Produksjon av 2. generasjons-biodrivstoff via termokjemiske prosesser

Kunnskapsstatus, kostnader, og potensial for klimagassreduksjon i Norge

O'Toole, A. og Grønlund, A.
Bioforsk Jord og Miljø
<table>
<thead>
<tr>
<th>Tittel/Title:</th>
<th>Produksjon av 2. generasjons biodrivstoff fra termiske prosesser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forfatter(e)/Author(s):</td>
<td>Adam O’Toole og Arne Grønlund</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dato/Date:</th>
<th>August 6, 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tilgjengelighet/Availability:</td>
<td>Åpen</td>
</tr>
<tr>
<td>Prosjekt nr./Project No.:</td>
<td></td>
</tr>
<tr>
<td>Saksnr./Archive No.:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rapport nr./Report No.:</th>
<th>7(112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISBN-nr./ISBN-no:</td>
<td>978-82-17-00965-8</td>
</tr>
<tr>
<td>Antall sider/Number of pages:</td>
<td>31</td>
</tr>
<tr>
<td>Antall vedlegg/Number of appendices:</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Oppdragsgiver/Employer:</th>
<th>Klima- og forurensings direktorat (Klif)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontaktperson/Contact person:</td>
<td>Per Fjedahl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stikkord/Keywords:</th>
<th>Bioenergi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodrivstoff, biokull, bioolje</td>
<td>Biofuels, biochar, biooil</td>
</tr>
<tr>
<td>Fagområde/Field of work:</td>
<td>Bioenergy</td>
</tr>
</tbody>
</table>

Godkjent / Approved | Prosjektleder / Project leader

Adam O’Toole
Forord

Termisk behandling av biomasse for produksjon av biodrivstoff og biokull antas å være en strategi med stort potensial som klimatiltak. Det er stort behov for kunnskap om kostnader ved slik produksjon og mulighet til utnyttelse av biokull og pyrolyseolje med tanke på størst mulig klimaeffekt. Denne rapporten er finansiert av Klima og forurensningsdirektoratet (Klif) og gir en oppdatering av kunnskapsstatus om lovende termiske prosesser som produserer 2. generasjons biodrivstoff.
Innhold

1. Innledning ... 4
2. Bakgrunn ... 6
 2.1 Hvorfor flytende og gas biodrivstoff? ... 6
 2.2 Pyrolyse .. 6
 2.3 Bruksområde til pyrolyseprodukter ... 7
 2.4 Pyrolyseprosesser .. 8
 2.4.1 Hurtig pyrolyse .. 8
 2.4.2 Mikrobølgepyrolyse (MBP) .. 9
 2.4.3 Hydropyrolyse og katalytisk pyrolyse .. 11
 2.5 Gassifisering ... 11
 2.5.1 Syntetisk diesel - Biomass to Liquids (BTL) .. 13
 2.5.2 Syntetisk framstilling av syngas til biometan (BioSNG) 14
 2.5.3 Case studie: GoBiGas - BioSNG prosjekt i Göteborg 15
3. Verdikjedene: Fra biomasse til drivstoff .. 17
 3.1 Scenarier .. 17
4. Råstoffkostnader ... 18
 4.1 GROT ... 18
 4.1.1 GROT - kostnader fra skog til bioraffineri ... 18
 4.2 Halm ... 19
 4.2.1 Halm - Kostnader .. 20
5. Produksjons kostnader og CO₂ reduksjons potensial .. 21
 5.1 Produksjonskostnader for et Mikrobølge pyrolyse anlegg 21
 5.2 CO₂ for MBP bioolje som erstatning for fossil fyringsolje i industri 22
 5.3 CO₂ kostnader av syntetisk diesel ... 22
 5.4 Sannemrag av kostnader ... 22
6. Tiltak og virkemidler for økt andre-gen. biodrivstoff fra trevirke 25
7. Andre klimatiltak ved bruk av biokull ... 26
 7.1 Biokull som erstatning av koks i prosessindustrien ... 26
 7.2 Biokull som metode for lagring av stabilt karbon i jord 27
8. Referanse .. 28
1. Innledning

Global oppvarming og sikkerhet for framtidig tilgang på olje er blant de viktigste driverne for en innsats mot en reduksjon i forbruket av fossilt drivstoff. Utfordringen er stor fordi verdens transportsystemer og infrastruktur har blitt bygget rundt billig tilgang til fossile ressurser, mens fornybare alternativer fortsatt har høyere pris og er mindre utviklet.

Norge har store skogressurser som til nå har blitt lite utnyttet som bioenergi sammenlignet med nabolandene Finland og Sverige. Skogsressurser kan spille en viktig rolle fremover i å hjelpe Norge til å nå sitt mål om å være klimaløytralt innen 2030, som er nevnt i (Klimaforliket, 2008) og den nylig lanserte Klimameldingen (St. Meld. 21).

I transportsektoren, som i hovedsak er basert på forbrenning av fossilt brensel, har det blitt utredet at det er teoretisk mulig å reducere utslippene med opp til 3-4,5 millioner tonn CO₂ (Klimaforliket, 2010). Klimakur 2020 har foreslått flere mulige tiltak for å reducere utslippene i transportsektoren. Et av dem er å erstatte av fossilt drivstoff med biodrivstoff.

Første generasjons biodrivstoff, basert på oljevekster, mais og sukkerrør fremstilt til biodiesel eller etanol, har kommet lengst kommersielt, men på grunn av konkurranse med produksjon av matvekster har de blitt betraktet som mindre ønskelig på langt sikt.

Det finnes to hovedveier for produksjon av andre generasjons drivstoff:
1. Biokjemisk f.eks. bioetanol
2. Termokjemisk f.eks. syntetisk diesel.

En oppdateringsrapport om andre generasjons biodrivstoff av Eggert et al. (2011) anbefalte FOU fokus på biokjemiske teknologier fordi de mente at det var småmulighet for kostnadsreduksjon i termokjemiske prosesser f. eks. Fischer Tropsch, som har vært i bruk i over 50 år. Vi mener at det finnes flere alternativer blant termokjemiske teknologier som bør vurderes og vil i denne rapporten beskrive alternativer og relaterte kostnader.

Formålet med rapporten er å:
- Beskrive de forskjellige metodene og prosessene innenfor pyrolyse og gassifisering
- Utrede hvordan man kan maksimere produksjon av disse typene biodrivstoff fra termisk behandling av biomasse og hva de kan brukes til
- Estimere kostnader i verdikjeden: Råstoff, produksjon og oppgradering av drivstoff
- Estimere potensial for reduksjon av klimagassutslipp og relaterte kostnader

Utgangspunktet er bruk av norske råvarer med liten alternativ verdi, dvs. skogsavfall (GROT) og halm.
Vi følger verdikjede-scenarier for 3 prosess teknoliger som har enten blitt vurdert eller er i bruk i Norge eller Sverige:

1. Storskala Gassifisering av trevirke til syngas og syntese via Fischer Tropsch for erstatning av diesel i tung kjøretøy

2. Gassifisering og framstilling av Bio-SNG. Dvs. biometan fra gassifisering av trevirke, for erstatning av naturgass og en kompliment til biogass produksjon

3. Disktriktsbasert Microbølgepyrolyse for omdanning av biomasse til bioolje og evt. oppgradert til biodrivstoff

Datagrunnlag
Informasjon og data i denne rapporten er skaffet fra offentlig tilgjengelig kilder, blant annet IPCC rapporter, vitenskapelige artikler, nettsider, og åpne offentlige norske rapporter. I tillegg har mer detaljert informasjon blir innhentet fra bedrifter innenfor bransjen som har gitt tillatelse for publisering av informasjon.
2. **Bakgrunn**

2.1 Hvorfor flytende og gas biodrivstoff?

Fly, buss, lastebil, og skip kører langt og krever mye energi som kun kjemisk energi kan levere. Derfor er utvikling av 2. gen. flytende og gassbasert biodrivstoff nødvendig om samfunnet vil erstatte fossile drivstoff forbruk i transport sektoren. Strøm som energikilde i transportsektoren har mest anvendelse for små bybiler, tog og trikk. Norge har unike muligheter for å lage miljøvenlig hydrokarbon drivstoff med utgangspunkt i store karbonressurser i skogen, hvor \(H_2 \) kan lages ved bruk av fornybar elektrisitet via forskjellige prosesser. Kombinasjon av H og C laget fra biologiske og fornybare ressurser i nye biodrivstoffprodukter kan bli stor industri i Norge i framtiden, så lenge produksjon er økonomisk og utviklingen støttes av myndighetene og private investorer.

2.2 Pyrolyse

Pyrolyse er en termisk prosess hvor biomasse er oppvarmet i en reaktor uten eller med begrenset \(O_2 \) tilgang. Resultat er en fraksjonering av biomasse i tre deler:

1. Pyrolyse-olje (5-80 %)
2. Syngass (5-40 %)
3. Biokull (20-60 %)

Pyrolyse prosessen kan styres med temperatur og oppholdstid for å få ut mer av en av fraksjonene, f. eks. bioolje (Tabell 1).

Pyrolyseolje er den flytende fraksjonen og består av tjære, tyngre hydrokarboner og vann. Utbyttet av pyrolyseolje er avhengig av teknologi og prosessparametere, blant annet temperatur, oppvarmingstid og -hastighet. Pyrolyseolje har ca. halvparten av brennverdien til fossilt olje, og kan ha høyt \(O_2 \) og \(H_2O \) innhold. Uten oppgradering er ikke pyrolyseolje blandbart med fossil olje.

Syngass består av ikke-kondenserbare gasser, som \(CO, H_2 \), og en mindre del av \(CH_4 \) (ca. 3-5%). Mengde av syngasser er avhengig av teknologi og prosessvalg. Ved gassifisering produserer man hovedsakelig syngass, en mindre del biokull og ingen bioolje.

Biokull er den faste fraksjonen fra pyrolyse og består av ca 40-80 % C, avhengig av hvilke råstoff som er brukt. Biokull laget av husdyrgjødsel har for eksempel lavere C innhold enn biokull laget fra rent trevirke (trekull).

Tabell 1. Prosessparameter som styrer utbyttet av ulike pyrolyseprodukter (avledet fra Basu, 2010)

<table>
<thead>
<tr>
<th>Ønsket maksimert fraksjon</th>
<th>Oppvarmingstid</th>
<th>Oppvarmingshastighet</th>
<th>Temperatur °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mest biokull</td>
<td>Sakre (<1 t)</td>
<td>Sakre</td>
<td>400-600</td>
</tr>
<tr>
<td>Mest bioolje</td>
<td>Kort (sekunder)</td>
<td>Høy</td>
<td>500-700</td>
</tr>
<tr>
<td>Mest syngas</td>
<td>Kort (sekunder)</td>
<td>Høy</td>
<td>800-1200</td>
</tr>
</tbody>
</table>
2.3 Bruksområde til pyrolyseprodukter

Pyrolyseolje:

Uten oppgradering kan pyrolyseolje brukes som erstatning for fyringsolje til industriformål og i fjernvarmeanlegg. Det er lite trolig at den vil bli brukt til strømproduksjon i Norge på grunn av tilgang til billig vannkraft.

Oppgradering av pyrolyseolje

Med oppgradering kan oksygen fjernes og hydrogen tilsettes slik at oljen kan blandes i et fossilt raffineri. UOP-Honeywell fra USA har en oppgraderingsprosess for pyrolyseolje, hvor hydrokarbonprodukter er skilt ut fra vann, CO₂ og lettere hydrokarbon produkter (Tabell 2)

Tabell 2. Produkt utbytte fra UOP-Honeywell oppgradering process fra 1L av Pyrolyse olje råstoff

<table>
<thead>
<tr>
<th>Produkter ut</th>
<th>Pyrolyse olje (liter)</th>
<th>H₂ (kg)</th>
<th>Lettere h.karbon (propan) (liter)</th>
<th>Diesel (liter)</th>
<th>Naptha (liter)</th>
<th>Produkt utbytte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Råstoff inn</td>
<td>1,00</td>
<td>0,06</td>
<td>0,21</td>
<td>0,11</td>
<td>0,45</td>
<td>77 %</td>
</tr>
</tbody>
</table>

Biokull:

Biokull har flere bruksområde som er relevant for Norge:

1. Som en erstatning av koks i industrпросesser
2. Som et jordforbedringsmiddel og en måte å lagre mer karbon i jord (og dermed reduisere atmosfærisk CO₂). (Se: O’Toole, 2011)

Syngass

I en gassifiseringsprosess vil syngass være hovedprodukt og kan bli gjort om til biometan (Se s. 12) eller raffineres via Fischer Tropsch prosess for å lage syntetisk biodiesel (Se s.11). Fra en pyrolyseprosess, hvor gassutbytte er mindre, er bruk av syngassen sannsynlig brent opp internt for eks. for å tørke innkommende biomasse, eller drive en gassmotor.
2.4 Pyrolyseprosesser

Det er to hovedprosesser for produksjon andre generasjons biodrivstoff som til nå har blitt utredet i storskala i Norge:

- Enzymatisk fremstilling av cellulose, dvs. fermentering av sukker til etanol
- Termokjemisk behandling av biomasse, (pyrolyse eller gassifisering) og deretter flere oppgraderingstrinn til biodrivstoff

I denne rapporten fokuserer vi på termokjemisk behandlingsmetoder som er i bruk i dag for å framstille biomasse til drivstoff. Det finnes også pyrolyseprosesser som hydrotermisk pyrolyse for mer vannholdige råstoffer for eks. slam og tang. For en oversikt over denne metoden og muligheter for biodrivstoffproduksjon henvises til Barth & Kleinert, 2008.

Prosessen fra biomasse til biodrivstoff er kompleks og teknologiavhengig og krever flere behandlingstrinn. En prinsippskisse for prosessen er presentert i Figur 1.

2.4.1 Hurtig pyrolyse

Hurtig pyrolyse er en prosess hvor biomassen blir varmet opp i løpet av noen få sekunder til en temperatur mellom 400-800 °C. Det er flere teknologivarianter i hurtig pyrolyseprosess, og hovedproduktet er pyrolyseolje med lav pH og relativt høyt vann- og O2-innhold. Disse egenskaper gjør at pyrolyseoljen ikke er blandbar med vanlig fossil olje. Pyrolyseolje kan brukes som en fyringsolje så lenge fyringskjelen og brenneren er laget av syrefast stål. Ellers kan pyrolyseolje oppgraderes ved å tilsette H2 og fjerne O2 og sendes videre til et fossiloljeraffineri for drivstoffproduksjon.
2.4.2 Mikrobølgepyrolyse (MBP)

Ved mikrobølgepyrolyse (MBP) brukes en kraftig mikrobølgestrålning for å konvertere biomassen til bioolje, synghass, og biokull. En fordel med MBP i forhold til andre pyrolysemetoder er at det er fordelaktig om biomassen er moderat fuktig (20-40%). Dette skyldes at mikrobølgestrålningen bruker vanninnholdet for å overføre mikrobølgestrålninger i trevirke. Tørr trevirke er en mindre effektiv konduktør av mikrobølgestrålning. Ved tradisjonell pyrolyse må vanninnholdet fordampes før omdanningen av biomassen kan skje.

I følge Dr. Budarin fra Universitet i York (personlig meddelelse) er mikrobølgepyrolyse en lovende teknologi fordi den kan produserer bioolje fra biomasse ved lavere temperaturer (~300 °C (mindre energi krevingend)) enn konvensjonell pyrolyse (>500 °C). I Nottingham har Al Sayegh et al. (2011) funnet at man kan maksimere bioolje-fraksjoneren i en mikrobølgereaktor ved å bruke en høy oppvarmninghastighet (50-100°C/min) og moderat temperatur (500°C). Ved å bruke en høy oppvarmninghastighet har de funnet at biomassen er mer absorbent av mikrobølgestrålningen og at utbyttet av bioolje blir høyere.

(Fig. 2). Flow-diagram som viser prosessen for mikrobølgereaktoren til Skandinavian Biofuels AS i Notodden.
Investeringspotensialet er lovende for teknologien basert på data levert fra Scandinavian Biofuel As. Tabell 1 og 2 viser nøkkeltall og energiregnskap fra en 4 x reaktor dimensjonert anlegg. Saksjon 6,2 i rapporten beskriver klimaregnskap fra anlegget.

Tabell 1 Nøkkel tall fra MB Pyrolysis anlegg

<table>
<thead>
<tr>
<th>MW reaktorer</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapital (NOK ,000)</td>
<td>125524</td>
</tr>
<tr>
<td>Innskudd/år (NOK ,000)</td>
<td>153020</td>
</tr>
<tr>
<td>Kostnader/år (NOK ,000)</td>
<td>112908</td>
</tr>
<tr>
<td>Resultat (år) (NOK ,000)</td>
<td>40112</td>
</tr>
<tr>
<td>Real Kostnader/år (NOK,000)</td>
<td>72796</td>
</tr>
<tr>
<td>Intern rente</td>
<td>8 %</td>
</tr>
<tr>
<td>IRR</td>
<td>31%</td>
</tr>
<tr>
<td>Tibakebetalings tid</td>
<td>3,1</td>
</tr>
<tr>
<td>Levetid (år)</td>
<td>15</td>
</tr>
</tbody>
</table>

Tabell 2. Energi Regnskap for MB Pyrolyse anlegg

<table>
<thead>
<tr>
<th>Energi inn</th>
<th>GWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>422</td>
</tr>
<tr>
<td>Strøm</td>
<td>13</td>
</tr>
<tr>
<td>Total Inn</td>
<td>435</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energi ut</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Varmegjennvinning (Syngas)</td>
<td>78</td>
</tr>
<tr>
<td>Bioolje</td>
<td>184</td>
</tr>
<tr>
<td>Biokull</td>
<td>160</td>
</tr>
<tr>
<td>Varmetap</td>
<td>13</td>
</tr>
<tr>
<td>total ut</td>
<td>435</td>
</tr>
</tbody>
</table>

Energi effektivitet | 97 %

Bilde: Mikroølge reaktor på demonstrasjons anlegg i Notodden,
2.4.3 Hydropyrolyse og katalytisk pyrolyse

Hydropyrolyse og katalytisk pyrolyse er en utvidelse av hurtig pyrolyse hvor innmating av en metallkatalysator (f.eks Ni) og/eller H₂ er integrert i pyrolyseprosessen for å forbedre egenskapene til produktet som kommer ut. Målet er å redusere kostnadene og øke kvaliteten av sluttproduktet, slik at det kan brukes direkte som biodrivstoff i kjøretøy.

«IH2» prosessen utviklet av Gas Technologi Institutt (GTI) i USA er et eksempel. Denne teknologien bruker lavtryks hydrogen sammen med en O₂ fjerning katalysator for å produsere et ferdig hydrokarbondrivstoff som krever relativt lite oppgradering sammenlignet med andre pyrolyseprosesser. Karboneffektiviteten¹ fra IH2 hydropyrolyse ligger mellom 26 og 46 % avhengig av råstoff som er brukt. Total energieffektivitet fra prosessen ligger rundt 70 %, og C substitusjonseffekten² for fossilt drivstoff ligger rundt 94 %. Teknologien er i en pilotfase (50 kg biomasse per dag), men viser lovende resultater så langt som kan føre til kommersialisering. Prosessen (Fig. 3) produserer sin egen H₂ en IH2 teknologien som kan operere i en frittstående konfigurasjon, eller integreres i eksisterende industriområder og bio-raffinerier.

Fig 3. IH2 Hydropyrolyse prosess (GTI).

2.5 Gassifisering

Gassifisering av biomasse innebærer ufullstendig forbrenning av biomasse og resulterer i produksjon av brennbare gasser som består av en blanding av karbonmonoksid (CO), hydrogen (H₂) og spor av metan (CH₄) som til sammen kalles produsent- eller syngass. Gassifisering er en totrinns reaksjon bestående av oksidasjon og reduksjonsprosesser. Reduksjonen er en endotermisk reaksjon for å generere brennbare produkter som CO, H₂ og CH₄.

¹ Mengde karbon som var i råstoffet som ender opp i slutt drivstoff produktet
² Hvor mye biodrivstoff redusere drivhusgasser sammenlignet med en tilsvarende mengde fossilt drivstoff
Siden gassifisering innebærer en interaksjon av oksygen og biomasse, kan reaktorene klassifiseres etter måten luft eller oksygen blir tilført. Design av reaktor avhenger av brenselstype og om reaktoren er bærbar eller stasjonær. Gassprodusenter kan karakteriseres i henhold til hvordan luften er innført i brenselkolonnen. Flere typer av reaktorer har vært utformet og de vanligste er klassifisert som:

- Updraft reaktorer
- Downdraft reaktorer
- Twin-brann reaktorer
- Crossdraft reaktorer

Utbytte av gasser er også avhengig av hvilken gassifiseringreaktant som brukes i prosessen. Bruk av vannlig luft som har (78 % N2-innhold) vil resultere i en syngass med høy N2 innhold (Tabell 3). Siden N2 ikke er brennbart, vil bruk av luft som reaktant redusere energiinnholdet per produsert volum i sluttproduktet. Bruk av damp vil føre til høyere H2 produksjon, og bruk av O2 vil føre til høyere CO produksjon (Tabell 3). Valg av hvilken reaktant man skal bruke vil være avhengig av hva sluttproduktet skal brukes til og kostnader knyttet til innmating av O2 eller damp.
2.5.1 Syntetisk diesel - Biomass to Liquids (BTL)

Bio-syntetisk diesel er diesel som har blitt fremstilt fra biomasse via termokjemiske prosesser f. eks. gassifisering kombinert med Fischer Tropsch syntese. Kvaliteten av syntetisk diesel er faktisk bedre enn vanlig diesel med et cetantall på rundt 75 (diesel har ca 45-50). Lokal forurensning kan reduseres betydelig ved bruk av syntetisk biodiesel. Utslippet av svevestøv kan reduseres med opptil 50 % og NOx-utslippene med opptil 20 % (Opdal, 2006).

Syntetisk diesel fra kull og fossil gass har vært i bruk siden 2. verdenskrig til i dag mens det finnes ingen kommersiell Biomass To Liquid (BTL) Fischer Tropsch i dag. Choren konsernet i Tyskland hadde kommet lengst med et demonstrasjonsanlegg som var i drift i flere år, men gikk konkurs 2011 på grunn av mangel på kapital for å fullføre prosjektet. Rapier (2011) mente at en av de sentrale utfordringer med gassifisering av biomasse er å få det riktige H₂/CO-forholdet og tilstrekkelig renhet for Fischer Tropsch synthesis. Dette er et mindre problem med gassifisering av fossilt kull og gass som er mer homogene og rene hydrokarbon råstoff.

Boerrigter (2006) har utredet økonomien i BTL anlegg og fant at den er svært avhengig av produksjonsvolumet. Storskala produksjon er nødvendig for å dra nytte av stordriftsfordelene. Ved økende anleggsstørrelser er nedgangen i investeringskostnader av større betydning enn økningen i transportkostnader, men dette vil variere i forhold til kostnadsnivået i ulike land.

Norske Skog kunngjorde planer om et prototypanlegg for andre generasjons biodrivstoff og etablering av et selskap (Xynergo) som skulle arbeide med å få fram kommersiell produksjon av syntetisk biodrivstoff fra trevirke. Choren-teknologien var den som var vurdert og utredet av Xynergo, og teknologien var basis for tallene som finnes i litteraturen for storskala 2.generasjons drivstoffproduksjon i Norge (via termokjemiske rute).

Xynergo investerte ca. 40 mill. kr i utredninger i sin tid for 2. generasjons biodrivstoff og vurderte flere anlegg og system design for BTL-produksjon i Norge. Xynergo var nylig kjøpt av Aker Energy og har blitt utviklet til et konsulentfirma som skal videreføre innhentet kunnskap i andre bioenergiprosjekter.

Fase 1: Produksjon av bioolje for industrikunder
- Produksjon av 40-45 mill liter bioolje
- 60 000 tonn TS virke årlig.
- Produksjonen tilvarer cirka 15 prosent av forbruket av tungolje i Norge.
- Potensial til å redusere fossilt CO₂-utslipp på 70 000 tonn årlig.
- Energieffektivitet på 90 prosent.

Fase 2: Syntetisk biodieselproduksjon
- 250 mill. liter årlig produksjonskapasitet
- Råvarebehovet 1 million tonn TS per år (trevirke eller halm, red.anm.)
- Drivstoff vil være hovedproduktet. I utgangspunktet er vi åpne for el-produksjon og warmeproduksjon.
- Anlegget vil ha et signifikant overskudd av varme som er egnet for fjernvarme.
- Energieffektiviteten uten utnyttelse av prosessvarme ligger på 50-53 prosent.
- Redusjon av fossile CO₂-utslipp fra veitransport med 700 000 tonn årlig.
- Videre er CO₂ fra prosessen allerede separert fra resten og kan - hvis CO₂ infrastruktur er tilgjengelig - deponeres i tomme olje og gassfelt eller brukes som injeksjonsgass til økt oljeutvinning (EOR). I et slikt scenario kan et fullskala anlegg være CO₂-negativt og bidra til en total CO₂-reduksjon på opp til 2 mill. tonn CO₂ årlig.
- Et anlegg med en råvarekapasitet på 1 million tonn tørrstoff vil innebære en investering på godt over 5-7 mrd. NOK.
- Forventet levetid for det første anlegget: 20 år.
- Antatt produksjonskostnad per liter for et fullskala kommersielt anlegg: 6-8 kr per liter

(Kilde: Econ Pöyry, 2008)

2.5.2 Syntetisk framstilling av syngas til biometan (BioSNG)
Et alternativt gassbaseret biodrivstoff med stort potensial er Bio Syntetisk Natur Gass (BioSNG). BioSNG er CH₄ framstilt fra bio-syngass (CO og H₂) og kan sees som en alternativ eller tilleggs produksjonsprosess for CH₄-biogass (laget via biologiske forråtnings prosessen). Fordel med BioSNG overfor forråtnings prosess er at produksjonspotensialet er mye større pga. at man kan bruke skogen som råstoff. Utredninger av biogass produksjon i Norge bekrfter at det teoretiske energipotensialet fra biogassressurser fra avfall/biprodukter er ca. 6,1 TWh/år, men potensialet fra tilgjengelig skogsressurser er ca. 20 TWh/år (CenBio, 2011).
BioSNG prosessen består av følgende trinn:
Gassifisering av biomasse

↓

Rensing av syngass

↓

Raffinering av CO og H₂ til CH₄ i en metanreaktor

↓

Fjerning av NH₃, H₂O, CO₂

↓

Injeksjon av CH₄ (96%) i gassnettet og forsyning til kunder

2.5.3 Case studie: GoBiGas - BioSNG prosjekt i Göteborg

Bilde: Visuellisering av GobiGas 20MW, Bio-SNG anlegg som bygges ferdig Nov. 2013
Göteborg Energi bygger verdens første demonstrasjonsanlegg for produksjon av Bio-Syntetisk Natural Gas (BioSNG). Prosjektet som heter GoBiGas skal produsere BioSNG fra gassifisering av biomasse og metan av synergassen. Fordelen med bruk av CH₄ som drivstoff er at det kan mates inn til et eksisterende fossilt gassnett som allerede finnes i Göteborg. Gassnettet har mulighet til å motta både biologisk og fossil gass. Målet er å oppnå 65% av energien i biomassen i biogassen, og bruke spillvarmen for å nå en total energieffektivitet på mer enn 90%. Et 20 MW (160 GWh/år) anlegg er under bygging nå til et pris av 1,2 milliarder NOK og bygges ferdig i november 2013. Demonstrasjonsanlegget vil bli brukt som et eksempel for å skaffe mer informasjon om energi bruk og produksjon og totale kostnader. Dersom prosjekt er vellykket er det planlagt et større 80 MW anlegg (640 GWh/år) for etablering i 2016. For å sette dette i perspektiv vil et 80MW BioSNG anlegg være stort nok til å dekke nåværende naturgassforbruk fra Rogaland gassnettet. Lokalisering av anlegget sentralt ved havnen i Göteborg vil gjøre det mulig å bruke spillvarmen i fjernvarme nettet, og dessuten lett å motta råstoffer med skip eller jernbane. (Se: www.goteborgenergi.se). Tabell 4 vises energibalansen.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasse inn (trepellets)</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Strøm</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>RME (bioolje) brukt i rensing prosess</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Fjernvarme</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Nærvarme</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Energi i produsert biometan (Bio-SNG)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Varmetap</td>
<td>4,5</td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td>35,5</td>
<td>35,5</td>
</tr>
<tr>
<td>Biomass til BioSNG drivstoff %</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>Energieffektivitet av Bio-SNG prosess</td>
<td>87%</td>
<td></td>
</tr>
</tbody>
</table>

Kilde: Göteborg Energi, 2010 (Kilde: Repotec, 2012)
3. Verdikjedene: Fra biomasse til drivstoff

Scenarier
Vi ser flere scenarier hvor termokjemiske prosesser kunne bli tatt i bruk for å redusere fossilt olje og drivstoff i Norge

3.1 Ledd i verdikjedene
Uansett scenarier har alle teknologier noen felles trinn. Nedenfor er det vist et forenklet flytdiagram med leddene i en verdikjede for biodrivstoff.

- Innsamling av råstoffen
 - Flising, tørking, lagring
 - Pyrolyse/Gassifisering
 - Oppgradering/Raffinering
 - Distribusjon til slutt brukere*

*Kostnader til distribusjon er ikke beregnet i denne rapporten
4. Råstoffkostnader

4.1 GROT

Skogsavfall eller GROT (GRener Og Topper fra Skogsvirke) er det mest aktuelle råstoffet for produksjon av biodrivstoff i Norge. Brutto potensiell avvirkning av i Norge fra gran furu og lauvtrær er beregnet til 1,7-2,6 millioner tonn TS som tilsvarer en energimengde på 8,5-13TWh (Gjølsjø et al. 2011).

Fysiske egenskaper til GROT er oppgitt til (Viken Skog, 2008):

- Fuktighet 40-50
- Askeinnhold 2-3%
- Energiinnhold 2,2-2,8 MWh/tonn

Lavere fuktighet enn 35% fuktighet beregnes som tørt, mens høyere fuktighet enn 35 % beregnes som fuktig. Bruk av GROT til bioenergiformål antas å føre til en reduksjon i klimagassutslipp på 1,5 million CO₂-ekvivalenter pr. år, som utgjør ca. 2 % av årlige utslipp i Norge (Nilsen et al. 2008).

Bruk av GROT med høyt innhold av bark og nåler kan resultere i en reduksjon av ca 10 % i utbyttet av bioljefra hurtig pyrolyse, sammenlignet med bioljefra laget fra ren trevirke. (Oasmaa et al. 2002). Dette vil ha en betydelig innvirkning på den økonomiske lønnsomheten til pyrolyseprodukter i Norge basert på GROT. På den andre side vil GROT ha lavere alternativ verdi som biobrensel og vil gi mer biokull med bedre kvalitet som jordforbedringsmiddel. Tabell 5 viser forutsetninger for beregninger i rapporten.

Tabell 5.

<table>
<thead>
<tr>
<th>Skogslis (GROT) forutsetninger</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GROT pris (øre/KWh) (fukt 30%)</td>
<td>15</td>
</tr>
<tr>
<td>GROT pris (øre/KWh) (fukt 0% TS)</td>
<td>21</td>
</tr>
<tr>
<td>kr/KWh</td>
<td>0,21</td>
</tr>
<tr>
<td>kr kg TS</td>
<td>1,14</td>
</tr>
<tr>
<td>kr tonn TS</td>
<td>1140</td>
</tr>
<tr>
<td>kr fm3</td>
<td>456</td>
</tr>
<tr>
<td>densitet kg/lm3</td>
<td>300</td>
</tr>
</tbody>
</table>

4.1.1 GROT - kostnader fra skog til bioraffeneri

I rapporten bruker vi en total pris for GROT som 21 øre/Kwhr. Tabell 6 gi en oppsummering avkostnader i innsamlingskjeden:
Tabell 6

<table>
<thead>
<tr>
<th>Kostnadstype</th>
<th>Kostnad</th>
<th>Merknad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innkjøpt massevirke</td>
<td>250 kr/m³</td>
<td></td>
</tr>
<tr>
<td>Vegtransport</td>
<td>40 kr/m³</td>
<td></td>
</tr>
<tr>
<td>Terminal 1</td>
<td>5 kr/m³</td>
<td></td>
</tr>
<tr>
<td>Måling</td>
<td>3 kr/m³</td>
<td></td>
</tr>
<tr>
<td>Flisbergbeting</td>
<td>65 kr/m³</td>
<td>FM 40%</td>
</tr>
<tr>
<td>Terminal 2</td>
<td>12 kr/m³</td>
<td>Flislager på 200 lm³</td>
</tr>
<tr>
<td>Sum fylleproduksjon</td>
<td>375 kr/m³</td>
<td>2000 kWh/m³ eller 800 kWh/m³</td>
</tr>
<tr>
<td>Transport til varmesentral</td>
<td>50 kr/m³</td>
<td></td>
</tr>
<tr>
<td>Skogfis levert varmesentral</td>
<td>425 kr/m³ + tap ved forbrannelse</td>
<td>21 øre/kWh</td>
</tr>
<tr>
<td></td>
<td>170 kr/lm³</td>
<td></td>
</tr>
</tbody>
</table>

Kilde: Energigården presentasjon (energigarden.no)

Viken Skog (2008) oppgir følgende kostnader for GROT levert bioenerterminal, for flising, lagring, og distribusjon til fjernvarme anlegg:
• Terminal 1,2 øre/kwh
• Omlasting 1,6 øre/kwh
• Intern logistikk 0,8 øre/kwh
• Økt transportavstand 1 øre/kwh
• Sum for terminal kostnader ca. 4,6 øre/kwh

Råstoffpris til skogeier er oppgitt til 18-30 kr/m³

Det gis tilskudd til energifis fra Statens landbruksforvaltning. For GROT betales 27 kr/m³ eller 3,2 øre/kWh (SLF, 2012) Det blir betalt ut ca. 40 millioner kr i tilskudd i 2011.

4.2 Halm

Halm er et viktig råstoff kilde for produksjon av biodrivstoff i Norge, med en estimert mengde på 400 000 tonn per år tilgjengelig til bioenergiformål³ (Elton et al. 2009). Halm har relativt høyt askeinnhold sammenlignet med rent trevirke. Høyt askeinnhold er ikke ønskelig dersom man vil maksimere bio-oljeutbytte fordi asken kan katalysere pyrolysereaksjoner som fører til økt vann- og gasutbytte på bekostning av oljeutbytte (Butler et al. 2011). Problemet kan reduseres ved utvasking av askemellene i biomasse før pyrolyse. Halmen kan ligger i rad i åkene over noen dager i regn, og etter soltørking bli samlet som halmballer. Under laboratorieforhold kan vasking av halm med vann reduserte askeinnhold ved 68% (Jenkins et al. 1996).

³ Basert på forbruk av 60% av total halm tilgjengelig i Norge med gjennomsnitt avling av 200 kg daa¹
4.2.1 Halm - Kostnader

Tabell 7. Kostnader for Halm som brensel

<table>
<thead>
<tr>
<th>Gjennomsnitt halmavlinger</th>
<th>200 kg TS per dekar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gjennomsnittlig kostnad til raking</td>
<td>42 kr per tonn TS</td>
</tr>
<tr>
<td>Kostnad til pressing av rundballer</td>
<td>276 kr per tonn TS</td>
</tr>
<tr>
<td>Kostnad til firkantballepresse</td>
<td>208 kr per tonn TS</td>
</tr>
<tr>
<td>Innsamlings kostnader (<2,5km)</td>
<td>111 kr per tonn TS</td>
</tr>
<tr>
<td>Total kostnader</td>
<td>350 - 450 kr / tonn TS</td>
</tr>
<tr>
<td></td>
<td>(75 - 100 kr per MWh)</td>
</tr>
</tbody>
</table>

Tabell 8.

<table>
<thead>
<tr>
<th>Forutsetninger for halm kostnader</th>
<th>kr</th>
</tr>
</thead>
<tbody>
<tr>
<td>halm kr/lm3</td>
<td>135</td>
</tr>
<tr>
<td>HALM kr/tonn TS</td>
<td>450</td>
</tr>
<tr>
<td>kr per kilogram TS</td>
<td>0,45</td>
</tr>
<tr>
<td>kr per Kwh</td>
<td>0,09</td>
</tr>
</tbody>
</table>

Brenneverdi: Halm (0% fukt) 4.86 Kwh/kg (Belbo, 2011)
5. Produksjons kostnader og CO₂ reduksjons potensial

5.1 Produksjonskostnader for et Mikrobølge pyrolyse anlegg

Produksjonskostnader for oppgradert pyrolyseolje fra mikrobølge pyrolyse er ca. 6 kr/L i 2012 og kan redusere til ca. 3,5 kr/L i 2017 (Fig. 4). Pris reduksjon er mulig fordi oppgraderingskostnader er forventet redusert med 74% over de neste 5 år (US Dept. of Energy, 2012) på grunn av intensiv forskning og utviklings arbeid. Beregninger her er et grovt estimat basert på data hentet fra en demonstrasjons MBP anlegg (Scandinavian Biofuels) og USD oppgraderingskostnader hentet fra US. Dept of Energy (2012) og vekslet til NOK. Det må understrekes her at pris per liter er ikke for en liter av bensin men for 1 L av samlet pyrolyse olje som er produsert etter UOP-Honeywell oppgradering for å lage Naphta, Green Diesel og propan. Vi regner med at disse produktene vil erstatte forskjellige typer fossile brensel for. rks. transport, fly drivstoff og propan osv.

Produksjons- og oppgraderingskostnader står for hovedparten av kostnadene for 2.gen. biodrivstoff produksjon og da er det nødvendig å finne nye måte for å redusere disse om de skal være konkurransedyktig med fossilt drivstoff i nær framtid.

![Fig. 4. Biodrivstoff kostnader trend 2012-2017](Skatt og distribusjons kostnader ikke inkl.)

4 Prisene er basert på produksjons kostnader for Mikrobølge pyrolyse anlegg med oppgraderings kostnader hentet fra US. Department of Energy, 2012
5.2 CO₂ for MBP biolje som erstatning for fossil fyringsolje i industri

På grunn av høy oppgraderingskostnader for pyrolyseolje til biodrivstoff, vil den første anvendelse av oljen sannsynligvis bli en erstatning av fossil fyringsolje i industrien. Scandinavian Biofuels. Tabell 9. gir en oversikt over kostnader for CO₂ reduksjon via erstatning av fyrings olje med biolje og industrikokks (for eks. metall industri) med biokull.

Tabell 9. MB Pyrolyse med biolje som erstatning for industri fyringsole og biokull som koks erstatning

<table>
<thead>
<tr>
<th>Kostnad per t CO₂ for biolje substitusjon</th>
<th>Kostnad per redusert t CO₂ for biokull (Fixed C) erstatning av koks</th>
<th>Total kostnad per t CO₂ redusert fra prosessen</th>
<th>Total Redusert klimagass utslipp fra anlegg/år</th>
</tr>
</thead>
<tbody>
<tr>
<td>kr/ t CO₂</td>
<td>kr/t CO₂</td>
<td>kr/t CO₂</td>
<td>t CO₂ /år</td>
</tr>
<tr>
<td>2295</td>
<td>405</td>
<td>2700</td>
<td>123853</td>
</tr>
</tbody>
</table>

5.3 Co2 kostnader av syntetisk diesel

Det er flere studier som har sett på produksjonskostnader for BTL-diesel. Tabell 10 gir et sammendrag av studiene og anleggsparametre de er basert på.

Tabell 10. FT syntetisk diesel som erstatning til fossilt diesel

<table>
<thead>
<tr>
<th>Kostnad per t CO₂ for biolje substitusjon</th>
<th>Total kostnad per t CO₂ redusert fra prosessen</th>
<th>Total Redusert klimagass utslipp fra anlegg/år</th>
<th>Pris for 2. gens. biodrivstoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>kr/ t CO₂</td>
<td>kr/t CO₂</td>
<td>t CO₂ /år</td>
<td>kr/liter</td>
</tr>
<tr>
<td>2959</td>
<td>2959</td>
<td>648 856</td>
<td>7-10</td>
</tr>
</tbody>
</table>

5.4 Sammendrag av kostnader

På Tabell 11 sammenligne de forskjellige termiske prosesser og kostnader for CO₂ reduksjons potensial. Det må understrekes at tallene er usikker og basert på litteratur studier og demonstrasjons anlegg. Flere demonstrasjons anlegg må bygges i Norge så at reale tall kan blir innhentet.
Tabell 11. Kostnad Sammendrag

<table>
<thead>
<tr>
<th>Samfunns økonomisk kostnader gjennom verdikjeden</th>
<th>Bedrifts økonomisk kostnader gjennom verdikjeden</th>
<th>Minimum statlig støtte for å sikre lønnsomhet</th>
<th>Kostnad per redusert t CO₂ for biodrivstoff substitusjon</th>
<th>Kostnad per redusert t CO₂ for biokull (Fixed C) erstatning av koks</th>
<th>Total kostnad per t CO₂ redusert fra prosessen</th>
<th>Total Redusert klimagass utslipp fra anlegg/år</th>
<th>Pris for 2. gens. biodrivstoff</th>
<th>Kapital investering</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB Pyrolyse med oppgradert biodrivstoff og biokull som koks erstatning (2012)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4143</td>
<td>4428</td>
<td>285</td>
<td>2794</td>
<td>405</td>
<td>3199</td>
<td>135578</td>
<td>5-7</td>
</tr>
<tr>
<td>MB Pyrolyse med oppgradert biodrivstoff og biokull som koks erstatning (2017) (med redusert oppgraderingskostnader)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2742</td>
<td>3027</td>
<td>285</td>
<td>2093</td>
<td>405</td>
<td>2498</td>
<td>135578</td>
<td>3-4</td>
</tr>
<tr>
<td>MB Pyrolyse med biolje som erstatning for industri fyringssole og biokull som koks erstatning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2268</td>
<td>2553</td>
<td>285</td>
<td>2295</td>
<td>405</td>
<td>2700</td>
<td>123853</td>
<td>n/a</td>
</tr>
<tr>
<td>Gassifisering og Fischer Tropsch til FT Diesel som erstatning til fossilt transport diesel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2795</td>
<td>3311</td>
<td>516</td>
<td>2959</td>
<td>n/a</td>
<td>2959</td>
<td>648856</td>
<td>7-10</td>
</tr>
<tr>
<td>Gassifisering og Bio-SNG som erstatning for naturgass i busser og tungttransport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7025</td>
<td>7721</td>
<td>696</td>
<td>2016</td>
<td>n/a</td>
<td>2016</td>
<td>78400</td>
<td>1 kr/m3</td>
</tr>
</tbody>
</table>
En IPCC rapport (Chum et al., 2011) om fornybar energi gir en omfattende oversikt over siste utvikling innenfor bioenergi og biodrivstoff. De estimerte kostnadene for storskala produksjon av 2. generasjons drivstoff (2020-2030) basert på Lignocellulose som råstoff og 3 forskjellig teknologivalg er vist i tabell 12.

Tabell 12. Produksjons kostnader av forskjellige biodrivstoff konverterings prosesser

<table>
<thead>
<tr>
<th>Teknologivalg</th>
<th>Produksjons kostander (inkl. Råstoff pris) øre/ KWhr*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzymatisk framstilling f.eks. etanol</td>
<td>39-70</td>
</tr>
<tr>
<td>Gassifisering teknoliger f.eks. BioSNG, DME, FT</td>
<td>20-70</td>
</tr>
<tr>
<td>Pyrolyse (Fast) og oppgradering via eksisterende oljeraffaneri</td>
<td>33-60</td>
</tr>
</tbody>
</table>

Kostnader er justert for en høyere råstoff pris i Norge (GROT 14 øre KWhr⁻¹).
6. Tiltak og virkemidler for økt andre-gen. biodrivstoff fra trevirke

I et intervju med Xynergo i 2010, beskrevet i en rapport utgitt av Econ Poyry (2010), ga Xynergo ledelse forslag til myndighetene som kunne forbedre investeringsmulighetene for et fullskala kommersielt anlegg.

Xynergo mente at det trengs en drivstoffpolitikk som kunne sørge for at biodrivstoff på sikt blir konkurransedyktig i pris med fossilt drivstoff, for eks:

- Høyt omsetningspåbud i kombinasjon med tilstrekkelig høy "penalty" bot for ikke-overholdelse
- Høyere CO₂ avgift
- Krav om strenge bærekraftighetskriterier og høy CO₂ reduksjonspotensial for biodrivstoffet

7. Andre klimatiltak ved bruk av biokull

7.1 Biokull som erstatning av koks i prosessindustrien

De fant at opptil 50 % innblanding av trekull var mulig, under forutsetning av at trekullet oppfylte industriens kvalitetskrav. Det nevnes for eksempel i rapporten at trekull bør være laget av trevirke uten bark, som ville gi lavere kvalitet i Si- og FeSi-produktet på grunn av høyt askeinnhold.

Det er derfor tvilsomt om biokull laget fra lav-verdi biomasse som GROT vil bli egnet for prosessindustrien. I Brasil er trekull nå brukt i storskal i stålproduksjon. Men der bruker de Eucalyptus trevirke fra eget dyrket plantasjer, og da vil man få et trekull laget fra rent trevirke. I en rapport, estimert Monsen et al. 2009 at pris for importert trekull var 2500-2800 kr /tonn C.

I klimakur 2020 det var estimert et teknisk potensial for utslippsreduksjoner på 1,2 millioner tonn CO₂-ekvivalenter pr år ved bruk av trekull som erstatning for koks som reduksjonsmiddel i ferrolegeringsindustrien.

<table>
<thead>
<tr>
<th>Prosess</th>
<th>Utslippsreduksjon 2020 (tonn CO₂ equiv)</th>
<th>Samfunnsøkonomisk kostnadseffektivitet (NOK/tonn CO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrosilisium1 økning fra 5% til 40% trekull i prosessen</td>
<td>450000</td>
<td>415</td>
</tr>
<tr>
<td>Ferrosilisium2 økning fra 5% til 40% trekull i prosessen</td>
<td>500000</td>
<td>634</td>
</tr>
<tr>
<td>Anodeprod (Al) fossil pakkoks til trekull (100% erstatning i 3 frabrikker)</td>
<td>66000</td>
<td>1092</td>
</tr>
<tr>
<td>Silisiumkarbid – øke trekull fra 0 til 20% av koks forbruk</td>
<td>20000</td>
<td>868</td>
</tr>
</tbody>
</table>

Sum 1 036 000 Gj.snitt Kr/t CO₂= 752

SINTEF har tidligere utredet muligheten for å etablere trekullproduksjon i Norge basert på norsk eller utenlands trevirke. For å realisere utslippsreduksjonen på ca 1 millioner tonn CO₂ vil det kreve ca. 520 000 tonn C fra trekull per år. Dette tilsvarer 867 000 tonn TS trekull (60% Fiksert C innhold) og behov for ca. 4,5 millioner fastkubikk tømmer per år (ca. 20% utbytte av trekull fra pyrolyseprosessen).
7.2 Biokull som metode for lagring av stabilt karbon i jord

Muligheter for utslippskutt i landbrukssektoren ble presentert i rapporten fra prosjektet Klimakur 2020 utgitt av Klif i 2010. I rapporten, står biokull øverst på listen av tiltak som har potensial til å kutte mest CO$_2$-utslipp fra landbrukssektoren.

For karbonlagring har biokull en unik fordel i at dets C innhold er svært motstandsdyktig til nedbrytning. Under naturlige forhold brytes karbonet i biomasse ned i jord av bakterie og slippes ut til atmosfæren som CO$_2$ eller CH$_4$. Når biomasse er pyrolysert til biokull, kan det ligge stabilt i hundrevis eller tusenvis av år. Empirisk bevis for dette ligger blant annet i arkeologiske funn fra norske skoger, hvor oppgravd trekull har blitt 14C datert til 600-1500 e.Kr. (Tveiten og Simpson, 2008).

Bioforsk har 2 prosjekter finansiert av Norges Forskningsråd som ser nærmere på hvor stabilt biokull er både under kontrollert lab- og feltforhold. Under feltforhold over 2 år, har biokull C vært svært stabilt (>98%) (Rasse og O'Toole, 2012), og under labforsøk har det blitt påvist at produksjon av biokull over 450°C er viktig for å lage en biokull som er egnet for karbon lagring og som et klimatiltak (Budai et al. 2011).

8. Referanse

