Distribution and spread of the invasive slug Arion vulgaris Moquin-Tandon in Norway

Bjørn A. Hatteland^{1,2}, Steffen Roth^{1,3}, Arild Andersen⁴, Kristin Kaasa^{1‡}, Bente Støa⁵ and Torstein Solhøy¹

Hatteland BA, Roth S, Andersen A, Kaasa K, Støa B and Solhøy T. 2013. Distribution and spread of the invasive slug *Arion vulgaris* Moquin-Tandon in Norway. Fauna norvegica 32: 13-26.

The present distribution of the invasive slug *Arion vulgaris* Moquin-Tandon was studied in Norway. This important pest species has spread to many parts of Europe during the last decades, inflicting damage to agriculture and domestic gardens. It was first recorded in Norway in 1988, and has since spread to many parts of the country and is now recorded in 192 municipalities. We surveyed the current distribution by sampling and gathering species records in cooperation with garden societies and local authorities. Based on these records, we present distributional data as well as relative predictions of future distributions based on geoclimatic parameters. Currently, *A. vulgaris* covers most of coastal southern Norway while it shows a patchy distribution in northern Norway, recorded as far north as Finnsnes in Troms County.

doi: 10.5324/fn.v31i0.1473. Received: 2012-03-30. Accepted: 2012-10-18. Published on paper and online: 2013-02-13.

Keywords: Arionidae, ArcGIS, invasive species, climate, Maxent analysis

1. Department of Biology, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway

2. Horticulture and Urban Greening, Bioforsk Ullensvang - Norwegian Institute for Agricultural and Environmental Research, 5781 Lofthus, Norway

3. Natural History Collections, University Museum in Bergen, P.O. Box 7800, 5020 Bergen, Norway 4. Plant Health and Plant Protection Division, Bioforsk - Norwegian Institute for Agricultural and Environmental Research, Høgskoleveien 7, 1432 Ås, Norway

5. GEco - Geo-Ecological Research Group, Natural History Museum, University of Oslo, Oslo, Norway

‡. Present address: Bjerregaardsgate 30C, 0172 Oslo

Corresponding author: Bjørn Arild Hatteland E-mail: bjorn.hatteland@bio.uib.no

INTRODUCTION

Invasive species are a global problem leading to economic losses and negative effects on natural ecosystems (Sax et al. 2005; Davis 2009). Knowing the current distribution as well as the potential distribution of invasive species is fundamentally important to determine the extent of today's as well as future problems related to such species. Modelling methods have recently been used to make predictions about future distributions of invasive species by combining data on biogeography and explanatory variables related to climate (Ward 2007; Nori et al. 2011). Based on such analyses we can indicate the potential distribution by presenting maps containing information on where conditions are favourable or not for the studied species. This has fundamental implications for future effects on crops and/or native biota, and hence is a crucial tool for management of such species.

The invasive slug *Arion vulgaris* (Moquin-Tandon, 1855) (in most of the literature up to now referred to as *A. lusitanicus* 1868 (Anderson 2005; Quinteiro et al. 2005)) has spread to many parts of Europe, including Scandinavia, during the last few decades (Reischütz 1984; Davies 1987; von Proschwitz 1992; Kaiser et al. 1993; Dolmen & Winge 1997; Kozlowski and Kozlowski

2011). It has been referred to as the Iberian or Lusitanian slug due to its assumed native distribution in the Iberian Peninsula. Arion vulgaris was first recorded in Norway in 1988 at three different localities; Langesund and Kråkerøy in eastern Norway and Molde in western Norway (von Proschwitz & Winge 1994). It has been hypothesised that these introductions all originated from one shipment from the Netherlands to various garden centres (Solhøy, T. unpublished). Through the 1990s and 2000s A. vulgaris has become locally very abundant, in particular along the western coast (Dirks 2003; Tomasgård 2005) and the south-east of Norway (pers. obs.). Considerable damage caused by A. vulgaris has been reported from domestic gardens, vegetables, strawberry cultures and cereal fields (Frank 1998a, b; Grimm et al. 2000; Hofsvang 2003; Kaluski et al. 2005). In addition, A. vulgaris seems to have a negative effect on native slug species like Arion ater L.; A. ater seemingly disappears following invasion of an area by A. vulgaris (Davies 1987; von Proschwitz 1997). It is currently unknown if this is due to competition (e.g. food, shelter), egg predation or other factors such as introgression since these species may hybridise.

The pest nature of this slug has been explained by a high reproductive and survival rate, catholic feeding habits, sticky mucus, and large body size (von Proschwitz 1992; Kozlowski 2007). In addition, it has been hypothesised that *A. vulgaris* lacks natural enemies, or at least has fewer enemies (von Proschwitz & Winge 1994; von Proschwitz 2008), although recent studies have shown that native beetles are significant predators of *A. vulgaris* (Hatteland 2010; Hatteland et al. 2010, 2011). According to published information and field observations (e.g. Kozlowski, 2007; Hatteland et al., pers. obs.) this species follows an annual life cycle, although some individuals live for two years (Davies 1987; Dirks 2003). Most of the adults die after egg lying in early or mid-autumn. Eggs hatch in late autumn, overwinter as juveniles and mature in the following late spring and summer.

We outline the recorded present distribution of this notable pest species in Norway. Our survey is compared thoroughly with a previous study published by Dolmen & Winge in 1997. We also present a potential future distribution of *A*. *vulgaris* in Norway based on the current survey and modelling analyses using geoclimatic parameters such as average monthly temperature and precipitation.

MATERIAL AND METHODS

Data collection

Slugs have been collected and observed during various field surveys in Norway between 1995 and 2012, but mainly from 2006 to 2011. This has often been done in cooperation with garden societies, private gardeners and farmers, local newspapers, the Norwegian Food Safety Authority (Mattilsynet), and local agencies of agriculture and nature conservation at municipality and county levels (respectively "kommune" and "fylke" in Norwegian). Rural areas in particular, including gardens, wasteland, road sides, and agricultural areas, were investigated. Slugs were collected alive, killed and stored at -20 °C and identified by dissection of genitalia according to previous work (e.g. Noble 1992). If morphological identification was uncertain, mitochondrial DNA was analysed using the general invertebrate primers of Folmer et al. (1994) and the speciesspecific primers of Hatteland et al. (2011). In cases where samples of slugs were difficult to get, we obtained pictures of slugs from gardeners. If the quality was good enough and the colour variety of the slug (brown, reddish brown) clearly suggested A. vulgaris the information was considered as an approved record. We also received records from various sources (mainly local garden societies) reporting either high densities of slugs or single records of potential A. vulgaris specimens, which have not yet been confirmed. The former reports were given a status of "probable" while the latter were given a status of "uncertain" (Appendix 1). In the map of current distribution (Figure 1) we have combined these two categories.

Recorded distribution

The distribution was recorded per municipality and maps were produced in ArcGIS Desktop software version 9.3.1 (ESRI, 2003). A base map data-set of municipalities of Norway was provided by NorgeDigitalt (norgedigitalt.no). The distribution records of Dolmen & Winge (1997) were added to the map.

Distribution modelling

The occurrence data were georeferenced using the free software Norgeskart (http://www.norgeskart.no) made by Statens kartverk. Only confirmed records were included, while uncertain and potential records were left out. This resulted in 219 occurrence points used for further analyses. When a record lacked information about the exact locality, the most probable locality within the municipality was chosen (e.g. largest town or village situated on the coast). All the georeferenced occurrence points were imported into ArcGIS along with two environmental predictor variables, covering all of Norway with a 1x1 km resolution. These variables (PCA1 and PCA2) are based on a Principal Component Analysis (PCA) with 54 geoclimatic variables performed by Bakkestuen et al. (2008). PCA1 is a step-less oceanity gradient, which maximally fits the division of Norway into vegetation sections and reflects mostly precipitation related variables. PCA2 is a step-less temperature gradient, which maximally fits the division of Norway into vegetation zones by relating to mean temperatures mainly from June, July and August as well as elevation (Moen 1998). Because the resolution of the two environmental predictors is as coarse as 1x1 km, no environmental data were available for grid cells in coastal areas with a centre point falling in the sea. An occurrence point in such a grid cell was hence moved inland to the nearest grid cell supplied with environmental information if this grid cell was not situated more than 1 km away from the coast.

A species distribution model was generated by applying the machine-learning method Maxent (Philips et al. 2006), which uses presence-only data to make predictions of species distributions. Maxent is a statistical method that finds the probability distribution of maximum entropy (i.e. that is most spread out, or closest to uniform) subject to the constraints given by our data (gridded presence records for a species, and predictor variables recorded for each cell in a common grid (Elith et al. 2006; Phillips et al. 2006)). Default settings were applied, but the replicated run type was set to cross-validation with ten replicates, i.e. the dataset was divided ten-fold and each fold was used in turn to cross-validate the model. The goodness-of-fit measure AUC (area under the ROC-curve (ROC = receiver operating characteristic)) was used to evaluate the model (Fielding & Bell 1997; Phillips et al. 2006). This is a non-parametric statistic that measures the model's ability to discriminate between a presence and a random background point. At values higher than 0.5 the model performs better than random. Values of 0.9-1 mean that the model's ability to discriminate between presences and background points is excellent.

RESULTS

Arion vulgaris was recorded in all the 19 counties of Norway, except the northernmost county of Finnmark. Furthermore, it is currently recorded in 192 of the 429 municipalities in Norway, of which 34 were already mentioned by Dolmen & Winge (1997) (Appendix 1). In addition, the species has been recorded in 14 other municipalities by local garden societies, but has not been confirmed by the authors. There are also uncertain records from a further 9 municipalities, both from Dolmen & Winge (1997) and other sources (Appendix 2). The current distribution covers most of coastal southern Norway, while it is more scattered in northern Norway (Figure 1). The species has also been recorded in the inner fjord areas of western Norway as well as the lowlands of eastern Norway. Arion vulgaris has not been recorded at altitudes higher than 400 m. a. s. l., nor in the most continental parts of Norway, except some localities in eastern Norway such as Gjøvik and Raufoss in the county of Oppland (Figure 2). Furthermore, all records have come from anthropogenic habitats (e.g. gardens, parks), or seminatural woodlands within close proximity to such habitats. Arion vulgaris has typically been found in suburban areas and especially in transition zones from meadow/grassland or deciduous/mixed woodland to gardens, roads, parks or other open habitats.

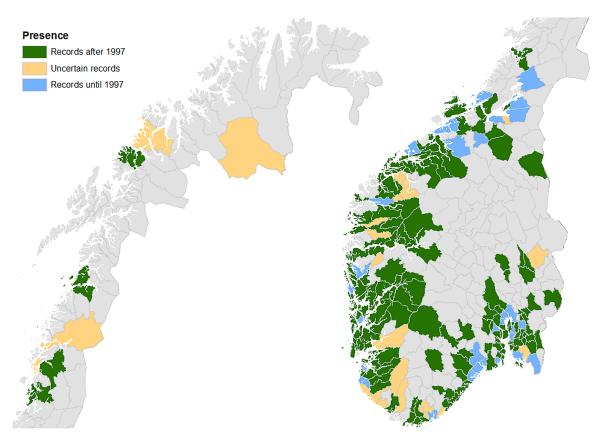


Figure I. Distribution of Arion vulgaris in Norway municipalitywise. Records before 1997 are taken from Dolmen & Winge (1997).

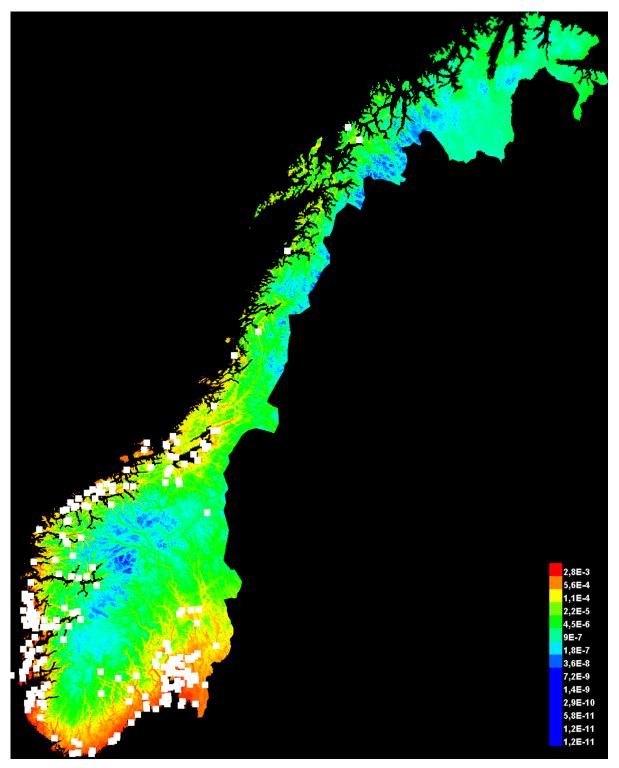


Figure 2. Habitat suitability map of *Arion vulgaris* in Norway using the raw output of Maxent with an exponential scale. White squares indicate the localities where the species has been recorded. Red to orange colours = high relative probability of occurrence, green to blue colours = low relative probability of occurrence.

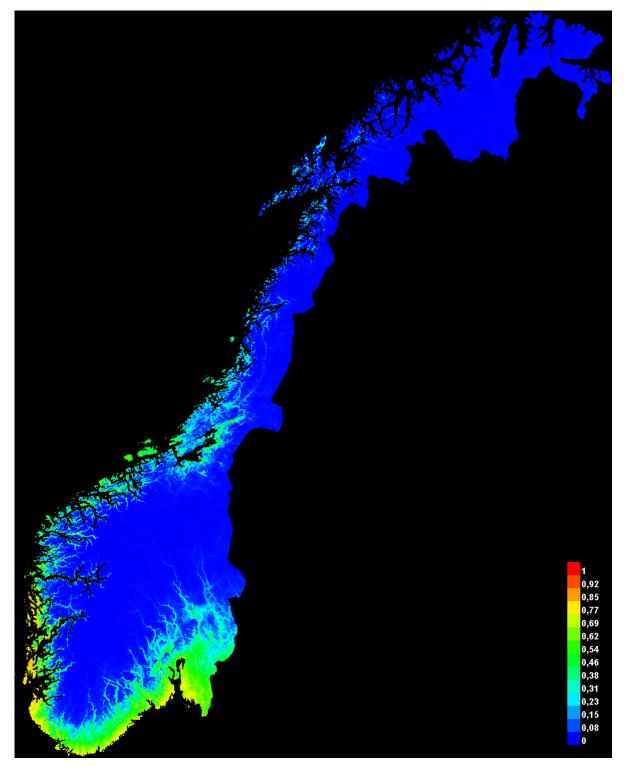


Figure 3. Habitat suitability map of *Arion vulgaris* in Norway with colours indicating the probability values of finding the species in the field based on Maxent analysis. The values given are on a logarithmic scale.

The modelling analyses of a potential distribution based on climatic variables indicate that *A. vulgaris* may occur in all vegetation zones of Norway except the alpine and subalpine zones (Figure 2). The ranking of sites for habitat suitability was based on the 219 sites where the species has been recorded and gives a high probability of finding the species along the entire coast as far north as Vesterålen (Figure 3). Our analyses also suggest a high probability of finding the species in south-east Norway, which also reflects the recorded distribution (Figures 2 & 3). The mean model goodness-of-fit (AUC) statistic for the ten predictions was 0.936, which indicates that the discrimination between presence and background points was excellent. The contribution of axis PCA2 (temperature-related variables) contributed 99.5% while the axis PCA1 (precipitation-related variables) contributed only 0.5%.

DISCUSSION

The main finding of this study is that the invasive *A. vulgaris* is currently distributed along most of the Norwegian coast from the Oslo Fjord up to Steinkjer in Nord-Trøndelag County. The slug has also been recorded further north, but these records are more scattered. However, *A. vulgaris* has occurred at high densities in recent years both in Bodø in Nordland County and in the northernmost locality at Finnsnes in Troms County. Our modelling analysis based on climatic parameters suggests that *A. vulgaris* may potentially be present along the entire coast of Norway up to Vesterålen in Nordland County at some point in the future.

The distribution recorded by Dolmen & Winge (1997) mainly covered central Norway and south-east Norway, with only scattered recordings in western Norway. It is difficult to conclude if our records of a wide distribution in western Norway is due to an expansion after the study of Dolmen & Winge (1997) or if the slug was actually already present in many of these areas but went undetected. Arion vulgaris is clearly favoured by the mild and wet Atlantic climate of the western coast when looking at today's distribution (Figure 1). Furthermore, the damage related to A. vulgaris reported in gardens and horticulture (e.g. strawberries) has been especially pronounced in coastal areas. These areas were, however, given more attention in the present survey and this may have led to some sampling bias towards coastal areas. Moreover, larger densities may increase the probability of finding the species in a given area.

The high dispersal capacity (see below) of this pest species makes it difficult to achieve an accurate impression of the distribution of established populations. It is not clear if the species actually has established in all of the localities presented in this study. Single records might only reveal spreading of this species in the year of sampling and we do not know if it will be found the following years. Observations suggest that *A. vulgaris* follows a typical pattern of an invasive species with an explosion in density a few years after being introduced into a new area, followed by a stabilisation period when density flattens out (Shigesada & Kawasaki 1997; Arim et al. 2006).

Arion vulgaris seems to be mainly restricted to cultural habitats and semi-natural habitats. It has rarely been recorded in areas outside suburban and urban areas, not even in rural areas next to well-established populations (Hatteland, pers. obs.). The same pattern has also been found in other countries (Kozlowski & Kozlowski 2011). However, it seems to have established populations in a few deciduous forests in Sweden (von Proschwitz, T., pers. comm.) and possibly in Norway (pers. obs.)

The presence-only method used in this study to model potential distributions has several benefits and drawbacks, but is regarded as an appropriate method when studying the fundamental niche of a species (Phillips et al. 2006; Ward 2007). Presence-only based methods are especially suited for data from museums and herbaria, but also for cryptic species where it is difficult to obtain absence data. Furthermore, machine-learning methods such as Maxent have been found to outperform more established methods (Elith et al. 2006), although options are more limited and power for statistical evaluation of predictive performance is lower compared to presence-absence based methods. Nonetheless, when studying potential distributions this has been argued to be the approach to use (Elith et al. 2006), especially when studying invasive species since various factors (e.g. dispersal limitations, historical restrictions) are often limiting the realised niche (Ward 2007). However, absence data are needed to adequately predict the existence of a species, although such data are dependent on systematic sampling designs so that the probability of false absences is low. Presence-only methods, like Maxent, may also suffer from bias in sampling effort (Elith et al. 2011). In our study, some regions of Norway have been sampled more intensively than others while sampling in several regions, especially northern Norway, has been limited.

Our modelling analyses suggest that A. vulgaris may have a potential distribution in the future covering the entire coastline up to Vesterålen in Nordland County. Average summer temperature and elevation seem to be the most important factors according to the results of the principal component method applied in this study. Furthermore, the vegetation zones in Norway seem to reflect the current distribution of A. vulgaris. The probability of finding the species in the nemoral and south boreal zone is high and only the alpine and subalpine zone seem to be unsuitable for this invasive slug. It has to be kept in mind that our analysis is based on a 1x1 km grid scale. It can be expected that habitat structure and its resulting micro-climate may be more important for the establishment of A. vulgaris populations, and thus overrule the importance of climate conditions represented in our broader scale analysis. In that respect, our results that show a probability of only 60-85% of finding A. vulgaris even in such areas where the species is nowadays well established (see Figure 3) indicate that

the species finds suitable climatic conditions on a local scale. Moreover, we found that precipitation-related variables are marginal for the recent distribution in Norway. Thus, regardless of regional differences, precipitation throughout the whole country (probably sufficient rain in the vegetation season and sufficient snow cover on relatively cold hibernation sites) is not a limiting factor for *A. vulgaris*: a picture that might differ from its European distribution, including its putative origin area.

Factors other than climate are important when it comes to geographic distributions of species. Dispersal abilities are, for instance, important to take into consideration when studying introduced species. *Arion vulgaris* has been observed to spread with cargo and cars in addition to the more obvious spreading vectors such as plant material and soil. Thus its potential distribution could be highly dependent on anthropogenic habitats and activity. The modelling analyses from our current study hypothesise that large parts of coastal and lowland Norway will be potentially suitable areas for this important pest species and hence management strategies should be aiming to limit further expansion.

Our study summarises the current distribution of this notorious invasive slug species in Norway and portrays a potential future distribution based on climate. Thus our study may be regarded as a baseline for future studies in terms of both sampling surveys and modelling analyses. Future work should also address questions regarding which variables are the most important in explaining the distribution outlined in this study and hence give a more accurate understanding of the factors that allow this invasive species to spread.

ACKNOWLEDGMENTS

We thank local garden societies, private gardeners, local newspapers, the Norwegian Food Safety Authority (Mattilsynet) and local departments of agriculture and nature conservation for their cooperation. We also thank John Skartveit, Stine Beate Balevik and Thomas Hornick for assisting in recording and collecting slugs. Furthermore, we are grateful to Rune Halvorsen and Vegar Bakkestuen for help with the modelling analyses. Finally we thank Trond Rafoss for making the map of current distribution. This study was partly funded by the University of Bergen and the Norwegian Research Council (project 803194).

REFERENCES

- Anderson R. 2005. An annotated list of the non-marine Mollusca of Britain and Ireland. Journal of Conchology 38: 607-637.
- Arim M., Abades S. R., Neill P. E., Lima M., Marquet P. A. 2006. Spread dynamics of invasive species. Proceedings of the National Academy of Sciences of the United States of America 103: 374-378.

- Bakkestuen V., Erikstad L., Halvorsen R. 2008. Step-less models for regional environmental variation in Norway. Journal of Biogeography 35: 1906-1922.
- Davies S. M. 1987. Arion flagellus Collinge and A. lusitanicus Mabille in the British Isles: a morphological, biological and taxonomical investigation. Journal of Conchology 32: 339-354.
- Davis M. A. 2009. Invasion biology. Oxford University Press, Oxford.
- Dirks I. 2003. Populationsdynamik und nahrungsprärefenz der Wegschnecke *Arion lusitanicus* in Norwegen. Unpublished Diplom thesis. Georg-August-Universität Göttingen, Göttingen, Germany.
- Dolmen D., Winge K. 1997. Boasneglen (*Limax maximus*) og iberiasneglen (*Arion lusitanicus*) i Norge; utbredelse, spredning og skadevirkninger. "*Limax maximus* and *Arion lusitanicus* in Norway: distribution, expansion and injurious effects." Report 4: 4-24. Vitenskapsmuseet, Trondheim, Norway.
- Elith J., Phillips S. J., Hastie T., Dudík M., Chee Y. E., Yates C. J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43-57.
- Elith J., Graham C. H., Anderson R. P., Dudík M., Ferrier S., Guisan A., Hijmans R. J., Huettmann F., Leathwick J. R., Lehmann A., Li J., Lohmann L. G., Loiselle B. A., Manion G., Moritz C., Nakamura M., Nakazawa Y., McC. J., Overton M., Townsend Peterson A., Phillips S. J., Richardson K., Scachetti-Pereira R., Schapire R. E., Soberón J., Williams S., Wisz M. S., Zimmermann N. E. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
- ESRI 2003. ArcGis 9 Environmental Systems Research Institute, Inc, Redlands, California. http://esri.com/arcgis.
- Fielding A. H., Bell J. F. 1997. A review of methods for the assessment of prediction errors in conservation presence/ absence models. Environmental Conservation 24: 38-49.
- Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
- Frank T. 1998a. Slug damage and number of slugs (Gastropoda: Pulmonata) in winter wheat in fields with sown wildflower strips. Journal of Molluscan Studies 64: 319-328.
- Frank T. 1998b. Slug damage and numbers of slug pests, *Arion lusitanicus* and *Deroceras reticulatum*, in oilseed rape grown beside sown wildflower strips. Agriculture, Ecosystems and Environment 67: 67-78.
- Grimm B., Paill W., Kaiser H. 2000. Daily activities of the pest slug *Arion lusitanicus*. Journal of Molluscan Studies 66: 125-130.
- Hatteland B. A. 2010. Predation by carabid beetles (Coleoptera, Carabidae) on the invasive Iberian slug *Arion lusitanicus*. PhD thesis. University of Bergen, Bergen.
- Hatteland B. A., Grutle K., Mong C. E., Skartveit J., Symondson W. O. C., Solhøy T. 2010. Predation by beetles (Carabidae, Staphylinidae) on eggs and juveniles of the Iberian slug *Arion lusitanicus* in the laboratory. Bulletin of Entomological Research 100: 559-567.
- Hatteland B. A., Symondson W. O. C., King R. A., Skage M., Schander C., Solhøy T. 2011. Molecular analysis of predation by carabid beetles (Carabidae) on the invasive Iberian slug *Arion lusitanicus*. Bulletin of Entomological Research 101: 675-686.

Hofsvang T. 2003. Snegler som skadedyr på planter. "Slugs as plant pests". Grønn kunnskap 7: 1-10.

- KaiserH., GeiersbergerU., GrimmB., Paill W. 1993. Untersuchungen über die biologischen und ökologischen Voraussetzungen des Massenauftretens der Spanischen Wegschnecke, Final Report, University of Graz, Austria.
- Kaluski T., Kozlowski J., Kozlowska M. 2005. Evaluation of damage to seeds and seedlings of different winter wheat cultivars caused by *Deroceras reticulatum* (Müller, 1774) and *Arion lusitanicus* Mabille, 1868 in laboratory conditions. Folia Malacologica 13: 189-195.
- Kozlowski J. 2007. The distribution, biology, population dynamics and harmfulness of *Arion lusitanicus* Mabille, 1868 (Gastropoda: Pulmonata: Arionidae) in Poland. Journal of Plant Protection Research 47:219-230.
- Kozlowski J., Kozlowski R. J. 2011. Expansion of the invasive slug species *Arion lusitanicus* Mabille, 1868 (Gastropoda: Pulmonata: Stylommatophora) and dangers to garden crops - a literature review with some new data. Folia Malacologica 19: 249-258.
- Noble L. R. 1992. Differentiation of large arionid slugs (Mollusca, Pulmonata) using ligula morphology. Zoologica Scripta 21: 255-263.
- Nori J., Urbina-Cardona J. N., Loyola R. D., Lescano J., Leynaud G. C. 2011. Climate change and American Bullfrog invasion: What could we expect in South America? PLoS ONE 6: e25718.
- Phillips S. J., Anderson R. P., Schapire R. E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259.
- Quinteiro J., Rodriguez-Castro J., Castillejo J., Iglesias-Piñeiro J., Rey-Méndez M. 2005. Phylogeny of slug species of the genus *Arion*: evidence of monophyly of Iberian endemics and of the existence of relict species in Pyrenean refuges. Journal of Zoological Systems 43: 139-148.
- Reischütz P. L. 1984. Zum massenhaften Auftreten von Arion *lusitanicus* Mabille in den Jahren 1982 und 1983. Mitteilungen der. zoolischen Gesellscaft Braunau 4: 253-254.
- Sax D. F., Gaines S. D., Stachowicz J. J. 2005. Species invasions - insights into ecology, evolution and biogeography. Sinauer Associates Inc., Sunderland, USA.
- Shigesada N., Kawasaki K. 1997. Biological Invasions: Theory and practice. Oxford University Press, Oxford.
- Tomasgård T. E. H. 2005. Populasjonsdynamikk, næringspreferansar og reproduksjon/vekst hjå snilen *Arion lusitanicus* Mabille, 1868. "Population dynamics, food preferences, reproduction and growth in the slug *Arion lusitanicus* Mabille, 1868." Unpublished Candidata Scientiarum-thesis. University of Bergen, Bergen.
- von Proschwitz T. 1992. Den spanska skogsnigeln *Arion lusitanicus* Mabille - en art i snabb spridning med människan i Sverige (In Swedish with English summary). "The Spanish slug *Arion lusitanicus* Mabille - an anthropochorous slug species spreading rapidly in Sweden". Göteborgs Naturhistoriska Museum Årstryck 1992: 35-42.
- von Proschwitz T. 1997. Arion lusitanicus Mabille and A. rufus (L.) in Sweden: A comparison of occurrence, spread and naturalization of two alien slug species. Heldia 4: 137-138.
- von Proschwitz T. 2008. Snigel fridstörare i örtagården. Vetenskap och fakta (In Swedish). "The slug - peacebreaker in the garden." Bohusläns Museums förlag, Göteborg, Sweden.

- von Proschwitz T., Winge K. 1994. Iberiaskogsnegl en art på spredning i Norge (In Norwegian). "The Iberian slug - a species expanding in Norway." Fauna 47: 195-203.
- Ward D. 2007. Modelling the potential geographic distribution of invasive ant species in New Zealand. Biological Invasions 9: 723-735.

Editorial responsibility: Jussi Evertsen.

This article is open-access and distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License (http://creativecommons.org/licenses/by-nc/3.0/). This permits all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Appendix I. Recorded distribution of *Arion vulgaris* in Norway. Year indicates first verified record. Source: "AA" = Arild Andersen, "SR" = Steffen Roth, "DD & KW" = Dolmen & Winge (1997), "BAH" = Bjørn Arild Hatteland, "TS" = Torstein Solhøy, "TH" = Trond Hofsvang, "TIV" = Thor Inge Vollan, "VF" = Vivian Felde, "JH" = John Skartveit, "S" = verified records from garden societies, "Mattilsynet" = the Norwegian Food Safety Authority.

County	Municipality	Year	Locality	Source
Troms	Berg	2007	Steinfjorden in Senja	AA
Troms	Lervik	2005	Finnsnes	SR, Mattilsynet
Nordland	Bodø	2008	Bodø	TS, SR
Nordland	Brønnøy	2007	Trælnes, Brønnøysund	AA, SR
Nordland	Sømna	2008		SR
Nordland	Vefsn	2008	Mosjøen	S, SR, AA
Nord-Tøndelag	Frosta	2008		Frosta municipality, County o Nord-Trøndelag
Nord-Tøndelag	Levanger	1995	Skogn, Nesset, Ytterøy, Levanger	DD & KW, Mattilsynet
Nord-Tøndelag	Namsos	2007	Namsos	AA
Nord-Tøndelag	Steinkjer	1995	Steinkjer (Egge), Røysing	DD & KW, S, County of Nore Trøndelag, SR, TS, Steinkjer municipality
Nord-Tøndelag	Stjørdal	1991	Stokkberga, Stjørdal, Husbylia	DD & KW, Mattilsynet
Sør-Trøndelag	Agdenes	2008	Lensvik	S
Sør-Trøndelag	Bjugn	2009	Lysøysund	S
Sør-Trøndelag	Frøya	2008	Sistranda	Mattilsynet
Sør-Trøndelag	Hemne	2008		S
Sør-Trøndelag	Hitra	2008	Hitra	Mattilsynet
Sør-Trøndelag	Meldal	1995	Meldal	S, DD & KW
Sør-Trøndelag	Melhus	2008	Hovin	Mattilsynet
Sør-Trøndelag	Midtre Gauldal	2009	Soknesmoen in Støren	Mattilsynet
Sør-Trøndelag	Orkdal	2008	Vormstad, Fannrem, Vannspeilet, Orkanger	S, SR
Sør-Trøndelag	Rissa	2008	Fenstad, Stadsbygd	S
Sør-Trøndelag	Røros	2009	Pinsti	Artsobservasjoner.no
Sør-Trøndelag	Trondheim	1995	Trondheim, Nardo, Øya	DD & KW
Sør-Trøndelag	Ørland	1995	Brekstad, Uthaug	SR, DD & KW
Møre og Romsdal	Aukra	1994	Aukra	DD & KW
Møre og Romsdal	Aure	1995	Tustna, Leira	DD & KW
Møre og Romsdal	Eide	2008		S
Møre og Romsdal	Fræna	1994	Elnesvågen	DD & KW
Møre og Romsdal	Giske	2010	Valderhaug	BAH
Møre og Romsdal	Gjemnes	2008		S
Møre og Romsdal	Haram	2009		Vatne og Tennfjord Garden Society
Møre og Romsdal	Hareid	2008	Hareid	SR
Møre og Romsdal	Kristiansund	2012	Kristiansund	BAH
Møre og Romsdal	Midsund	2008		S
Møre og Romsdal	Molde	1988	Bolsøy, Kleive	DD & KW, TS, BAH, SR
Møre og Romsdal	Nesset	2012	Eidsvåg	BAH
Møre og Romsdal	Rauma	2008	Isfjorden	SR
Møre og Romsdal	Sandøy	2008	Finnøya	Mattilsynet
Møre og Romsdal	Skodje	2008	Valle	SR

Appendix I. Continued

County	Municipality	Year	Locality	Source
Møre og Romsdal	Sula	2010	Leirvåg	BAH
Aøre og Romsdal	Sunndal	2012	Sunndalsøra	BAH
løre og Romsdal	Surnadal	2009	Stangvik	S
Aøre og Romsdal	Tingvoll	2007	Tingvoll, Torjulsvågen	TS, BAH
Møre og Romsdal	Ulstein	2008	Ullsteinvik	SR
Møre og Romsdal	Vestnes	2008		S
Møre og Romsdal	Volda	2010	Volda	BAH
Møre og Romsdal	Ørskog	2010	Sjøholt	BAH
Møre og Romsdal	Ørsta	2010	Ørsta	BAH
Møre og Romsdal	Ålesund	2008	Ålesund, Spjelkavik	S, SR
Sogn og Fjordane	Askvoll	2008	Askvoll	S
Sogn og Fjordane	Balestrand	2010	Balestrand	BAH
Sogn og Fjordane	Eid	1995	Nordfjoreid	SR, DD & KW, S
Sogn og Fjordane	Flora	2008	Florø	S, Florø municipality
Sogn og Fjordane	Førde	2008	Førde	SR
Sogn og Fjordane	Gloppen	2008	Vereide, Sandane	S
Sogn og Fjordane	Gulen	2010	Eivindvik	BAH
Sogn og Fjordane	Høyanger	2008		S
Sogn og Fjordane	Jølster	2008	Skei	SR
Sogn og Fjordane	Leikanger	2010	Leikanger	BAH
Sogn og Fjordane	Luster	2008	Gaupne	VF
Sogn og Fjordane	Lærdal	2008	Lærdalsøyri	S
Sogn og Fjordane	Sogndal	2004	Sogndal	TS
Sogn og Fjordane	Stryn	2008	Visnes	S
Sogn og Fjordane	Vågsøy	2008	Måløy	SR
Hordaland	Askøy	2006	Øvre Kleppe, Ask	BAH
Hordaland	Austevoll	2008	Helmark	Mattilsynet
Hordaland	Austrheim	2008		Mattilsynet
Hordaland	Bergen	1992	Morvik, Nordås, Nyborg, Laksevåg, Åsane, Landås, Fana	DD & KW, TS, BAH, S
Hordaland	Bømlo	2002	Svortland, Moster	SR, TS
Hordaland	Eidfjord	2008		Mattilsynet
Hordaland	Etne	2008		Mattilsynet
Hordaland	Fitjar	2000	Fitjar	TS, SR
Hordaland	Fjell	1995	Sotra	DD & KW
Hordaland	Fusa	2008		S
Hordaland	Granvin	2008	Granvin bruk and harbour area	Mattilsynet
Hordaland	Jondal	2008		S, TS
Hordaland	Kvam	2006	Tangerås, Øystese, Strandebarm, Nordheim, Nes	S, TS
Hordaland	Kvinnherad	2008	Opsanger, Kaldestad	S
Hordaland	Lindås	1995		S, DD & KW
Hordaland	Meland	2006	Frekhaug, southern part of the municipality	BAH, S
Hordaland	Odda	2008	• • •	S
Hordaland	Os	1995	Haugsbrotet	TS

Appendix I. Continued.

County	Municipality	Year	Locality	Source
Hordaland	Osterøy	2008	Haus, Ljonevåg, Valestrandfossen	Mattilsynet
Hordaland	Radøy	2008	Bøvågen, Manger, Austmarka	S
Hordaland	Samnanger	2008		Mattilsynet
Hordaland	Stord	1993	Leirvik	DD & KW, TS
Hordaland	Sund	2008		S
Hordaland	Sveio	2008	Førde, Rød, Tveita, Haukås, Bjelland, Sveio, Tveit	S
Hordaland	Tysnes	2008		S
Hordaland	Ullensvang	2006	West part, Lofthus	S, TS, BAH
Hordaland	Ulvik	2008	Ulvik	S
Hordaland	Voss	2004	Voss	TS, S
Hordaland	Øygarden	2006	Rongøyna	BAH
Rogaland	Bjerkreim	2010	Vikeså	BAH
Rogaland	Finnøy	1994	Ladstein	JS, SR
Rogaland	Forsand	2008	Forsand, Rossavik	S
Rogaland	Gjesdal	2008	Dirdal, Oltedal	SR
Rogaland	Haugesund	1996	Haugesund	TS
Rogaland	Hjelmeland	2010	Hjelmelandsvågen, Fister	BAH
Rogaland	Karmøy	2010	Kopervik	BAH
Rogaland	Klepp	1995	Kleppe	DD & KW, BAH
Rogaland	Kvitsøy	2010	Kvitsøy	BAH
Rogaland	Randaberg	1995	Randaberg	DD & KW
Rogaland	Rennesøy	2008	Hanasand	SR
Rogaland	Sandnes	2008	Høle, Sandnes	SR, BAH
Rogaland	Sola	2008	Vigdel	BAH
Rogaland	Stavanger	1995	Stavanger, Hafsfjord, Hunsvåg, Storhaug	DD & KW, SR
Rogaland	Strand	2010	Tau, Jørpeland	BAH
Rogaland	Time	1995	Bryne	DD & KW
Rogaland	Tysvær	2010	Førre	BAH
Rogaland	Utsira	2008		Utsira municipality
Rogaland	Vindafjord	2010	Ølen, Øvre Vats	ВАН
Vest-Agder	Audnedal	2008	Konsmo	SR
Vest-Agder	Flekkefjord	2010	Flekkefjord	SR, BAH
Vest-Agder	Kristiansand	2009	Kristiansand, Flekkerøy	DD & KW -Uncertain, SR
Vest-Agder	Lindesnes	2008	Fasseland	SR
Vest-Agder	Mandal	2008	Holum	SR
Vest-Agder	Marnadal	2008	Marnadal-Manneskaret	SR
Vest-Agder	Søgne	2009	Søgne	TIV
Aust-Agder	Arendal	2007	Hisøy, Arendal, Tromøy	SR, BAH, TS
Aust-Agder	Froland	2012	Osedalen	TS
Aust-Agder	Gjerstad	2012	Moen	TS
Aust-Agder	Grimstad	2012	Fevik, Grimstad	SR, TS
Aust-Agder	Risør	2010	Risør	SR, BAH
Aust-Agder	Tvedestrand	2009	Tvedestrand	TS
Oslo	Oslo	1995	Sogn kolonihage	DD & KW, AA

Appendix I. Continued

County	Municipality	Year	Locality	Source
Østfold	Askim	2009	Askim	AA
Østfold	Eidsberg	2009	Mysen	AA
Østfold	Fredrikstad	1988	Kråkerøy	DD & KW
Østfold	Halden	1995	Halden	DD & KW
Østfold	Hobøl	2010	Knapstad	AA
Østfold	Hvaler	2009	Papperhavn	AA
Østfold	Marker	2010	Sletta	AA
Østfold	Moss	2009		AA
Østfold	Rakkestad	2009	Gabestad gård	AA
Østfold	Rygge	2009	Halmstad	AA
Østfold	Råde	2009	Stenrødgård, Karlsrud	AA
Østfold	Skiptvet	2010	Skiptvet	AA
Østfold	Spydeberg	2007	Spydeberg	AA
Østfold	Trøgstad	2009	Trøgstad	AA
Østfold	Våler	2009	Folkestadfeltet	AA
Akershus	Asker	1996	Blakstad, Asker, Vøyenenga, Vollen	DD & KW, AA
Akershus	Bærum	1995	Bekkestua, Slependen	DD & KW, AA
Akershus	Enebakk	1996	Ytre Enebakk	DD & KW
Akershus	Fet	2009	Fetsund	AA
Akershus	Frogn	2006	Drøbak	АА
Akershus	Nes	2010	Auli	АА
Akershus	Nesodden	2000	Nesoddtangen	АА
Akershus	Oppegård	2009	Kolbotntjern	АА
Akershus	Rælingen	2003	Rælingen	АА
Akershus	Skedsmo	2007	Strømmen	АА
Akershus	Sørum	2005	Sørumsand	AA
Akershus	Ski	2010	Kråkstad	AA
Akershus	Vestby	1995	Son	DD & KW
Akershus	Ås	1995	Ås	DD & KW, AA
Hedmark	Hamar	2007	Hamar	АА
Hedmark	Kongsvinger	2005	Kongsvinger	АА
Hedmark	Løten	2009	Løten	АА
Hedmark	Stange	2008	Espa	АА
Oppland	Gjøvik	2005	Gjøvik	АА
Oppland	Vestre Toten	2010	Raufoss	АА
Buskerud	Drammen	1995	Drammen	DD & KW
Buskerud	Hole	2010	Krokleiva	АА
Buskerud	Hurum	2009	Sætre	АА
Buskerud	Lier	2007	Børreshaugen, Lier	АА
Buskerud	Modum	2001	Vikersund	AA
Buskerud	Nedre Eiker	2006		AA
Buskerud	Ringerike	2002	Heradsbygd, Hønefoss	AA
Buskerud	Røyken	2011	Spikkestad	AA
Buskerud	Øvre Eiker	2010	Skotselv	AA
Vestfold	Holmestrand	2009	Holmestrand	AA

Appendix I. Continued

County	Municipality	Year	Locality	Source
Vestfold	Horten	2007	Strandparken, Horten	AA
Vestfold	Larvik	2009	Stavern	AA
Vestfold	Lardal	2012	Svarstad	AA
Vestfold	Nøtterøy	2000	Torød	AA
Vestfold	Re	2008	Revetal	AA
Vestfold	Sande	2009	Skjervik	AA
Vestfold	Sandefjord	1995	Sandefjord	DD & KW
Vestfold	Stokke	2008	Stokke, Gjennestad	AA, TS
Vestfold	Svelvik	2009	Svelvikveien 417	AA
Vestfold	Tjøme	2008		AA, TS
Vestfold	Tønsberg	2011	Solvang, Eik	AA
Telemark	Bamble	1988	Langesund, Stathelle	DD & KW
Telemark	Drangedal	2006	Prestestranda, Drangedal	AA, SR
Telemark	Fyresdal	2008	Fyresdal	AA
Telemark	Kragerø	1992	Kragerø	DD & KW
Telemark	Nome	1999	Lunde	AA
Telemark	Notodden	2005	Notodden	AA
Telemark	Porsgrunn	1991	Brevik	DD & KW
Telemark	Seljord	2003	Seljord	AA
Telemark	Skien	1992	Skien, Stromdalskåsa	DD & KW
Telemark	Vinje	2008	Åmot	АА

Appendix 2. Unverified distribution of Arion vulgaris in Norway. "U" = uncertain record, "P" = probable distribution. "DD & KW"
= Dolmen & Winge (1997), "TH" = Trond Hofsvang, "Mattilsynet" = the Norwegian Food Safety Authority, "NRK" = Norwegian
Broadcasting Corporation.

County	Municipality	Year	Locality	Status	Source
Finnmark	Kautokeino	2012	Kautokeino	U	AA
Troms	Tromsø	2007	Tromsø	U	NRK, TH
Nordland	Alstahaug	2009		U	Alstahaug Garden Society
Nordland	Nesna	2009		U	Nesna Garden Society
Nordland	Rana	2009	Utskarpen	U	Rana Garden Society
Sør-Trøndelag	Malvik	2009	Hommelvik	Р	Malvik Garden Society
Møre og Romsdal	Stranda	1995	Stranda	U	DD & KW
Møre og Romsdal	Sykkylven	2009	Fauske, Blindheim, Sykkylven, Ikornes	Р	Sykkylven Garden Society
Sogn og Fjordane	Gaular	2009	Sande	Р	Gaular Garden Society
Sogn og Fjordane	Hornindal	2010	Grodås	Р	Hornindal Garden Society
Sogn og Fjordane	Naustdal	2010	Naustdal	Р	Naustdal Garden Society
Hordaland	Modalen	2008	Мо	U	Mattilsynet, Modalen Garden Society
Rogaland	Eigersund	2008	Eigerøya, Egersund	Р	Unknown
Rogaland	Hå	2009		Р	Hå Garden Society
Rogaland	Sokndal	2010	Hauge i Dalane	Р	Sokndal Garden Society
Rogaland	Suldal	2009	Strand	Р	Suldal Garden Society
Vest-Agder	Kvinesdal	2010	Feda	Р	Kvinesdal Garden Society
Vest-Agder	Sirdal	2009	Tonstad	Р	Sirdal Garden Society
Vest-Agder	Songdalen	2010	Nodeland	Р	Songdalen Garden
Vest-Agder	Vennesla	2009	Vennesla	Р	Vennesla Garden Society
Aust-Agder	Lillesand	2010		Р	Aust-Agder Garden
Øsfold	Sarspborg	1995	Sarpsborg, Hannestad, Greåker	U	DD & KW
Hedmark	Elverum	2005	Elverum	U	AA