buy in a competitive permit market

calibrate this tax.

The construct, the Individual Transferable Share Permit System, was sug-

gested in Berglann (2012) and analyzed using equilibrium notation. This

paper has gone beyond that traditional approach. I prove and illustrate that

the system is stable in the sense that the steady state is likely to emerge even

under circumstances where each player has bounded cognitive capacity and

is plagued by uncertainty.

To show such stability, I use differential system theory and stochastic

approximation, and I assume that parties are guided by simple heuristic rules.

Individual improvements come forth by iterative strategy adjustments, and

learning is represented by a graduate decrease in stepsize length. The role
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of the regulator is, in a Walrasian auctioneer manner, to instill the price of

shares so that they total one.

Currently, linear taxation and quantity regulation are the prevailing alter-

natives. Mechanisms based on non-linear taxation that thus far is proposed

in economic literature, has been regarded as too complex for practical pur-

poses. The current proposal, however, may turn that perception around.
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