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The cyanomorph of Ricasolia virens comb. nov. 

(Lobariaceae, lichenized Ascomycetes) 

 
TOR TØNSBERG1, HANS H. BLOM2, BERNARD GOFFINET3, JON HOLTAN-HARTWIG4 & LOUISE LINDBLOM5 

 

ABSTRACT. – The cyanomorph and photosymbiodemes are here reported for the first time for 

Ricasolia virens (With.) H.H. Blom & Tønsberg comb. nov. (≡ Lobaria virens (With.) J.R. Laundon). The 

cyanomorph of R. virens is dendriscocauloid. The observed early developmental stages involve (1) a free-

living cyanomorph and (2) a photosymbiodeme composed of the cyanomorph supporting small, foliose, 

chloromorphic lobes. Whereas the chloromorph continues to grow, the cyanomorph decays and disappears 

leading to the final stage (3), the free-living chloromorph. Secondary cyanomorphs emerging from the 

chloromorph are not known. 

 

KEYWORDS. – Peltigerales, cephalodia, ascospore-to-ascospore life cycle. 
 

 

 

INTRODUCTION 
 

Most species of lichen-forming fungi associate with a photobiont belonging to either the green 

algae or cyanobacteria (e.g., Brodo et al. 2001, Henssen & Jahns 1973, Nash 2008, Schwendener 1869). 

Within the family Lobariaceae, however, many species associate with both photobionts (e.g., Högnabba et 

al. 2009, James & Henssen 1976). Such ability to establish a physiological exchange with two types of 

photobionts may be expressed within a single thallus, in distinct thalli or portions thereof, or in distinct 

developmental stages. In tripartite lichens, three partners engage in the symbiotic association, and both 

photobionts are present, typically with the green algae composing the main partner, and the cyanobacteria 

encapsulated within specialized structures called cephalodia. Some fungal species may form, in addition to 

the tripartite lichen, a thallus comprising solely the cyanobacterium as photosynthetic partner (Högnabba et 

al. 2009, Honegger 2008, James & Henssen 1976), and this thallus may subsequently incorporate green 

algae and then bear green lobes (Tønsberg & Goward 2001). Alternative associations by a single fungal 

species wherein either one of the two photobionts is the primary autotroph are called photomorphs or 

morphotypes (i.e., the cyanomorph or the chloromorph). Photomorphs may be physically attached (e.g., in 

Ricasolia amplissima (Scop.) De Not.), forming a composite thallus that is referred to as a 

photosymbiodeme, or exhibit diverging ecological preferences (e.g., Sticta filix (Sw.) Nyl., James & 

Henssen 1976) and in some case distinct geographic distributions (e.g., in Sticta canariensis (Bory) Bory 

ex Delise, see Brodo 1994). Photomorphs may have the same growth form (e.g., in Nephroma arcticum 

(L.) Torss., where they are both foliose; see Tønsberg & Holtan-Hartwig 1983), or distinct growth forms, 

with the fungus forming a foliose tripartite lichen and a fruticose cyanomorph (James & Henssen 1976). 
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Species with fruticose, dendriscocauloid, cyanomorphs forming photosymbiodemes occur 

exclusively in the Lobariaceae (Högnabba et al. 2009, James & Henssen 1976, Magain et al. 2012, 

Moncada et al. 2013). Photosymbiodemes are particularly frequent and conspicuous in Ricasolia 

amplissima (James & Henssen 1976, Krog et al. 1994, Rose & Purvis 2009, Stenroos et al. 2003, Tønsberg 

& Goward 2001, Wirth et al. 2013). Lobaria virens (With.) J.R. Laundon also forms foliose cephalodiate 

chlorolichens and may be closely related to R. amplissima (Högnabba et al. 2009). The two species are 

similar but L. virens is not known to develop cyanomorphs and photosymbiodemes (e.g., Krog et al. 1994, 

Rose & Purvis 2009, Wirth et al. 2013). Here we report and characterize such associations for the first time, 

based on specimens from Norway, and discuss their potential significance in the development of the free-

living chloromorph of the species. Furthermore, since L. virens was resolved within the genus Ricasolia in 

recently published phylogenetic studies (Högnabba et al. 2009, Moncada et al. 2013), we extend our 

discussion on the development of the lichen thallus to the genus Ricasolia. 

 

MATERIALS AND METHODS 
 

 FIELDWORK. – The material of Lobaria virens that provided the basis for this study was primarily 

collected by HB, JHH, LL and TT in various parts of Western and Central Norway. All specimens are 

deposited in the herbarium of the University of Bergen (BG). Unless otherwise stated, the datum for 

localities is WGS84. The recorded altitudes (above sea-level) for the cited specimens were obtained from 

topographic maps with contour intervals of 20 meters.  

 

 HERBARIUM STUDIES. – All specimens of Lobaria virens at BG were studied, and critically 

examined for the presence of cyanomorphs. Macroscopic descriptions of the cyanomorphs were based on 

composite thalli (i.e., thalli composed of a cyanomorph with an attached chloromorph) when possible. The 

extremely fragile and hence easily damaged cyanomorphs had to be subjected to destructive sampling for 

microscopic examination. To diminish or avoid damage to the composite thalli, samples were taken 

preferentially from free-living cyanomorphs adjacent or close to a composite thallus on the same small 

piece of bark. The description of the chloromorph was based on the recent collections and about 170 

specimens held in BG. The cephalodia were studied on fresh collections of the chloromorphs. North 

American specimens identified as Sticta herbacea (Huds.) Ach. and filed under L. virens were obtained on 

loan from F.  

 

 CHEMISTRY. – Thin-layer chromatography (TLC) was carried out on cyanomorphs and 

chloromorphs according to Culberson & Kristinsson (1970) and later modifications. All three solvents (A, 

Bʹ and C) were used and glass plates were used in solvent C to allow for the detection of fatty acids. 

 

 MOLECULAR METHODS. – To preliminarily test whether the cyanomorph and chloromorph were 

formed by the same lichen-forming ascomycete (i.e., L. virens), we compared the ITS sequences of seven 

mycobionts from separate photomorphs as well as of photosymbiodemes (see Table 1 in the Appendix). 

The DNA extraction, amplification, and sequencing followed Lindblom & Ekman (2005) and Lendemer & 

Goffinet (2015). Sequences were aligned using ClustalW in BioEdit ver. 7.2.3 (Hall 1999), and manually 

adjusted. To reflect the variation of ITS sequences within Ricasolia and the segregation of species, and 

hence the power of ITS in discriminating among species, a Maximum Likelihood (ML) analysis was 

conducted with Garli v. 2.0 (Zwickl 2006) and branch support estimated from 200 bootstrap 

pseudoreplicates. The sequences were partitioned into ITS1, 5.8S and ITS2 and substitution models 

estimated and selected using PartitionFinder (Lanfear et al. 2012) based on the AIC, with HKY+G applied 

to ITS 1 and ITS2 and K80+I to the 5.8S partition. No characters were excluded. The matrix of ITS 

sequences representing species of Ricasolia, including R. virens, and of the outgroup Lobaria scrobiculata 

(Scop.) DC., was deposited in TreeBase as study #19339.  

  

RESULTS AND DISCUSSION 

 

Phylogenetic inferences from variation in the mitochondrial SSU and the nuclear LSU have 

previously robustly resolved Lobaria virens as a member of Ricasolia (Högnabba et al. 2009, Moncada et 

al. 2013), yet the species has not been formally transferred to this genus. Hence we propose the new 

combination below. The species is endemic to Western Europe and Macaronesia and differs from the sym- 
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Figure 1. Most likely phylogenetic tree inferred from ITS sequences for accessions of Ricasolia. Values 

above branches refer to bootstrap support. 
 

 

-patric R. amplissima by the thallus color, smaller thallus, lobes and spores and the lack of erumpent 

dendriscocauloid cephalodia (Purvis et al. 1994, Rose & Purvis 2009, Tønsberg & Jørgensen 2007). Based 

on our data the fungal ITS sequences of the chloromorph of R. virens are distinct from those of R. 

amplissima and R. quercizans (Michx.) Stizenb. deposited in GenBank (compared 12 Nov. 2015; see 

Figure 1), and can serve to discriminate between the species, especially when seeking to identify the 

mycobiont of dendriscocauloid thalli, which may not differ morphologically between the species.  

We discovered multiple associations of two photomorphs in the immediate vicinity of well-

developed chloromorphs of R. virens. We obtained six complete and one partial (KJ577709) ITS sequences 

for photomorphs of R. virens (Table 1). Phylogenetic inferences based on variation within the ITS region 

have been widely used to assess species boundaries among lichen-forming fungi based on the criterion of 

monophyly, including in the Peltigerales (e.g., Miadlikowska et al. 2003, 2014; Moncada & Lücking 2012; 

Moncada et al. 2013; Sérusiaux et al. 2009, 2011). Assuming the absence of hybridization, the ITS 

sequence may then serve to diagnose the specific identity of the mycobiont, and test the hypothesis that 

thalli with either prokaryotic or eukaryotic photobionts may be alternative photomorphs generated by a 

single fungal species (e.g., Goffinet and Bayer 1997, Lendemer and Goffinet 2015). The fungal ITS 

sequences we generated from each of the cyanomorphs was identical to those of the attached or 

independent chloromorphs of R. virens (Figure 1), suggesting that the same fungal species is involved in all 

thalli and thus that R. virens may compose photosymbiodemes of cyano- and chloromorphs. Unlike the 

photosymbiodemes of R. amplissima the cyanomorph does not develop secondarily on the chloromorph but 

in fact precedes the latter in the development of the green thallus. 
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TAXONOMIC SECTION 
 

Ricasolia virens (With.) H.H. Blom & Tønsberg comb. nov. 

MycoBank #815140.  

≡ Lichen virens With., A botanical arrangement of all the vegetables naturally growing in Great-

Britain, p. 710. 1776. ≡ Lobaria virens (With.) J.R. Laundon, Lichenologist 16: 227. 1984. TYPE: 

Dillenius, J.J. 1742 [“1741”] Historia Muscorum. Oxford: University (Sheldonian Theatre), tab. 

25, fig. 98A (lectotype [reproduction by Laundon 1984 seen; original illustration in Dillenius 1742 

not seen], selected by Laundon (1984: 227)). EPITYPE: Dillenius herbarium of Historia 

Muscorum 98A “middle specimen” (OXF [n.v.], selected by Tønsberg & Jørgensen (2007: 145)).   
 

= Lichen laetevirens Lightf. nom. illeg., Fl. Scot. 2: 852. 1777. ≡ Parmelia laetevirens (Lightf.) 

Schaer., Lich. Helv. Spec. p. 461. 1840. ≡ Sticta laetevirens (Lightf.) Rabenh., Deutschl. Krypt.-

Fl. 2: 64. 1845. ≡ Ricasolia laetevirens (Lightf.) Leight., Lich.-Fl. Great Brit. p. 121. 1871. ≡ 

Lobaria laetevirens (Lightf.) Zahlbr. in Engler & Prantl, Nat. Pflanzenfam., 1: 188. 1906. 
 

= Lichen herbaceus Huds., Fl. Angl., ed. 2, p. 525. 1778. ≡ Pulmonaria herbacea (Huds.) Hoffm., 

Descr. Adumb. Plant. Lich. 1(2): 51. 1789. ≡ Parmelia herbacea (Huds.) Ach., Methodus, p. 218. 

1803. ≡ Lobaria herbacea (Huds.) DC., in Lamarck & de Candolle, Fl. Franç., ed. 3,  2: 403. 

1805. ≡ Platysma herbaceum (Huds.) Frege, Deutsch. Botan. Taschenb. 2: 165. 1812. ≡ Sticta 

herbacea (Huds.) Ach., Syn. Meth. Lich. p. 341. 1814. ≡ Peltidea herbacea (Huds.) Link, Grundr. 

Krauterk. 3: 176. 1833. ≡ Ricasolia herbacea (Huds.) De Not., G. Bot. Ital., sér. 2, 1(1): 180. 

1846. 

 

DESCRIPTION. – The cyanomorph. Thallus dendriscocauloid (Figure 2), forming fragile, convex, 

loose to rather compact cushions to 12 mm wide and 5 mm tall. Main branches brownish, bluish or whitish 

gray, terete or flattened, to 0.40 mm wide, smooth, naked to finely tomentose; terminal branchlets bluish 

grey or brown, terete, sometimes slightly widening towards tips; branching pattern sometimes palmate. 

Branches usually naked or with a few hairs evident in microscope preparations; hairs usually simple, 

occasionally with short side branches, moniliform, 1–5 celled, to 24 µm long; individual cells usually 

globose, to 7(–12) µm wide, sometimes cylindrical. Cortex brown, 1–3 cell layers thick, to 24 µm thick; 

cells isodiametric and 7–12 µm in diameter or elongate and 6–11(–17) × 4–8(–9.6) µm; central cord of 

longitudinally running hyphae 3 µm wide. Photobiont layer of uneven thickness, 29–50(–85) µm; 

photobiont cyanobacterial, probably Nostoc, bluish, sometimes pale green, single celled, irregularly 

rounded to irregularly ellipsoid, 5–10 × 4–7(–10) µm. Apothecia and pycnidia not observed. The 

photosymbiodeme. Composed of a primary cyanomorph and a secondary chloromorph (Figure 2). 

Chloromorph one (Figure 2C) to several per cyanomorph (Figures 2A and B), to 12 mm in diameter, 

developing from branches of the cyanomorph, evident at first as small, brownish nodules then flattened, 

dorsiventral, at first usually rounded to reniform, lobule-like thalli fastened to the cyanomorph by their 

edges (Figures 2A and B), or rarely, with a short stalk (Figure 2A, see the small lobule in the bottom left 

corner); cyanomorph dying and vanishing as chloromorph grows. Secondary growth of cyanomorphs from 

chloromorphs not seen. Apothecia and pycnidia not observed. The chloromorph. For complete 

descriptions of the mature chloromorph, see, e.g., Rose & Purvis (2009) and Tønsberg & Jørgensen (2007). 

Well-developed chloromorphs with spherical internal cephalodia mostly in the lower part of the medulla, 

visible on the underside of the thallus as brownish (contrasting with the paler surrounding cortex), ± 

hemispherical swellings of the lower cortex. Lobules (called folioles by Rose & Purvis 2009) common (i.e., 

in more than half of the specimens studied), mostly along damaged thallus margins and laminal cracks, 

varying from narrow (finger-like) and to a few mm long to more or less rounded and to 5 mm or more in 

diameter; rounded lobules sometimes fastened by a narrow holdfast or a stalk and thus more or less similar 

to the juvenile chloromorph lobules seen in the photosymbiodemes. Apothecia and pycnidia are usually 

frequent.  
 

CHEMISTRY. – No substances found. Spot tests (cortex and medulla): K-, C-, KC-, P-, UV-.  
 

ECOLOGY AND DISTRIBUTION. – Ricasolia virens is mainly distributed in Western Europe and 

Macaronesia (Degelius 1935, Rose & Purvis 2009, Tønsberg & Jørgensen 2007). In Norway, R. virens 

occurs in a broad belt along the coast from the Oslofjord area in the southeast to Nordland county in the 

north (fide The Norwegian Lichen Database; http://nhm2.uio.no/lav/web/index.html). Ricasolia virens 
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cyanomorphs and photosymbiodemes are known from several localities in Hordaland county in the 

southwest and one in Nord-Trøndelag county in Central Norway. They may be readily seen in situ in young 

populations of chloromorphs. However, some localities with large populations of well-developed and 

fertile R. virens chloromorphs on cliffs and/or tree trunks, photosymbiodemes could not be located despite 

extensive searches. Cyanomorphs and photosymbiodemes have been found on naked or mossy trunks of 

Fraxinus excelsior (the most common phorophyte), Populus tremula, and Tilia cordata, and on boulders in 

a Corylus avellana-Populus tremula stand and a Corylus avellana thicket.  

 

DISCUSSION. – We were able to match the morphology of the alga-containing components of the 

photosymbiodemes to the chloromorphs of Ricasolia virens (Figure 2). These data, combined with the 

100% sequence identity of the mycobionts, strongly support the hypothesis that all cyanomorphs, 

chloromorphs and photosymbiodemes studied involve the same fungal species. Consequently all of these 

morphs should be referred to as R. virens since the name of a lichen refers to the mycobiont.  

Ricasolia virens is primarily known from Europe and Macaronesia (Rose & Purvis 2009). It is not 

thought to occur in North America (Esslinger 2015), but several herbaria hold specimens, mostly collected 

in the 1800’s, that were identified as L. virens, L. laetevirens or Sticta herbacea (Huds.) Ach. (records 

viewed through http://lichenportal.org on 17 March 2016). We examined four specimens held in F 

(C0300964F, C1011324F, C1011330F, and C1011336F) and these were all conspicuously C+ (R. virens 

would be C–) and hence belong to R. quercizans, which is endemic and widespread in eastern North 

America (Brodo et al. 2001). We assume that all other North American collections filed under R. virens are 

also misidentified and likely represent R. quercizans. 

The cyanomorph of Ricasolia virens is only known from Norway, and hence exhibits a much 

narrower geographic distribution than the chloromorph. Whether this pattern reflects significant ecological 

constraints on the cyanomorph or is shaped by the distribution of a specific Nostoc is not yet known. In the 

sympatric R. amplissima, dendriscocauloid cyanomorphs emerging from chloromorphs appear to be 

common throughout the range of the species in Eurasia and Africa (e.g. Degelius 1935). Whereas the 

geographical ranges of R. amplissima and R. virens can be defined by the ranges of their chloromorphs, the 

reverse is true for other species forming photosymbiodemes. A well-known example is Sticta canariensis, 

which occurs in Western Europe and Macaronesia (James & Henssen 1976, James & Purvis 2009) and in 

Ontario, Canada (Brodo 1994). In the Old World the chloromorph predominates in the southern and the 

cyanomorph in the northern part of its range (James & Henssen 1976). In the northernmost part of this 

range (i.e., Norway) the chloromorph is rare and present only as small lobes on well-developed 

cyanomorphs (Tønsberg 1990). According to James & Henssen (1976), S. canariensis chloromorphs do not 

occur outside the range of the cyanomorphs. In North America, the species is only associated with Nostoc 

(Brodo 1994), strengthening the pattern of a broader geographic distribution of the cyanomorph. 

Ricasolia virens has probably at least two reproductive strategies, symbiotic (i.e., the simultaneous 

dispersal of the mycobiont and the photobiont via specialized lichenized thallus structures or fragments) 

and aposymbiotic (i.e., dispersal of the mycobiont by ascospores). The chloromorph often develops 

narrowly stalked lobules, which easily break off and hence could serve as diaspores. Such lobules may 

allow effective establishment on suitable substrates (i.e., rock, bark, moss), where they would grow to 

mature chloromorphs directly (i.e., mature chloromorph  chloromorph lobules  mature chloromorph). 

Ricasolia virens may potentially also propagate via fragments from the fragile cyanomorph. The presence 

of small cyanomorph fragments near the photosymbiodemes in some of the collections (see figure 4C) 

lends support to this hypothesis, but further study is needed to empirically test this.  

At maturity Ricasolia virens forms a chloromorph harboring cyanobacterial colonies as internal 

cephalodia. The ontogeny of this tripartite association is not known. We hypothesize, given the observation 

of green lobules developing from the dendriscocauloid thallus, that when R. virens ascospores land on an 

appropriate substrate and germinate, they may first make contact with suitable, free-living cyanobacteria 

and form dendriscocauloid cyanomorphs. Free-living green algae are subsequently recruited or captured, 

leading to the development of chloromorphs. We have no indication that R. virens is capable of obtaining 

algae or cyabobacteria from other lichens. The juvenile life cycle stages of R. virens would or could thus 

be: Germinating ascospore (free-living)  cyanomorph  cyanomorph + chloromorph 

(photosymbiodeme)  chloromorph. Nostoc could be integrated de novo in the earliest stage of the 

chloromorph or acquired from the cyanomorph via the attachment stalk. The former is certainly possible, 

considering that the symbiotic lobules of the chloromorph acting as vegetative diaspores appear to lack 

cyanobacteria.  
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Figure 2. Ricasolia virens (all from Tønsberg 40924, BG). A-C, dendriscocauloid cyanomorphs without or 

with chloromorph lobules (photosymbiodemes). Scale bars = 2 mm. Photos by E. Timdal 2013.  
 

 

Whether the juvenile cyanolichen stage following ascospore dispersal is obligate in Ricasolia 

virens is not clear. Our observations may suggest that cyanomorphs are an integral part of the life cycle of 

the lichen association. However, large populations of R. virens chloromorphs have been studied in the field 

without any observations of cyanomorphs, which may suggest that germinating ascospores can associate 

with the green photobiont and form chloromorphs without a cyanomorphic stage (i.e., chloromorph  

germinating ascospore  chloromorph). Alternatively, the lack of observations of a cyanomorph stage in 

these populations could well be explained by the cyanomorph being ephemeral and thus rarely observed.  

Fungi of the Peltigerales may be lichenized with either a cyanobacterium only or primarily with a 

green alga with subordinate associations with Nostoc. Neither association identifies only a single 
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homogenous clade, and transitions between these appear numerous during the diversification of the 

Peltigerales (see Moncada et al. 2013). The polarity of the shifts remains ambiguous. Miadlikowska & 

Lutzoni (2004) proposed that the association with Nostoc is ancestral in the Peltigerales and Högnabba et 

al. (2009) further argued that it was the ancestral type in the Lobariaceae. The latter study, however, 

suggested that Ricasolia species are primarily associated with a green alga, an interpretation that may 

change once the occurrence of a cyanoprotothallus is integrated in the character scoring and chlorolichens 

are considered cephalodiate and hence tripartite.  

Juvenile, lichenized stages with Nostoc following ascospore dispersal and germination have been 

observed in several species of the Peltigerineae (Holtan-Hartwig unpubl., Ott 1988, Stocker-Wörgötter & 

Türk 1994, Yoshimura et al. 1993). Stocker-Wörgötter & Türk (1994) were able to resynthesise Peltigera 

leucophlebia (Nyl.) Gyeln. from its three symbionts under controlled laboratory conditions. They obtained 

primordia arising from a cyanobacterial crust, with the primordia comprising the mycobiont and a green 

photobiont, a cyanobacterial photobiont, or both photobionts, but only the primordia with green photobiont 

developed into P. leucophlebia-like thalli. Yoshimura et al. (1993) were able to “reform” a cyanobacterial 

morphotype of Peltigera aphthosa (L.) Willd. by culturing the lichen in vitro from undifferentiated cell 

aggregates. The lobes of the juvenile cyanobacterial morphotype was sublinear and had a cortex also on the 

lower side and were thus anatomically and morphologically different from the lobes of the cyanomorph of 

P. aphthosa as they are in the nature. Species of Peltigera do not have dendriscocauloid developmental 

stages, but the observations by Stocker-Wörgötter & Türk (1994) and Yoshimura et al. (1993) may be 

consistent with a hypothesis that the association with cyanobacteria is not simply a secondary event in the 

life cycle of a tripartite lichen, but rather may be a critical primary ontogenetic stage in their development. 

Photosymbiodemes including a foliose photomorph and dendriscocauloid cyanomorph are known 

also from other species of Ricasolia, namely R. amplissima (e.g., James & Henssen 1976, Tønsberg & 

Goward 2001, Tønsberg & Holtan-Hartwig 1983, Tønsberg & Jørgensen 2007; all as Lobaria amplissima), 

R. ravenelii (Tuck.) Nyl. (as Lobaria cf. erosa (Eschw.) Nyl. in Jordan 1972; as Lobaria ravenelii in Brodo 

et al. 2001) and R. quercizans (Parker & Goffinet unpubl.). Ricasolia amplissima shows the same juvenile 

development as described above for R. virens (see Tønsberg & Goward 2001, Tønsberg & Holtan-Hartwig 

1983). However, unlike R. virens, R. amplissima often develops cyanomorphs laminally on the 

chloromorph, and composite specimens with more than two cyanomorph/chloromorph ‘generations’ are 

occasionally seen. We have indeed observed free-living cyanomorphs bearing the chloromorph themselves 

producing the cyanomorph, as well as free living chloromorphs with attached cyanomorphs bearing the 

chloromorph. 

In conclusion, Ricasolia virens is widely distributed in Europe and in Macaronesia, and 

cyanomorphs are currently known only from Norway.  If a juvenile cyanolichen stage is obligate, it may 

have been overlooked, as it was until recently in Norway, especially if it is ephemeral, and vanishes as the 

chloromorph develops. Ricasolia virens cyanomorphs and photosymbiodemes were indeed lacking among 

herbarium specimens in BG and likely elsewhere, as collectors generally seek well-developed, fertile thalli, 

which may lack cyanomorphs. Discovering the dendriscocauloid juvenile stage throughout the distribution 

range would provide, in the absence of experimental observations, evidence for the obligatory nature of the 

cyanolichen in the life cycle of R. virens. The observation of an association with Nostoc in a 

dendriscocauloid thallus preceding the development of the chloromorph in R. virens, combined with similar 

observations in R. amplissima and the occurrence of photosymbiodemes in other species of Ricasolia may 

lead to the hypothesis that at least for Ricasolia the ancestral lichenization state is one with Nostoc, and that 

species with tripartite thalli arose from such an ancestor, while maintaining the ability to establish 

independent cyanomorphs, which may be required when lichenization is initiated (i.e., protothallus) and 

provide an alternative strategy for a perennial free living lichen (e.g., typical Dendriscocaulon).  

 

Specimens of photosymbiodemes with cyanomorphs examined (all BG). – NORWAY: 

HORDALAND: AUSTEVOLL: island Huftarøy, the E-facing slope N of Bjelland, 60°04.69′N 5°15.65′E 

(ED50), alt. 0–30 m, corticolous on trunk of Tilia cordata, 18.ix.1985, T. Tønsberg 9380 (BG-L-97740). 

BØMLO: island Selsøy, Kastevik, 59.8959582°N 5.099804°E (EUREF 89), alt. 15 m, on boulder in 

Corylus avellana thicket, 30.vii.2006, H.H. Blom s.n. (BG-L-97745). LINDÅS: the SW-facing slope W of 

Storset, 60°38.439′N 5°27.116′E (Datum ED50), alt. 60–90 m, corticolous on the shaded side of trunk of 

Fraxinus excelsior, 3.iv.1984, T. Tønsberg 8595 & J. Holtan-Hartwig (BG-L-97741). OS: Storomvågen, 

60°10′N 5°24′E (ED50), alt. 5 m, corticolous on trunk of Fraxinus excelsior, 23.iv.1989, T. Tønsberg 

11522 & J. Holtan-Hartwig (BG-L-53525). OSTERØY: Havrå, S-facing slope, downhill from road, 
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60°26.214′N 5°33.907′E (ED50), alt. ca. 50 m, on old, pollarded trunk of Fraxinus excelsior in young 

deciduous forest, 13.vii.1992, A. Botnen s.n. (BG-L-14801); Havrå, downhill from road, 60°26.267′N 

5°34.642′E (WGS84), alt. 20–40 m, corticolous on S-facing side of mossy trunk of Fraxinus excelsior in S-

facing slope, 28.iv.2011, T. Tønsberg 40924 (BG-L-97742). NORD-TRØNDELAG: FLATANGER: 

Årfjordbotn, the E-facing slope W of cove Survika, 64°27.422′N 10°49.380′E, alt. 10–30 m, corticolous on 

mossy trunk of Populus tremula, 19.viii.2002, T. Tønsberg 31538 (BG-L-97743). 

 

Specimens of chloromorphs examined for comparison. – GEORGIA [U.R.S.S.]: Transcaucasus: 

Colchis, distr. Sochi, ad corticem Aceris, 8.vi.1978, A. Vězda s.n. (BG-L-64224). NORWAY: 

HORDALAND: BØMLO: island Bømlo, E side of Grutlefjorden, S of farm Hope, Rakahopet, 59.669°N 

5.169°E, alt. 0–5 m, 28.iv.2015, T. Tønsberg 44757 (BG-L-97955, BM, UPS, NY); island Spyssøya, W-

facing slope ca 160 m SSE (direct) from S tip of the small island Bleikja, 59°43.418′N 5°22.249′E, alt. 10–

15 m, on schists on upper part of steep, seaside rock wall, 3.iv.2015, T. Tønsberg 44732 (BG-L-97760). 

GRANVIN: Nesheimlien, ad truncus vetustos Tiliae parvifoliae, mense Maio 1936, J.J. Havaas, Lich. 

Norv. Occ. Exs. 128 (BG-L-59632). OS: Lysekloster monastery, just outside the W side of the ruin, 

60°13.655′N 005°24.299′E, alt. 40–60 m, corticolous on trunk of huge Ulmus glabra, 10.ii.2015, T. 

Tønsberg 44718 (BG-L-97738).  
 

Specimen of Ricasolia amplissima examined for comparison. – NORWAY. HORDALAND. OS: 

Lysekloster monastery, just outside the W side of the ruin, 60°13.655′N 005°24.299′E, alt. 40–60 m, 

corticolous on trunk of huge Ulmus glabra, 10.ii.2015, T. Tønsberg 44719 (BG-L-97739). 
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APPENDIX – VOUCHERS AND GENBANK DATA FOR SEQUENCES USED IN THIS STUDY 

 

Table 1. Species, morph (phenotypic expression), and voucher information (i.e., country, collector and 

herbarium) sampled for the sequencing of the ITS region; GenBank accession numbers for newly generated 

sequences are in bold.  

Species Morph Country Voucher Specimen 
GenBank 

Accession No. 

Lobaria scrobiculata ? ? M.A. Thomas 1239 (OTA) AF350297 

Ricasolia virens chloro- Norway M. Wedin 6192 (BM) KJ577709 

R. virens    chloro- Norway H.H. Blom V1 (BG) KJ577710 

R. virens cyano- Norway - KJ577711 

R. virens photosymb.: cyano- Norway T. Tønsberg 40924 (BG) KP941424 

R. virens photosymb.: chloro- Norway T. Tønsberg 40924 (BG) KP941425 

R. virens photosymb.: chloro- Norway T. Tønsberg 31538 (BG) KP941426 

R. virens chloro- Norway T. Tønsberg 44757 (BG) KR632514 

R. amplissima  chloro- Norway E. Stocker-Wörgötter 1717 (TUR) AF524923 

R. amplissima cyano- Norway H. Holien s.n. (TUR) AF524926 

R. quercizans ? Canada T. Ahti 57089 (H) AF524921 

R. quercizans  ? ? 
collector unknown (DUKE) 

[AFTOL-ID 369] 
HQ650694 

R. subdissecta ? Colombia B. Moncada 3152 (UDBC) KC011029 

 


