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1. Background and aims 

The background for this study is a pilot project that Statistics Norway is running, financed by 

Eurostat (“Development of models or best approaches for estimation of the volume of water 

used for irrigation on individual holdings in Norway – by applying georeferenced datasets, 

Geographical Information Systems (GIS) and coefficients for irrigation requirements”, 

Agreement no. 40701.2008.001-2008.141).  

The primary aim of Bioforsk as „associated third party‟ in this project is to provide estimates 

of irrigation water requirements for a range of agricultural crops in regions of Norway in 

which irrigation is currently practiced. These estimates will be used by Statistics Norway as 

coefficients for irrigation requirements in the pilot project. 

At a more general level, this study provides a basis for evaluating the likely need for irrigation 

in various regions of Norway, upon which decisions concerning investments in irrigation 

equipment may be based. It also serves to illustrate both between-year variability in irrigation 

requirements and whether any long-term trends or changes have occurred in recent years. 

 

 

Plate I. A typical scene depicting rain-gun irrigation of spring cereals in Eastern Norway  
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2. Materials and methods 

2.1 Selection of irrigation regions  

Data from the last full agricultural census in Norway (1999) show that 14% of the country‟s 

agricultural land may be irrigated (ca. 132 000 ha, see Appendix I)). Nearly 50% of this area 

is in three counties in the northerly part of the Eastern region (Hedmark, Oppland and 

Akershus) whilst 32% is in four counties in the southerly part of the Eastern region (Østfold, 

Vestfold, Telemark and Buskerud). About 10% of the irrigated area is in the Southern and 

South-Western region (Aust-Agder, Vest-Agder, Rogaland), 8% in the Western region (Sogn 

& Fjordane og Hordaland) and 5% in the Central region (Møre & Romsdal, Sør-Trøndelag, 

Nord-Trøndelag). The location of these counties is shown in figure 2.1, and the irrigated area 

in each municipality is shown in figure 2.2.  

In this study it was decided to concentrate on the Eastern region, which accounts for over 70% 

of the irrigated area, and on the Southern, South-Western and Central regions. In this context, 

Akershus and Buskerud counties are divided between the inland (northerly) and the coastal 

(southerly) parts of the Eastern region. The division is made between municipalities to the 

north and to the south of Oslo, respectively. The Southern and South-Western regions are 

considered as one region. 

Irrigation is in all of these regions applied to arable and vegetable crops, for which a suitable 

water balance model is available. In the Western region (counties 12 and 14), irrigation is 

mostly used in top-fruit and soft-fruit growing. The requirement for these crops is less easy to 

estimate. It includes drip/trickle irrigation systems with relatively low water consumption.  

 

 

Figure 2.1. Distribution of counties in the irrigation regions used in this study 

Eastern region (north): 

2. Akershus (northern part) 

4. Hedmark 

5. Oppland 

6. Buskerud (northern part) 

Eastern region (south): 

1. Østfold 

2. Akershus (southern part) 

6. Buskerud (southern part) 
7. Vestfold 

8. Telemark 

Southern/South-Western region: 

9. Aust-Agder 

10. Vest-Agder 

11. Rogaland 

Central region: 

15. Møre og Romsdal 

16. Sør-Trøndelag 

17. Nord-Trøndelag 
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Figure 2.2. Irrigated area in Norwegian municipalities at the 1999 agricultural census 
(source: Statistics Norway). 

2.2 Selection of irrigated crops 

No survey data is available on the area of individual crops that are irrigated. In most regions, 

priority is given to vegetable crops and potato crops. The total vegetable area in Norway is 

however only about 6 000 ha, or 5% of the total irrigated area. Similarly, whilst potatoes have 

higher irrigation priority than cereals, their total area is relatively small by comparison (about 

15 000 ha potatoes vs. 300 000 ha cereals). Even if the total potato area was irrigated, this 

accounts for little over 10% of the total irrigated area. Relatively little irrigation of pasture is 

practiced in Norway, and thus cereals occupy the greatest irrigated area. An exception to this 

is in the upper part of Gudbrandsdal in Oppland, where irrigation of grassland is common.  
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2.3 Water balance model 

A model that includes water balance calculations and various irrigation strategy options was 

used in this work (EU-Rotate_N, reference Rahn et al. 2008). The model, originally designed 

to calculate nitrogen dynamics of arable and vegetable crops, calculates potential evaporation 

and actual crop evapotranspiration using the FAO approach (Allen et al., 1998). The main 

parameters that enter into these calculations are those related to the evaporative demand of the 

atmosphere, summarised by the reference evapotranspiration (ET0,) and a crop coefficient that 

varies with crop development. ET0 may alternatively be input to the model from other 

sources, for example pan evaporation measured with the Thorsrud 2500 evaporimeter that was 

previously used in Norway (Hetager & Lystad 1974), or calculated from weather data as 

described by Riley (2003), using measured pan evaporation as a calibration basis.  

2.4 Soil water-holding capacity 

Five classes of available soil water capacity have been suggested on the basis of physical 

properties of common agricultural soils in Norway (Riley, 1994). These range from capacity 

of 50 mm (extremely drought-prone) to 130 mm (extremely drought-resistant). As it may 

safely be stated that little irrigation is performed on soils in the latter group, irrigation 

requirements are calculated here for two levels of soil water retention only, representing the 

mean of the two drought-prone classes and of the two moderately drought-resistant classes.  

Available soil water capacities (AWC) within the upper 60 cm of soil were set at 60 mm and 

100 mm, respectively (table 2.1). This represents the zone of rooting depth often considered 

for irrigation purposes. The estimates are based on measurements for a large range of 

agricultural soils throughout Southern, Eastern and Central Norway (Riley, 1996). 

Table 2.1. Soil water retention properties (vol. vol
.-1

) used in irrigation water simulations 

Drought 

sensitivity  

Soil 

depth 

Field 

capacity 

Wilting 

point 

Available 

capacity 

Soil textural groups 

Drought- > 30 cm 0.15 0.03 0.12 Sand, loamy sand, sandy  

prone < 30 cm 0.10 0.02 0.08 silt and some loam soils 

Drought- > 30 cm 0.30 0.10 0.20 Loam, clay loam, silt loam 

resistant < 30 cm 0.25 0.12 0.13 and some silty clay loams 

 

These classes of droughtiness are represented by about half of the twelve soil textural groups 

that are used in Norway (Sveistrup & Njøs, 1984). The textural limits of these groups, 

together with their equivalent English names, are shown in figure 2.3. Detailed „theme maps‟ 

on soil water-holding capacity are available for most of the agricultural areas mapped by the 

Norwegian Forest and Landscape Institute. These may be viewed at the following website: 

www.skogoglandskap.no/artikler/2008/vannlagringsevne 

These maps have four drought sensitivity classes. The AWC values used in this study lie 

between class 1 and 2 (drought-prone) and between classes 2 and 3 (drought-resistant). 

http://www.skogoglandskap.no/artikler/2008/vannlagringsevne
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Figure 2.3. Norwegian soil textural classification triangle with Norwegian and equivalent 
English names of the various soil textural classes. Based on Sveistrup and Njøs (1984). 

2.5 Regional precipitation 

Mean precipitation data for some representative weather stations in various regions are shown 

in table 2.2. On an annual basis there is wide variation between regions, driest in the inland 

east, wettest in the west. Within the April-September growing season, however, the 

differences between regions are smaller, and they are even less in the first part of the growing 

season, from April to July, when the greatest irrigation demands of many crops are likely to 

occur. 

Table 2.2. Monthly, annual and growing season precipitation sums (mm) for representative 
weather stations in various regions of Norway. Means of the 25-year period 1973-1998 
(Source: Norwegian Meteorological Institute). 

Region Eastern (north) Eastern (south) Central South-Western 

Weather station Kise, Hedmark Ås, Akershus Trondheim Jæren, Rogaland 

January-March 86 142 174 301 

April-June 137 150 172 175 

July-September 203 242 299 349 

October-December 146 238 248 436 

Growing season 340 392 471 524 

Whole year 570 771 892 1260 

 

A common feature of the precipitation pattern within the growing season is its high annual 

variability. In the Eastern region, for example, coefficients of variation of 50-60% are 

common for rainfall in individual months within the growing season, compared to around 

20% for the whole season. This means that the irrigation requirement may be much higher in 

individual years than the mean rainfall data suggest, whilst in other years there may be little or 

no requirement. 

Norwegian name English name 

Svært stiv leire   Heavy clay 

Stiv leire  Clay 

Siltig mellomleire Silty clay loam 

Mellomleire  Clay loam 

Sandig mellomleire Sandy clay loam 

Siltig lettleire  Silty loam 

Lettleire  Loam 

Sandig lettleire  Sandy loam 

Silt   Silt 

Sandig silt  Sandy silt 

Siltig sand  Silty sand 

Sand   Sand 
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2.6 Regional evaporation 

Evaporation has been measured periodically in some regions of Norway using the ‟Thorsrud 

2500‟ pan (Hetager & Lystad, 1974), but long-term data are only available in a few cases. The 

„Thorsrud 2500‟ pan evaporimator gives daily values of evaporation from an open water 

surface placed at the same level as the surrounding area of short-cut grass (figure 2.4). It has 

been found to give approx. 10-12% lower values than the standard Penman method for 

calculating potential evaporation from weather data (Riley, 1989). There is also a difference 

in the seasonal pattern, as the Penman equation appears to indicate higher evaporation values 

in spring and lower values in autumn, than do the pan measurements. This may be due to the 

large soil heat flux that occurs in Norway, due to rapid warming in early spring and rapid 

cooling in autumn. This feature is commonly overlooked in standard applications of the 

Penman equation, and the pan measurement method may therefore be more realistic under 

such conditions. 

 

 

 

Figure 2.4. The Thorsrud 2500 evaporimeter. Daily evaporation from the container (A) 
(surface area 0.25 m², depth 0.6 m) is gauged by refilling until the float (B) and pointer (C) 
reach the balancing point (D). Correction is made by addition of any measured precipitation 
and by subtraction of any associated overflow (E, F, G).  

Mean pan data for some representative locations in various regions are shown in figure 2.5. 

The evaporation is slightly higher in the southerly, coastal part of the Eastern region 

(Prestebakke) than in the inland part (Kise), especially early in the growing season, but 

follows the same general pattern. It is considerably lower in Western (Ullensvang) and 

Northern regions (Karasjok), due mainly to higher cloudiness and lower incoming radiation. 

Between-year variation in evaporation is high at all locations, ranging from <2 mm day
-1

 to 

>4 mm day
-1

 in mid-summer in Eastern Norway, and from ca. 1-3 mm day
-1

 in other regions. 
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Figure 2.5. Pan evaporation in the growing season (May – Sept.) at representative weather 
stations in four regions of Norway, based on measurements with a Thorsrud 2500 
evaporimeter 1965-1980. (Karasjok = North Norway, Kise = Eastern Norway, northern part, 
Prestebakke = Eastern Norway, southern part, Ullensvang = Western Norway). I = Maximum 
curve, II = Mean curve, III = Minimum curve. Taken from Lystad (1981).  

2.7 Alternative evaporation estimates 

A network of automatic weather stations has been established in agricultural areas since the 

early 1990‟s, allowing potential or reference evapotranspiration (ETo) to be calculated, using 

standard methods such as the Penman equation or the equation included in the EU-Rotate_N 

model. Alternatively, locally derived equations may be used, such as that of Riley (2003). 

This equation was calibrated against pan evaporation measured at Kise, Nes på Hedmark, for 

the period 1987-2003, using the approach used in Sweden by Johansson (1970), in which 

daily pan evaporation is regressed against an energy term (solar short wave radiation) and a 

convection/latent heat transfer term (the product of wind-speed and saturated vapour pressure 

deficit). A seasonal correction factor is also included in the present case (see Appendix II).  

A test of the locally derived equation showed good agreement with an independent dataset 

measured in 2004-2006 at the same location as the original measurements (figure 2.6). The 

ability of this equation to reflect differences between localities is illustrated using data for 

2008 from a number of weather stations (figure 2.7).  
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Figure 2.6. Cumulative values of evaporation measured at Nes på Hedmark with a Thorsrud 
2500 evaporimeter (blue) and values calculated (red) using the local equation. 

 

0

50

100

150

200

250

300

350

14 16 18 20 22 24 26 28 30

Week number 14-31 (31st March -  3rd August) 

Cu
m

ul
at

iv
e 

ev
ap

or
at

io
n 

(m
m

)

Landvik

Tjølling

Øsaker

Ås

Roverud

Apelsvoll

Løken

Alvdal

 

Figure 2.7. Cumulative evaporation values calculated for 2008 using the local equation for a 
number of Bioforsk’s automatic weather stations in Eastern and Southern Norway. 

 

A comparison of the reference evaporation calculated by the method in the EU-Rotate-N 

model and that using the local equation of Riley (2003) is shown in figure 2.8, for 20 years 

weather data from Kise (Eastern region). The average annual evaporation sum calculated with 

the former method was 414 mm, compared to 353 mm with the latter. The average difference 

of 15% is similar to that found previously between the Penman method and measurements 

made with the Thorsrud evaporimeter (Riley 1989). The difference between methods varied 

somewhat between years, ranging from around 25 mm in 1996 to almost 100 mm in 1989 and 

1997. 
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Figure 2.8. Annual sums of reference evapotranspiration at Nes på Hedmark from 1988 to 
2007, calculated by the EU-Rotate_N model (blue) and the local equation (red). 

 

No marked seasonal bias was found between the two methods in the present case (figure 2.9). 

Both predicted a small rise in evaporative demand in late-April/early May. This corresponds 

with a dry period that normally occurs around seeding. Midsummer values are consistently 

about 0.5 mm/day lower with the equation than with the model. Autumn values are similar 

until October, when the equation gives lower values than the model. This falls outside the 

growing season.  
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Figure 2.9. Average daily values of reference evapotranspiration at Nes på Hedmark from 
1988 to 2007, calculated by the EU-Rotate_N model (blue) and the local equation (red). 
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2.8 Weather data for selected regions 

Weather data from Kise (60°47'N 10°49'E, 128 m a.s.l.) and Ås (59°40'N 10°46'E, 90 m a.s.l.) 

are used to represent Eastern Norway, (northern and southern parts, respectively). In addition, 

Særheim (58°46'N 5°39'E, 8 m a.s.l.) and Kvithamar (63°26'N 10°53'E, 28 m a.s.l.) are used 

for South-Western and Central Norway, respectively. The location of these stations is shown 

in figure 2.10. One station belongs to the Norwegian University of Life Sciences (Ås) and the 

others to the Norwegian Institute for Agricultural and Environmental Research (Bioforsk). 

 

 

Figure 2.10. The location of the 4 weather stations used in the simulations in this study (left-
hand map) and the distribution of the 15 normal precipitation values in each region that were 
used to evaluate how well the selected stations represent the conditions within regions (right-
hand map). 

It is generally considered that the evaporative demand in Norway is similar over quite large 

areas (Lystad, 1981). This is because it is largely governed by climatic factors such as 

incoming radiation and latent heat transfer, which vary relatively little within regions.  

Precipitation, on the other hand, is strongly affected by altitude and topography, and may vary 

considerably within regions.  

An assessment of how well the selected weather stations represent average conditions within 

the four regions was therefore made by comparing the current normal precipitation values 

(1961-1990) for each station with the mean values for 15 locations within the region 

concerned (figure 2.10). The latter were selected from official records (Førland, 1993), using 

data for one location per municipality in the main agricultural parts of the region. The 

localities were chosen to cover the altitude range within which irrigation is practiced. These 

data are tabulated in Appendix III. Comparisons of the selected stations with the mean values 

for 15 localities within each region are shown in figure 2.11. 
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Figure 2.12. Comparisons of normal (1961-1990) precipitation at the 4 weather stations used 
in the simulations in this study with mean (+/- standard deviation) for 15 locations within 
each region. 

These comparisons show that the normal precipitation of the weather stations selected for the 

simulation study was in all cases close to the mean value for 15 localities within the region. 

The coefficients of variation between localities within the same region were relatively low 

within the growing season (8% and 12% in southern and northern parts of the Eastern region, 

respectively, and 15% elsewhere). The variability between localities for the whole year was 

somewhat greater (CV = 10-20%), but this has no bearing on the irrigation requirements. 

Thus it may be concluded that the four selected weather stations were representative for their 

respective regions.  

It was considered important to use long weather data series for the simulations due to the high 

between-year variability in precipitation and evaporation. Data from 1973-2008 are used, thus 

giving an equal number of years before and after 1990, the year marking the transition from 

existing to future normal 30-year weather periods.  Measured evaporation was used at Kise 

until 1987, when the weather station was automated. In all other cases evaporation was 

calculated using the method of Riley (2003). For Særheim and Kvithamar, data from nearby 

stations were used for the period up to 1987. Wind speed data were adjusted downwards in 

these cases, due to differences in measurement height and method. Factors of 0.51 and 0.31 

were used at Særheim and Kvithamar, respectively. This resulted in similar mean evaporation 

values for the two periods.  

Mean monthly (April-September) data for the variables used in calculating evaporation, 

together with monthly precipitation and evaporation sums, are given in tables 2.3 - 2.6 for the 

four regions. Means are calculated for all 36 years and for the first and last 18 years (1973-

1990 and 1991-2008). There was relatively little overall difference between these periods in 

most cases. At the Eastern (northern) location there was for somewhat higher rainfall in May 

and June in the latter period than in the former period. At the Eastern (southern) location, 
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rainfall was higher in April, June and August in the latter period. In the Central region, it was 

higher in the latter period than formerly in May and June, and lower in July and August.  

In Eastern Norway, overall rainfall for the whole growing season (April-September) is 20% 

higher at the southern than at the northern location (419 mm vs. 350 mm), whilst the overall 

reference evaporation is 27% higher (457 mm vs. 360 mm). The former difference reflects 

closer proximity to the coast at the more southerly location, whist the latter reflects somewhat 

higher radiation and temperatures, and considerably higher average wind speed. In South-

Western Norway, the rainfall sum is higher (551 mm) and evaporation intermediate (383 

mm). Much of the extra rainfall comes late in the season here. In Central Norway, the rainfall 

sum is intermediate (470 mm), but the evaporation sum is lower here than in all the other 

regions. 

 A comparison of the average seasonal water balance in the four regions is shown in figure 

2.12. There is a clear difference between the Eastern region and the South-Western and 

Central regions. In the former there is on average a water deficit that increases until July, 

levels off in August and declines somewhat in September. The average deficit is greatest in 

the southerly part of the region. In the other regions, there is on average no water deficit, and 

from August onwards there is a considerable excess of rainfall over evaporation. In relation to 

irrigation requirements, such average data are less meaningful than the situation that arises in 

individual years. It is therefore of interest to examine the between-year variability in the water 

balance. 
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Figure 2.12. Cumulative water balance (sum of precipitation minus reference evaporation) in 
the four irrigation regions used in this study. Mean data for the period 1973-2008.  

The variation in annual potential water balances calculated for spring and early summer 

(April-June), for mid- and late summer (July-September) and for the whole growing season, is 

shown in figures 2.13-2.16 for the four regions. These figures clearly illustrate that there is 

very high between-year variability in the extent of the rainfall deficits and excesses in all 

regions. They also indicate that deficits are more common in the first half of the season than 

in the second. 
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Table 2.3. Weather data used in simulations for the Eastern region (northern part) 

 April May June July August September 

Solar radiation (MJ/m²/day)     

All years 11.9 16.7 18.5 17.1 13.3 8.0 

1973-1990 12.0 16.7 18.8 17.3 13.0 7.8 

1991-2008 11.7 16.7 18.3 17.0 13.6 8.2 

Air temperature (°C)      

All years 3.2 9.1 13.5 15.9 14.7 10.2 

1973-1990 2.5 9.1 13.5 15.5 14.2 9.6 

1991-2008 3.8 9.1 13.5 16.3 15.3 10.8 

Wind speed (m/sec)      

All years 1.5 1.5 1.4 1.3 1.3 1.5 

1973-1990 1.7 1.7 1.7 1.6 1.6 1.9 

1991-2008 1.3 1.3 1.1 0.9 1.0 1.0 

Relative humidity (%)      

All years 70 65 66 69 72 75 

1973-1990 68 66 65 67 70 74 

1991-2008 71 65 67 71 73 76 

Rainfall (mm)      

All years 33 46 67 69 72 63 

1973-1990 33 39 62 70 67 68 

1991-2008 32 53 72 68 76 57 

Pan evaporation (mm)      

All years 29 65 80 81 67 38 

1973-1990 31 64 82 84 69 40 

1991-2008 28 65 78 78 65 36 

 

Figure 2.13. Annual water deficit/excess (rainfall minus reference evaporation) for April-
June, July-September and the whole growing season in the Eastern region (northern part).  
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Table 2.4. Weather data used in simulations for the Eastern region (southern part) 

 
April May June July August September 

Solar radiation (MJ/m²/day)     

All years 12.5 17.4 19.5 18.7 14.5 8.8 

1973-1990 13.2 17.3 20.0 19.1 14.6 8.8 

1991-2008 12.5 17.4 19.5 18.7 14.5 8.8 

Air temperature (°C)      

All years 4.6 10.6 14.4 16.4 15.3 10.8 

1973-1990 4.1 10.7 14.6 16.1 14.9 10.4 

1991-2008 5.2 10.5 14.2 16.6 15.8 11.2 

Wind speed (m/sec)      

All years 2.5 2.6 2.3 2.2 2.1 2.4 

1973-1990 2.3 2.5 2.0 2.0 2.0 2.5 

1991-2008 2.7 2.8 2.7 2.3 2.2 2.4 

Relative humidity (%)      

All years 69 65 67 70 72 77 

1973-1990 64 62 63 65 68 75 

1991-2008 74 68 70 74 76 79 

Rainfall (mm)      

All years 44 53 73 79 84 86 

1973-1990 35 51 68 75 79 90 

1991-2008 53 55 77 82 89 82 

Pan evaporation (mm)      

All years 38 85 99 103 83 49 

1973-1990 38 83 97 104 82 49 

1991-2008 38 87 102 103 84 48 

 

Figure 2.14. Annual water deficit/excess (rainfall minus reference evaporation) for April-
June, July-September and the whole growing season in the Eastern region (southern part).  
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Table 2.5. Weather data used in simulations for the South-Western region 

  
April May June July August September 

Solar radiation (MJ/m²/day)     

All years 12.0 16.9 17.5 16.4 13.3 7.9 

1973-1990 11.5 15.5 16.7 15.4 12.3 7.3 

1991-2008 12.5 18.4 18.2 17.4 14.2 8.5 

Air temperature (°C)      

All years 5.9 9.7 12.3 14.4 14.6 12.0 

1973-1990 5.5 9.9 12.6 14.3 14.3 11.5 

1991-2008 6.2 9.5 12.1 14.6 15.0 12.4 

Wind speed (m/sec)      

All years 2.4 2.5 2.4 2.3 2.1 2.3 

1973-1990 2.4 2.4 2.3 2.4 2.2 2.6 

1991-2008 2.4 2.5 2.5 2.2 2.1 2.1 

Relative humidity (%)      

All years 76 76 80 81 81 80 

1973-1990 76 75 78 79 80 79 

1991-2008 76 76 81 83 82 81 

Rainfall (mm)      

All years 66 62 70 84 119 150 

1973-1990 54 68 63 83 107 164 

1991-2008 79 56 77 85 132 136 

Pan evaporation (mm)      

All years 34 71 79 83 71 45 

1973-1990 34 69 79 86 71 47 

1991-2008 35 72 79 81 71 43 

 

Figure 2.15. Annual water deficit/excess (rainfall minus reference evaporation) for April-
June, July-September and the whole growing season in the South-Western region.  
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Table 2.6. Weather data used in simulations for the Central region  

  
April May June July August September 

Solar radiation (MJ/m²/day)     

All years 10.6 15.0 15.5 14.8 11.3 6.9 

1973-1990 9.6 14.4 14.9 13.8 10.6 6.3 

1991-2008 11.5 15.7 16.2 15.8 12.0 7.4 

Air temperature (°C)      

All years 4.4 9.2 12.5 14.6 13.9 10.2 

1973-1990 3.8 9.5 12.5 14.1 13.3 9.6 

1991-2008 5.0 9.0 12.5 15.0 14.4 10.8 

Wind speed (m/sec)      

All years 1.5 1.4 1.2 1.1 1.0 1.2 

1973-1990 1.4 1.4 1.3 1.2 1.1 1.3 

1991-2008 1.6 1.5 1.2 1.0 1.0 1.1 

Relative humidity (%)      

All years 71 69 74 77 78 79 

1973-1990 72 68 73 78 79 79 

1991-2008 70 70 74 77 78 78 

Rainfall (mm)      

All years 54 57 72 92 91 104 

1973-1990 56 51 62 110 95 116 

1991-2008 53 63 83 75 88 92 

Pan evaporation (mm)      

All years 28 63 71 72 59 35 

1973-1990 24 60 70 71 58 34 

1991-2008 32 65 71 74 61 36 

 

Figure 2.16. Annual water deficit/excess (rainfall minus reference evaporation) for April-
June, July-September and the whole growing season in the Central region.  
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In Eastern Norway, there was severe drought in the mid-late 1970‟s, in some years during the 

1980‟s and in the early 1990‟s. The latter was more severe at the southern than at the northern 

location. In more recent years the incidence of severe deficits has been less marked. For the 

growing season as a whole, there has been little water deficit (< 25 mm) in almost half of all 

years (45% and 47% at northern and southern locations). Moderate deficits (25-125 mm) have 

occurred in 42% and 28% of the years at these two locations, and severe deficits in 14% and 

25% of the years, respectively.  

In the other regions, there were relatively few years with large rainfall deficits, and hardly any 

years was there an overall deficit for the whole growing season. There is thus wide variation 

between years and between regions in the likely need for irrigation water to agricultural crops. 

Individual crop requirements depend on the distribution of rainfall during the period of 

growing season at which they are most sensitive to water shortage. Irrigation requirement may 

therefore arise even in the absence of an overall rainfall deficit. 

2.9 Irrigation strategies 

The EU-Rotate_N model has several alternatives for the triggering of irrigation events. In the 

present work, irrigation is triggered when the soil water deficit (i.e. field capacity minus 

actual content) reaches a certain level. We have considered the deficit within the upper 60 cm 

of soil, in which the majority of crops roots are found. Two further choices must be made:  

How large a deficit may crops tolerate before appreciable yield loss occurs, relative to the 

available water holding capacity (AWC) of the soil (i.e. the critical deficit)?  

How much irrigation water should be applied on each occasion when the critical deficit is 

reached (i.e. what proportion of the deficit should be replenished)?  

Irrigation is normally applied at deficits of between one and two thirds of AWC. Studies of 

the effects of various irrigation strategies (e.g. Riley, 1989) have shown that little yield loss is 

incurred before about half of the AWC is depleted. This value is therefore adopted here as the 

standard, i.e. irrigation is normally applied when the deficit reaches 30 mm on drought-prone 

soil (AWC=60 mm) and 50 mm on moderately drought-resistant soil (AWC=100 mm).   

The amount of irrigation water applied on each occasion will depend on the capacity of the 

irrigation system, the soil type etc. In practice, less is often applied than that required for the 

soil to reach field capacity again. This may result in more frequent irrigation requirement, but 

it also reduces the risk that irrigation water may subsequently be lost to drainage. A value of 

50% of the deficit is adopted here as the standard (i.e. 15 mm on drought-prone soil and 25 

mm on moderately drought-resistant soil).  

The final consideration for irrigation strategy is the length of the period during which 

individual crops are sensitive to drought. This has been investigated for many crops in 

numerous field trials at Kise (Riley & Dragland, 1988;1991), and the values chosen here are 

based on this research (table 2.15). 
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Table 2.15. Dates used for sowing/planting/harvesting and the dates between which irrigation 
is performed whenever the soil water deficit reaches 50% of the available water capacity 

Crop Sowing/planting Irrigation 

start 

Irrigation end Harvesting 

Spring cereals 1st May 25
th
 May 24

th
 July 25

th
 Aug. 

Main-crop potatoes 10
th

 May 15
th
 June 25

st
 Aug. 14

th
 Sept. 

Early potatoes 10
th
 April 10

th
 May 25

th
 June 1

st
 July 

Late vegetables
1
 20

th
 May 1

st
 July 20

th
 Sept. 7

th
 Oct. 

1
 Simulations were made for carrots, the vegetable crop with the greatest area in Norway 

 

2.10 Model settings 

A description of the way in which the water balance model calculates evaporation from bare 

soil and actual crop transpiration, based on reference evaporation, is given in Appendix IV.  

Two model settings are required for the calculation of the former, the amount of readily 

evaporable water (REW) and the soil depth (Z) subject to evaporation (e). REW-values of 6 

and 9 mm were used in this study for drought-prone and drought-resistant soils, respectively, 

whilst Ze was set to 0.1 m in both cases. The drainage coefficient was set at 1.0, indicating 

that rapid free drainage occurs. This assumption is justified for most irrigated soils in Norway. 

The model uses a range of crop coefficients with which to estimate actual transpiration from 

reference evapotranspiration, depending on the likely green crop cover (or leaf area index, 

LAI) at different stages of growth. The lengths of each period chosen for use in this work, 

based on previous experience with water balance models, are shown in table 2.16.  

Table 2.16. Crop coefficient intervals (days) used in the model to calculate actual 
transpiration 

Crop Initial (<10% 

ground cover) 
Development 

(LAI < ca. 3) 

Mid-season 

(LAI > 3) 

Late season 

(senescence) 

Spring cereals 15 20 40 30 

Main-crop potatoes 25 30 50 20 

Early potatoes 20 25 30 5 

Late vegetables 30 40 50 20 
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3. Results of simulations 

3.1 Sensitivity analyses 

In order to assess the extent to which the choice of reference evaporation (ETo) estimate was 

likely to affect the calculated irrigation water requirements, a preliminary comparison was 

made using 20 years weather data from Kise (Eastern region - north), assuming spring wheat 

crops to be grown each year. This comparison was made using the standard values for 

irrigation strategy choices 1 and 2 given in section 2.9. 

Further sensitivity analyses were performed, using the same weather data set, to assess the 

effect of alternative values for irrigation strategy Choice 1 (the size of the critical water 

deficit) and Choice 2 (the proportion of the deficit replenished). In one comparison Choice 1 

was varied between 30% and 70% of AWC, whilst maintaining Choice 2 at 50% of the 

deficit, whilst in another comparison Choice 2 was varied between 30% and 70% of the 

deficit whilst maintaining Choice 1 at 50% of AWC. These simulations were performed with 

moderately drought-resistant soil, and with reference ETo calculated using the local equation. 

3.1.1 Sensitivity to choice of reference evaporation  

The total irrigation amounts and the number of irrigation events calculated by the model using 

the alternative estimates of reference evaporation are shown for spring wheat in table 3.1. The 

average number of irrigation events required on drought-prone soils was almost double that 

required  on more drought-resistant soils, whereas the total amounts of water required were 

only about 12-13% higher. This reflects the fact that drought-prone soils are irrigated more 

often, but with less water on each occasion. For both soil classes, the average amount of water 

required and the average number of applications were about 40% higher when calculated with 

the model reference evaporation than with the equation. 

High between-year variability in irrigation requirement is evident from the above calculations. 

Plots of the frequency distributions for the two classes of soil and the two reference ETo-

methods are shown in figure 3.1. The two ETo-methods gave fairly similar distributions on 

drought-resistant soil, but in the case of drought-prone soil the model ETo gave a much higher 

frequency of years with extreme irrigation requirement than did the equation ETo. Such 

frequent irrigation is probably unlikely to be performed in practice, due to limited capacity in 

terms of both time and equipment. For this reason, the use local equation may be more 

realistic for the purposes of this study, as it is concerned with estimating likely requirements.  

3.1.1 Sensitivity to choice of irrigation strategy 

The effects of varying the choice of critical water deficit and the proportion of the deficit 

replenished at each irrigation event are shown in table 3.2. 
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Table 3.1. Amounts of irrigation water and the number of irrigations required per year for 
spring wheat, calculated for moderately drought-resistant and for drought-prone soils, using 
two estimates of reference evaporation (model used in EU-Rotate_N and local equation of 
Riley 2003). Weather data from Kise, Nes på Hedmark 1988-2007 

 

Irrigation amount (mm) Number of irrigations 

 
Drought-resistant Drought-prone Drought-resistant Drought-prone 

Year Model Equation Model Equation Model Equation Model Equation 

1988 100 75 105 75 4 3 7 5 

1989 100 75 105 90 4 3 7 6 

1990 75 50 90 60 3 2 6 4 

1991 25 25 60 30 1 1 4 2 

1992 175 150 165 135 7 6 11 9 

1993 100 100 105 90 4 4 7 6 

1994 150 125 150 120 6 5 10 8 

1995 50 50 60 60 2 2 4 4 

1996 25 0 60 45 1 0 4 3 

1997 125 75 135 90 5 3 9 6 

1998 25 25 30 15 1 1 2 1 

1999 0 0 30 15 0 0 2 1 

2000 50 25 45 30 2 1 3 2 

2001 75 50 75 45 3 2 5 3 

2002 25 0 45 30 1 0 3 2 

2003 75 25 75 45 3 1 5 3 

2004 50 25 75 50 2 1 3 2 

2005 100 75 120 75 4 3 8 5 

2006 150 100 150 120 6 4 10 8 

2007 50 25 45 30 2 1 3 2 

Mean 76 54 86 63 3.1 2.2 5.7 4.1 

Std. dev. 48 42 42 36 1.9 1.7 2.8 2.4 

 

 

 

 

 

 

 

 

Figure 3.1. Frequency distributions of the number of irrigation events required per year on 
moderately drought-resistant soil (left) and drought-prone soil (right), using two estimates of 
reference evaporation (model used in EU-Rotate_N and equation of Riley 2003). Weather 
data from Kise, Nes på Hedmark 1988-2007. 
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Table 3.2. Effects of choice of critical moisture deficit and proportion of deficit replenished 
on the amounts of irrigation water and the number of irrigations required per year for spring 
wheat, calculated for moderately drought-resistant soil. (Reference evaporation according to 
the equation of Riley 2003. Weather data from Kise, Nes på Hedmark 1988-2007) 

 

Comparison of critical deficit (30 : 70 mm) Comparison of replenishment (15 : 35 mm) 

 

Irrig. amount (mm) No. of irrigations Irrig. amount (mm) No. of irrigations 

 

Def.=30 Def.=70 Def.=30 Def.=70 Def.=50 Def.=50 Def.=50 Def.=50 

Year Irrig.=15 Irrig.=35 Irrig.=15 Irrig.=35 Irrig.=15 Irrig.=35 Irrig.=15 Irrig.=35 

1988 90 70 6 2 60 70 4 2 

1989 120 70 8 2 75 70 5 2 

1990 90 35 6 1 45 70 3 2 

1991 75 0 5 0 30 35 2 1 

1992 165 105 11 3 135 140 9 4 

1993 105 70 7 2 90 105 6 3 

1994 150 105 10 3 120 140 8 4 

1995 75 35 5 1 30 35 2 1 

1996 210 0 14 0 0 0 0 0 

1997 105 35 7 1 60 70 4 2 

1998 30 0 2 0 15 35 1 1 

1999 45 0 3 0 0 0 0 0 

2000 45 0 3 0 15 35 1 1 

2001 75 35 5 1 30 35 2 1 

2002 45 0 3 0 0 0 0 0 

2003 30 0 2 0 15 35 1 1 

2004 60 0 4 0 15 35 1 1 

2005 90 35 6 1 60 70 4 2 

2006 135 70 9 2 105 105 7 3 

2007 60 0 4 0 30 35 2 1 

Mean 90 33 6.0 1.0 47 56 3.1 1.6 

Std.dev. 47 37 3.2 1.1 41 42 2.7 1.2 

 

The choice of a low level of critical water deficit (30% of AWC) resulted in very frequent 

irrigation in some years, and nearly three times the average water requirement indicated when 

the deficit was allowed to reach 70% of AWC. The latter strategy resulted in no irrigation 

being applied in almost half the years. Neither of these options appears to be very realistic, 

and it may be concluded that the choice of a critical water deficit equal to 50% of AWC is a 

better alternative.  

Varying the proportion of the deficit replenished at each time of irrigation naturally had a 

large effect on the number of irrigation events, but relatively little on the total amount of 

water used. Replenishing 70% of the deficit gave the same total requirement as replenishing 

50% (table 3.1), whilst replenishing only 30% of the deficit gave ca. 15% reduction in the 

average requirement. The latter strategy gave a very high irrigation frequency in a number of 

years, which is unlikely to be attainable in practice. The former strategy, on the other hand, in 

which 70% was replenished on each occasion, gave an irrigation frequency <2 in more than 

half the years. It may be concluded that replenishing 50% of the deficit on each occasion is a 

realistic and achievable choice of strategy. 
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3.2 Simulated irrigation requirement for spring cereals 

Irrigation water requirements for cereals are shown in tables 3.3-3.4 and figures 3.2-3.3. 

Table 3.3. Irrigation requirement (mm) for spring cereals in Eastern Norway, 1973-2008  

 Eastern Norway (northern part) Eastern Norway (southern part) 

  Drought-resistant Drought-prone Drought-resistant Drought-prone 

1973 100 105 100 105 

1974 25 60 75 75 

1975 175 180 175 180 

1976 125 120 175 180 

1977 100 105 125 135 

1978 75 90 100 135 

1979 50 75 75 105 

1980 0 30 0 30 

1981 0 15 25 45 

1982 100 120 50 90 

1983 75 105 100 120 

1984 0 30 0 30 

1985 25 30 25 45 

1986 125 135 125 135 

1987 25 45 50 60 

1988 50 60 75 90 

1989 75 90 125 120 

1990 50 60 75 75 

1991 50 60 125 120 

1992 125 135 200 195 

1993 75 90 150 150 

1994 125 120 250 240 

1995 25 60 50 75 

1996 0 30 125 120 

1997 50 75 150 150 

1998 0 15 25 30 

1999 0 15 0 30 

2000 25 30 25 45 

2001 25 30 75 75 

2002 0 30 0 30 

2003 25 30 25 45 

2004 25 15 75 60 

2005 50 75 75 105 

2006 100 120 100 135 

2007 25 30 25 45 

2008 25 45 75 105 

Mean 53.5 68.3 84.0 97.5 

Std.dev. 46.0 42.6 60.7 53.0 

Max 175 180 250 240 

Min 0 15 0 30 

Median 50.0 60.0 75.0 97.5 
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Figure 3.2. Irrigation requirement (mm) for spring cereals in Eastern Norway, 1973-2008.  

In Eastern Norway, the average irrigation water requirement was 28% higher on drought-

prone soils than on more drought-resistant soils at the northern location, and 17% higher at 

the southern location. The southern location had on average 55% higher requirement on 

drought-prone soils than at the northern location, and 44% higher requirement on more 

drought-resistant soils.  

The irrigation requirements were lower in the other regions than in Eastern Norway. Relative 

to the Eastern (southern) location they were on average about half as great in South-Western 

Norway, and about one third as great in Central Norway.  

At all locations, the coefficients of variation between years were extremely high (50-100%). 

Median requirements were fairly close to the mean requirements. On more drought-resistant 

soil, the need for a single irrigation or less was indicated in three out of four years in Central 

Norway, in about half of the years at the Eastern (northern) and South-Western locations and 

in about one third of the years at the Eastern (southern) location. 
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Table 3.4. Irrigation requirement (mm) for spring cereals in some other regions, 1973-2008  

  South-Western Norway Central Norway 
 Drought-resistant Drought-prone Drought-resistant Drought-prone 

1973 75 90 0 15 

1974 50 60 50 60 

1975 100 105 25 45 
1976 75 75 25 45 

1977 100 105 25 45 

1978 25 45 25 30 

1979 0 15 0 0 

1980 50 30 25 45 

1981 0 30 0 0 

1982 100 105 25 45 

1983 50 60 0 15 

1984 50 60 25 30 

1985 50 45 50 45 

1986 0 30 25 30 

1987 100 90 25 45 

1988 0 15 50 60 

1989 25 60 0 30 

1990 0 15 75 90 

1991 50 45 0 0 

1992 125 120 50 60 

1993 75 75 0 30 

1994 25 60 0 0 

1995 25 30 0 15 

1996 0 30 0 0 

1997 50 75 25 30 

1998 0 15 0 0 

1999 0 15 0 0 

2000 25 45 25 15 

2001 25 45 0 15 

2002 0 15 75 75 

2003 0 15 25 30 

2004 25 30 0 30 

2005 50 60 50 60 

2006 50 60 25 30 

2007 50 45 100 120 
2008 75 75 25 45 

Mean 41.7 40.4 23.6 34.2 

Std.dev. 35.9 36.4 25.3 27.2 

Max 125 125 100 120 
Min 0 0 0 0 

Median 50.0 37.5 25.0 30.0 
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Figure 3.3. Irrigation requirement (mm) for spring cereals in some other regions, 1973-2008.  
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3.3 Simulated irrigation requirement for potatoes 

The amounts of irrigation water required for late (main-crop) potatoes are shown in tables 3.5- 

3.6 and figures 3.4-3.5. 

Table 3.5. Irrigation requirement (mm) for late potatoes in Eastern Norway, 1973-2008 

 Eastern Norway (northern region) Eastern Norway (southern region) 

  Drought-resistant Drought-prone Drought-resistant Drought-prone 

1973 75 60 75 75 

1974 25 45 100 105 

1975 175 165 175 150 

1976 100 105 200 195 

1977 100 90 125 150 

1978 75 75 75 90 

1979 25 15 50 60 

1980 25 45 50 60 

1981 25 30 50 75 

1982 150 135 100 105 

1983 100 105 125 120 

1984 0 30 0 30 

1985 0 0 0 30 

1986 100 90 75 75 

1987 25 30 25 45 

1988 25 15 25 45 

1989 50 45 100 60 

1990 25 45 75 90 

1991 25 45 75 90 

1992 75 60 125 90 

1993 25 15 75 45 

1994 100 90 200 180 

1995 75 75 75 120 

1996 75 90 150 150 

1997 75 90 125 120 

1998 0 15 25 30 

1999 50 60 100 105 

2000 0 15 25 45 

2001 50 45 50 60 

2002 0 30 25 45 

2003 25 30 25 45 

2004 0 15 25 45 

2005 50 30 75 60 

2006 75 75 75 90 

2007 0 15 0 15 

2008 0 15 0 30 

Mean 50.0 53.8 74.3 81.3 

Std.dev. 44.3 38.2 53.9 44.7 

Max 175 165 200 195 

Min 0 0 0 15 

Median 37.5 45.0 75.0 75.0 
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Figure 3.4. Irrigation requirement (mm) for late potatoes in Eastern Norway, 1973-2008.  

The irrigation requirement for main-crop potatoes in Eastern Norway was of the same order 

of magnitude as that for cereals, but the timing of the requirement occurs about 3-4 weeks 

later in the season. There was less difference between drought-prone and drought-resistant 

soils for this crop than for cereals, but the difference between the northern and southern 

location was the same for potatoes as for cereals (about 50% greater at the southern location).  

A similar degree of between-year variability in irrigation requirement was found for potatoes 

as for cereals. In this case the median requirement was somewhat lower than the mean at the 

northern location but not at the southern location.  

The proportion of years with an extremely high irrigation requirement was somewhat lower 

for potatoes than it was for cereals. This reflects the fact that irrigation of potatoes takes place 

slightly later in the season, when the incidence of rainfall is often more frequent than earlier. 
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Table 3.6. Irrigation requirement (mm) for late potatoes in some other regions, 1973-2008  

 South-Western Norway Central Norway 

  Drought-resistant Drought-prone Drought-resistant Drought-prone 

1973 75 90 0 0 

1974 50 45 25 15 

1975 100 75 25 15 

1976 75 90 0 15 

1977 50 30 0 15 

1978 0 30 25 45 

1979 25 15 0 15 

1980 25 45 50 60 

1981 0 0 0 0 

1982 100 60 0 15 

1983 25 30 0 0 

1984 75 90 0 0 

1985 0 0 25 0 

1986 0 15 0 15 

1987 50 45 25 15 

1988 0 0 25 15 

1989 0 15 0 0 

1990 25 30 0 0 

1991 50 30 0 15 

1992 50 45 0 0 

1993 25 30 0 15 

1994 50 45 0 30 

1995 50 45 0 0 

1996 50 60 0 15 

1997 25 30 25 45 

1998 0 0 0 0 

1999 25 30 0 15 

2000 25 30 0 15 

2001 0 15 0 0 

2002 25 30 75 90 

2003 0 30 25 45 

2004 25 45 50 60 

2005 50 45 25 30 

2006 25 45 50 45 

2007 0 0 50 30 

2008 0 15 25 45 

Mean 31.9 35.4 14.6 20.4 

Std.dev. 29.0 24.6 20.2 21.6 

Max 100 90 75 90 

Min 0 0 0 0 

Median 25.0 30.0 0.0 15.0 

 

The irrigation requirement for main-crop potatoes in South-Western and Central Norway was 

lower than that for cereals, and in both cases considerably lower than that for potatoes in 

Eastern Norway. The requirements appeared to be somewhat lower in recent years in South-

Western Norway, whereas the opposite was the case in Central Norway. 
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Figure 3.5. Irrigation requirement (mm) for late potatoes in some other regions, 1973-2008.  

 

The amounts of irrigation water required for early potatoes are shown in tables 3.7-3.8 and 

figures 3.6-3.7. The requirement for this crop was much lower than that for main-crop 

potatoes, due to their much shorter growing season and because less soil drying has normally 

occurred by the time they reach a drought-susceptible stage of growth. The very low 

requirement that was simulated for the Eastern (northern) region has little practical relevance, 

as early potatoes are not grown in this area. In the more southerly region, the average 

requirement is only a single irrigation per season, though it is known that many growers 

practice a much higher intensity. The simulations indicated a requirement of two or more 

irrigation events per season in only one quarter of the years in this region, and hardly ever in 

other regions. 
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Table 3.7. Irrigation requirement (mm) for early potatoes in Eastern Norway, 1973-2008 

 Eastern Norway (northern region) Eastern Norway (southern region) 

  Drought-resistant Drought-prone Drought-resistant Drought-prone 

1973 25 15 25 15 

1974 0 0 25 15 

1975 25 15 50 30 

1976 25 15 25 15 

1977 0 0 25 15 

1978 25 15 50 30 

1979 0 0 0 0 

1980 0 0 0 0 

1981 0 0 0 0 

1982 25 15 25 15 

1983 25 15 25 30 

1984 0 0 0 15 

1985 0 0 0 0 

1986 0 0 25 15 

1987 0 0 0 0 

1988 0 0 25 30 

1989 0 0 25 15 

1990 25 15 50 15 

1991 0 0 25 0 

1992 50 30 75 60 

1993 0 0 50 45 

1994 25 0 75 45 

1995 0 0 0 0 

1996 0 0 0 0 

1997 0 0 50 30 

1998 0 0 0 0 

1999 0 0 0 0 

2000 25 0 25 15 

2001 0 0 0 0 

2002 0 15 0 15 

2003 0 0 0 0 

2004 0 0 50 30 

2005 0 0 0 0 

2006 25 15 25 15 

2007 25 15 25 30 

2008 25 0 50 30 

Mean 9.7 5.0 22.9 15.8 

Std.dev. 13.7 8.0 22.7 15.6 

Max 50 30 75 60 

Min 0 0 0 0 

Median 0.0 0.0 25.0 15.0 
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Figure 3.6. Irrigation requirement (mm) for early potatoes in Eastern Norway, 1973-2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Irrigation requirement (mm) for early potatoes in some other regions, 1973-2008.  
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Table 3.8. Irrigation requirement (mm) for early potatoes in some other regions, 1973-2008 

  South-Western Norway Central Norway 

  Drought-resistant Drought-prone Drought-resistant Drought-prone 

1973 0 0 0 0 

1974 25 15 0 0 

1975 0 0 0 0 

1976 0 0 0 0 

1977 25 0 0 0 

1978 0 15 0 0 

1979 0 0 0 0 

1980 25 15 0 0 

1981 0 0 0 0 

1982 25 15 0 0 

1983 0 15 0 0 

1984 0 0 25 15 

1985 0 0 0 0 

1986 0 0 0 0 

1987 0 0 0 0 

1988 0 0 0 0 

1989 25 15 0 0 

1990 0 0 25 15 

1991 0 0 0 0 

1992 50 30 25 15 

1993 25 15 0 0 

1994 0 0 0 0 

1995 0 0 0 0 

1996 0 0 0 0 

1997 0 0 0 0 

1998 0 0 0 0 

1999 0 0 0 0 

2000 0 0 0 0 

2001 0 0 0 0 

2002 0 0 25 15 

2003 0 0 0 0 

2004 0 0 0 0 

2005 0 0 0 0 
2006 25 0 0 0 

2007 25 15 0 0 

2008 50 30 0 0 

Mean 8.3 5.0 2.8 1.7 

Std.dev. 14.6 8.8 8.0 4.8 

Max 50 30 25 15 

Min 0 0 0 0 

Median 0.0 0.0 0.0 0.0 
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3.4 Simulated irrigation requirement for vegetables  

The irrigation requirements for early and mid-season vegetables are likely to be similar to 

those for early and main-crop potatoes, respectively. Onions and early brassica crops are the 

main crops in this group. Simulations were made for late carrots to represent late-season 

vegetable crops. The results are likely to be representative also for vegetables such as swedes 

and late brassicas. 

The amounts of irrigation water required for late carrots are given in tables 3.9 – 3.10 and 

figures 3.8 - 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. Irrigation requirement (mm) for late carrots in Eastern Norway, 1973-2008.  
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The irrigation requirement for late carrots in the Eastern region was slightly lower than that 

for main-crop potatoes, but showed a similar pattern between years and between the north and 

south locations.  

Table 3.9. Irrigation requirement (mm) for late carrots in Eastern Norway, 1973-2008 

  Eastern Norway (northern region) Eastern Norway (southern region) 

  Drought-resistant Drought-prone Drought-resistant Drought-prone 

1973 100 60 100 90 

1974 25 45 75 75 

1975 150 105 150 120 

1976 150 120 225 195 

1977 75 60 100 105 

1978 50 60 50 75 

1979 0 15 25 30 

1980 25 30 50 45 

1981 50 60 75 105 

1982 125 105 75 75 

1983 100 90 125 105 

1984 25 45 0 45 

1985 0 0 0 15 

1986 50 45 50 30 

1987 25 0 25 30 

1988 0 15 0 15 

1989 25 30 50 45 

1990 25 15 75 75 

1991 75 75 125 120 

1992 25 15 50 45 

1993 0 15 50 45 

1994 75 60 150 135 

1995 50 60 75 90 

1996 75 75 150 105 

1997 50 75 75 90 

1998 25 30 25 15 

1999 75 75 100 105 

2000 0 15 25 30 

2001 25 30 25 45 

2002 25 45 50 60 

2003 25 30 25 45 

2004 0 15 25 30 

2005 25 15 25 30 

2006 50 45 50 60 

2007 0 45 25 60 

2008 0 0 0 15 

Mean 44.4 45.0 63.9 66.7 

Std.dev. 41.5 31.3 51.2 40.8 

Max 150 120 225 195 

Min 0 0 0 15 

Median 25.0 45.0 50.0 60.0 
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Table 3.10. Irrigation requirement (mm) for late carrots in some other regions, 1973-2008 

  South-Western Norway Central Norway 

  Drought-resistant Drought-prone Drought-resistant Drought-prone 

1973 50 45 0 0 

1974 25 30 0 0 

1975 75 45 0 0 

1976 75 90 0 0 

1977 25 15 0 15 

1978 0 30 25 45 

1979 0 0 0 15 

1980 25 30 25 30 

1981 0 30 0 0 

1982 50 45 0 15 

1983 25 15 0 0 

1984 75 60 0 0 

1985 0 0 0 0 

1986 0 0 0 0 

1987 25 0 0 0 

1988 0 0 0 15 

1989 0 0 0 0 

1990 25 15 0 0 

1991 25 30 0 0 

1992 25 15 0 15 

1993 0 15 0 0 

1994 25 15 0 15 

1995 25 45 0 15 

1996 25 30 0 30 

1997 0 15 25 30 

1998 0 15 0 0 

1999 25 30 0 15 

2000 0 0 0 0 

2001 0 0 0 0 

2002 25 45 75 75 

2003 0 15 25 15 

2004 25 30 50 60 

2005 25 30 25 15 

2006 25 30 50 45 

2007 0 0 25 0 

2008 0 15 25 45 

Mean 20.1 22.9 9.7 14.2 

Std.dev. 22.2 20.1 18.2 19.3 

Max 75 90 75 75 

Min 0 0 0 0 

Median 25.0 15.0 0.0 7.5 

 

The irrigation requirement for late carrots was relatively small in the South-Western and 

Central regions of Norway, as higher rainfall is normal in late summer in these regions. As for 

potatoes, a somewhat greater requirement has occurred in recent years in the Central region. 
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Figure 3.9. Irrigation requirement (mm) for late carrots in some other regions, 1973-2008.  
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3.5 Mean requirements, comparison of periods and variability 

The mean irrigation requirements over the whole period are summarized in figure 3.10. 

Requirements are for all crops greatest in the Eastern (southern) region, closely followed by 

the Eastern (northern) region. Although the rainfall is higher in the former than in the latter, 

so also are the mean temperature and global radiation, resulting in higher evaporative demand. 

Requirements are much lower in the South-Western region, and even less in Central Norway.  
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Figure 3.10. Mean irrigation requirement (mm/year) over the period 1973-2008 for various 
crops in four regions of Norway. 

 

Due to speculation about the effect on irrigation requirement of climate change in recent 

years, analyses of variance were performed in order to see if there was any statistically 

significant difference between the first and second halves of the period from 1973 to 2008. 

Analyses were made for spring cereals and main-crop potatoes. These confirmed that the 

differences between regions are significant but in no case did they reveal any significant 

difference between the first and the second halves of the period (analysis details not shown). 

The high degree of variability between years in the requirements for irrigation water means 

that farmers should plan the capacity of their irrigation equipment at a higher level than that 

necessary for the average requirements, in order to be able to meet the water demand in years 

with more severe drought. Histograms of the percentage frequency of irrigation requirements 

are shown in figure 3.11 and cumulative percentages of years in relation to increasing demand 

are shown in figure 3.12. The figures refer to spring cereals and main-crop potatoes. These 

figures show that in Central Norway less than two irrigation events are required in about 80% 

of years on drought-resistant soil. At the other extreme, in the Eastern (southern) region, this 

occurs in about 30% of years.  
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Figure 3.11. Histograms showing the percentage frequency of years with increasing levels of 
irrigation requirement in four agricultural regions of Norway. Based on data for 1973-2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Cumulative percentages of years in relation to increasing levels of irrigation 
requirement in four agricultural regions of Norway. Based on data for 1973-2008. 
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In order to estimate the irrigation capacity required in order to meet demands in relation to the 

percentage of all years, quadratic equations were derived from the data in figure 3.12, by 

regressing the requirement against the cumulative percentage of years. These equations (not 

shown) accounted in almost all cases for around 95-97% of the variation and were used to 

calculate the data in table 3.11. This table shows that, in order to meet demands in 80% of all 

years, an irrigation capacity is needed that is on average half as much again as the mean 

requirement. To meet demands in 90% of all years, the capacity must often be doubled, whilst 

to meet demands every year a capacity of around three times the mean requirement is needed.  

 

Table 3.11.  Irrigation capacities (mm/year) required in order to meet demands in increasing 

proportions of years over the period 1973-2008, relative to mean requirements for all years  

 Eastern region (south) Eastern region (north) South-Western region Central region 

% of 

years 

Drought-

resistant 

Drought-

prone 

Drought-

resistant 

Drought-

prone 

Drought-

resistant 

Drought-

prone 

Drought-

resistant 

Drought-

prone 

Spring cereals 

40 34 46 12 36 9 21 0 6 

50 51 63 24 50 17 32 0 11 

60 73 84 40 67 28 45 0 20 

70 101 107 62 86 43 61 6 33 

80 135 134 88 108 62 80 26 51 

90 174 164 119 133 84 101 55 72 

100 218 198 155 160 110 126 93 97 

 

Mean 84 98 54 68 42 40 24 34 
 

Late potatoes        

40 30 44 10 20 3 13 0 0 

50 45 59 21 32 8 20 0 0 

60 64 76 37 47 17 29 0 2 

70 87 96 58 65 30 41 0 13 

80 115 119 84 87 48 54 13 28 

90 147 145 116 113 69 70 37 50 

100 183 174 152 141 94 88 74 76 

 

Mean 74 81 50 54 32 35 15 20 
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4. Comparisons with actual irrigation practice  

4.1 Survey of irrigation water use in Hedmark and Oppland counties 

No official statistics exist for irrigation water use in Norway. Very few farmers keep accurate 

records of their irrigation practice. Information was collected by senior research technician 

Erling Berentsen from four collective irrigation operators who supply water to a number of 

farms, and with one farmer who has kept records for a field runoff study tables 4.1 and 4.2). 

All of these were within a 30 km radius of the weather station used to calculate irrigation 

requirements at the northern location of Eastern Norway. The dominant crops irrigated were 

cereals and potatoes (in an approximately 3 to 1 ratio), with smaller areas of vegetables 

(onions, carrots and some brassicas) and grass.  The soils are mainly loams, with intermediate 

water-holding capacity (some drought-prone, some more drought-resistant). The area covered 

by these suppliers represents 2% of the total irrigated area in Norway. 

Table 4.1 Names and details of irrigation water suppliers interviewed 

Name Place Area (ha) Period Dominant crops 

Balke & Hveem Østre Toten 678.5 1990-2008 Vegetables/arable 

Mjøsregn Østre Toten 371.6 1990-2008 Cereals/potato 

Hoff  Østre Toten 1200.0   1990-2008 Cereals/potato 

Nes  Nes på Hedmark 400.0 1996-2008 Cereals/potato 

Bye study field Nes på Hedmark 4.0 1990-2008 Cereals/potato 

Table 4.2. Amounts (m3) of water supplied annually by the various irrigation water suppliers 

Year Balke/Hveem Hoff Mjøsregn Nes Bye 

1990 518705 372452 200334 - 2400 

1991 459616 371363 195084 - 2200 

1992 635115 869030 288895 - 3600 

1993 301637 349521 156559 - 2200 

1994 728050 1000533 417000 - 5800 

1995 458850 440234 257460 - 0 

1996 463062 425957 240940 200350 3200 

1997 605231 523416 280800 221800 2400 

1998 251888 113895 98882 57700 800 

1999 330955 280836 156788 87020 1200 

2000 246667 97588 115429 50050 1200 

2001 313156 187628 136510 24200 0 

2002 308219 159386 90713 31450 4800 

2003 218607 184625 81019 26940 1200 

2004 410800 163684 122668 48650 2000 

2005 327863 231248 126660 105600 2200 

2006 620773 518003 240993 219400 2400 

2007 343079 123355 62142 77750 1800 

2008 333151 205518 115120 140800 3600 
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The amounts of irrigation were calculated on an aerial basis by simply dividing the amounts 

of water supplied by the total area which the irrigated systems are designes to supply. This 

overlooks the fact that parts of these areas may be irrigated more intensively than others. 

There was thus a difference between suppliers in the average amounts supplied on an area 

basis (figure 4.1). This also reflects the extent to which cash crops such as vegetables and 

potatoes are present in each area. The farms supplied by Balke-Hveem, for example, have the 

highest proportion of such crops, and consequently the highest rate of water use. Despite this 

weakness, it appeared that there was consistency amongst the suppliers of water with respect 

to the between-year variation in the use of irrigation water. Nes and Hoff, on the other hand, 

supply water to farms with a low proportion of cash crops. 

The irrigation amounts used on the Bye study field showed greater variation between years 

than the data from the larger water suppliers. For instance, no irrigation was applied in 1995 

and 2001 when the crop was barley (low value), and very high amounts were applied in 1994 

and 2002 when the crops were wheat and potatoes, respectively (higher value). The farmer at 

Bye is known to irrigate earlier in the season and more regularly than the „average‟ farmer. 
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Figure 4.1. Irrigation water amounts (mm) supplied by four irrigation cooperatives and used 
by one individual farmer (Bye) in the northern part of Eastern Norway, 1990-2008.  

4.2 Comparisons of actual water use with simulated demand 

Comparisons of the actual amounts of water from the four suppliers (on an area basis) with 

the requirements by the model are shown in figure 4.2. The latter values are weighted 

averages of the requirements calculated for cereals and potatoes at the Kise weather station 

(assuming an average cereal area of 70% and a potato area of 30%). Requirements for both 

drought-probe and more drought-resistant soils are plotted. 

Reasonably good correlations were found between the calculated requirements and the actual 

amounts of water supplied, with coefficients of determination in the order of 55-85% for the 

individual suppliers. There was a tendency in all cases for the calculated requirement to 
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exceed the actual amounts supplied at the higher levels of irrigation demand (>80 mm/year). 

This presumably reflects the technical or economic constraints of the irrigation systems used.  
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Figure 4.2. Calculated irrigation requirements (mm/year) plotted against water amounts 
(mm) supplied by four irrigation cooperatives in the northern part of Eastern Norway.  

The agreement between the calculated requirements and the amounts of irrigation actually 

applied was somewhat poorer for the individual field study at Bye farm (figure 4.3). In the 

years with barley, irrigation was either omitted or lower than optimum, whilst in one potato 

year (2002), the amount applied was far greater than the calculated requirement. This may 
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have been due to local variations in rainfall patterns, or else the farmer may have started 

irrigation earlier than normal. Less emphasis may therefore be placed on this result. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Calculated irrigation requirements (mm/year) plotted against water amounts 
(mm) applied by the farmer at the Bye farm study field.  
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Given the limitations of the water data collected from the four suppliers and the field study at 

Bye, with respect to uncertainty about the areas of individual crops irrigated and possible 

variations in local rainfall patterns, the calculated irrigation requirements accorded reasonably 

well overall with the actual water use (figure 4.4). The data points cluster fairly uniformly 

around the 1:1 line, though a tendency for using slightly less water than required is detectable 

at high levels of demand. This was, however, not reflected in the overall regression equations, 

so that it may be concluded that average actual water use is in practice close to the calculated 

requirements. 
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Figure 4.4. Calculated irrigation requirements plotted against water amounts supplied by all 
five sources of information listed in table 4.1. The dotted line represents the 1:1 line.  
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5. Conclusion 

5.1 Summary in English 

This study represents an attempt to quantify the requirements for irrigation water in Norway. 

The total irrigated area is about 130 000 ha, or 14% of the country‟s agricultural area. Almost 

80% of this is found in the Eastern region (divided in this study into northern and southern 

parts), 10% in the Southern and South-Western region and 5% in the Central region. Data are 

lacking on the area of individual crops that are irrigated, but at most 20% of the irrigated area 

is considered to be used for vegetable crops and potatoes, with cereals occupying much of the 

remainder.  

Emphasis was placed on quantifying requirements for cereals, potatoes and late vegetables in 

the four regions mentioned. Weather data for 1973-2008 was used from a representative 

station in each region, thus covering an equal number of years in the existing (1961-1990) and 

future (1991-2020) 30-year normal periods. The Eastern region has a relatively dry climate, 

particularly in the first half of the growing season, whilst in other regions there is on average 

no water deficit. There is, however, high between-year variability in all regions, with large 

deficits in some years, moderate deficits in other years and little or no deficit in the remainder.  

The EU-Rotate_N model (Rahn et al., 2008) was used to calculate irrigation requirements. 

This model contains an FAO-recommended water balance subroutine, as well as options for 

selecting the irrigation practices that are most suitable for different crops. All calculations 

were performed for two classes of soil, representing drought-prone soils, such as sands, and 

more drought-resistant soils, such as loams, respectively. Irrigation is uncommon in Norway 

on soils with higher resistance to drought, such as silt, clay loam and peaty soils. 

A locally calibrated estimate of reference evaporation was used in the calculations, and a 

sensitivity analysis was performed to select a suitable irrigation strategy with respect to 

critical water deficit and percentage refill. The chosen strategy was such that irrigation was 

applied, in crop-dependent drought-sensitive growth periods only, whenever the deficit 

reached 50% of the available water capacity within the upper 60 cm of soil. The amount 

applied on each such occasion was equal to one half of the calculated deficit.  

A summary of the mean irrigation water requirements is given in table 5.1 for various crops in 

the four regions, together with an indication of the variability between years. The average 

calculated irrigation requirements for spring cereals in the southern part of the Eastern region 

are around 100 mm per year on drought-prone soil and 85 mm on more drought-resistant soil. 

The corresponding figures in the northern, more inland part of this region are around 70 mm 

and 55 mm. In the South-Western region the average requirement is around 40 mm on both 

soil types, and in the Central region it is around 35 mm on drought-prone soil and 25 mm on 

more drought-resistant soil. 

Average requirements for main-crop potatoes in the southern and northern parts of the Eastern 

region are around 75-80 and 50-55 mm, respectively, with little difference between soil type. 

In South-Western and Central Norway, they are around 30-35 mm and 15-20 mm, 

respectively. Calculated requirements for early potatoes are much lower than for main-crop 
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potatoes, though in practice higher amounts may be used as an intensive irrigation strategy is 

common in this high-value crop.  

Average requirements for late vegetable crops, such as carrot, are a little less than those for 

main-crop potatoes (ca. 65 and 45 mm in southern and northern parts of the Eastern region, 

20-25 and 10-15 mm in South-Western and Central regions, respectively). The relatively low 

requirement or this crop is due to increasing amounts of precipitation in autumn in all regions.   

Table 5.1. Mean and median (1973-2008) irrigation water requirements (mm) by various 
crops on two classes of soil in four regions of Norway, and variability between years (CV%) 

 Østlandet (sør) Østlandet (nord) Sør- /Sør-Vest. Midt Norge 

Droughtiness: Resistant Prone Resistant Prone Resistant Prone Resistant Prone 

Spring cereals         

Mean 84 98 54 68 42 40 24 34 

Median 75 98 50 60 50 38 25 30 

CV% 72 54 86 62 84 90 107 80 

Late potatoes        

Mean 74 81 50 54 32 35 15 20 

Median 75 75 38 45 25 30 20 22 

CV% 73 55 89 71 91 69 138 106 

Late vegetables         

Mean 64 67 44 45 20 23 10 14 

Median 50 60 25 45 25 15 0 8 

CV% 80 61 93 70 110 88 188 136 

Early potatoes
1
        

Mean 23 16 10 5 8 5 3 2 

Median 25 15 0 0 0 0 0 0 

CV% 99 99 141 160 176 176 286 282 

1 
Similar values may be expected for many early vegetable crops 

The average irrigation requirements cited above are not, however, representative of the 

amounts that may be required in individual years, due to the very high coefficients of 

variation that are commonly found. These are for many crops usually around 60-80% in 

Eastern Norway, and significantly higher in other regions. The variability is usually slightly 

higher for the more drought-resistant soil class than for the drought-prone class, due to the 

smaller water-holding capacity of the latter. The variability in requirement is extremely high 

for crops that require irrigation early in the season, such as early potatoes, particularly in the 

Central region. Mean water requirement values are relatively meaningless in such cases. 

High variability has implications for the capacity requirements of irrigation systems. The 

percentage distribution of years with different requirements was calculated for cereals and 

main-crop potatoes. This showed that on drought-resistant soil in Central Norway, less than 

two irrigation events are required in about 80% of years. At the other extreme, in the Eastern 

(southern) region, this occurs in about 30% of years. No statistically significant differences in 

average requirements were found between the periods 1973-1990 and 1991-2008. 

Calculations were made to estimate the irrigation capacity required in order to meet demands 

in relation to increasing percentages of all years. In order to meet demands in 80% of all 

years, an irrigation capacity is needed that is on average half as much again as the mean 
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requirement. To meet demands in 90% of all years, the capacity must often be doubled, whilst 

to meet demands every year a capacity of around three times the mean requirement is needed. 

In order to assess the validity of the calculated requirements in relation to current farmer 

practice, information on water use was collected from a number of irrigation water suppliers 

in one of the main districts in the inland Eastern region of Norway where irrigation is 

practiced to cereals, potatoes and vegetables. The area represented by this survey covered 

about 2% of the total irrigated area of Norway. This information was used to compare actual 

water use with the calculated requirements. Overall, the agreement was found to be 

reasonably good, with calculated requirements accounting for 55-85% of the variation in 

amounts of water supplied over a period of almost 20 years. Thus it may be considered that 

the model calculations are realistic in relation to actual irrigation water use in Norway. 
 

The overall conclusion is that this report gives a reasonable assessment of the likely irrigation 

requirements, and their variability, of the major crops irrigated in the dominant arable and 

vegetable-growing regions of Norway. In relation to actual farmer practice, uncertainty may 

be attached to some of the estimates given, for instance those for early potatoes. These may in 

practice be irrigated more intensively than suggested here, i.e. at lower critical water deficits 

and/or with higher replenishment rates, implying higher water usage. The same may apply to 

some vegetable crops. Finally, some important omissions in this study should be mentioned, 

notably the irrigation of  top and soft fruit, which is of importance particularly in Western 

Norway, and of grass leys and pasture, which is important in central upland valleys such as 

Gudbrandsdal. Further study is needed on these topics. 

 

5.2 Sammendrag på norsk 

Rapporten omfatter et forsøk på å kvantifisere vannbehovet til vanning i norsk landbruk. 

Totalarealet som kan vannes er ca. 1.3 m dekar, eller 14% av landets jordbruksareal. Nesten 

80% av dette finnes på Østlandet (delt i denne studien mellom nordlig og sørlig del), 10% i på 

Sørlandet og Sør-Vestlandet og 5% i Midt-Norge. Det mangler opplysninger om arealet av 

ulike veksttyper som vannes, men det antas at i høyden 20% brukes til grønnsaker og potet, 

mens korn utgjør mesteparten av det øvrige vanningsarealet.  

Fokuset er rettet mot beregning av vannbehovet til korn, potet og grønnsaker i de fire 

regionene som er nevnt ovenfor. Værdata for perioden 1973-2008 er brukt fra en representativ 

målestasjon i hver region. Dette dekker et likt antall år i det eksisterende (1961-1990) og det 

framtidige (1991-2020) 30-års normalperiode. På Østlandet overstiges nedbøren av potensiell 

fordamping, spesielt i første halvdel av vekstsesongen. I de andre regionene er det intet 

nedbørsunderskudd i middel av alle år, men det er store variasjoner mellom år. I alle regioner 

kan det være store underskudd i noen år og moderate underskudd i andre år. 

EU-Rotate_N modellen (Rahn et al., 2008) ble brukt til å simulere vannbehovet til vanning.  

Denne modellen inneholder en vannbalanse rutine som er anbefalt av FAO, så vel som 

valgmuligheter som gjør den egnet til å simulere vanningsstrategier til mange ulike vekster.  

Alle beregninger ble utført for to klasser av jord, for å representere henholdsvis tørkesvak 

jord, som sand, og middels tørkesterk jord, som lettleire. En regner med at vanning i liten grad 

praktiseres i Norge på mer tørkesterk jord, som silt, mellomleire og myrjord. 
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En lokalt kalibrert beregningsmetode for referansefordamping ble brukt i beregningene, og en 

følsomhetsanalyse ble utført for å finne en passende vanningsstrategi med tanke på fastsetting 

av det kritiske vannunderskuddet i jorda som utløser vanningsbehov og andelen av dette 

underskuddet som blir erstattet ved vanning. Strategien som ble valgt var å vanne når 

underskuddet nådde 50% av den tilgjengelige vannlagringskapasitet i jordas øvre 60 cm, og 

da med en mengde som tilsvarer halvparten av det beregnete underskuddet. Vanning ble bare 

gitt i periodene når plantene regnes å være følsomme for tørke, noe som er vekstavhengig.  

Et sammendrag av de gjennomsnittlige behovene for vann til vanning er gitt i tabell 5.2 for 

ulike vekster i de fire regionene, sammen med et uttrykk for variabiliteten mellom år. Midlere 

behov til vårkorn i den sørlige delen av Østlandet er omkring 100 mm pr. år på tørkesvak jord 

og 85 mm på middels tørkesterk jord. I den nordlige, innlandsdelen er ca. 70 mm og 55 mm. 

På Sørlandet og Sør-Vestlandet er middelbehovet ca. 40 mm på begge klasser av jord, mens 

behovene i Midt-Norge er ca. 35 mm på tørkesvak jord og 25 mm på middels tørkesterk jord.  

Tabell 5.2. Middel- og medianbehov (1973-2008) for vann til vanning (mm) av ulike vekster 
på to klasser av jord i fire regioner av Norge, og et mål på variabiliteten mellom år (CV%) 

 Østlandet (sør) Østlandet (nord) Sør- /Sør-Vest. Midt Norge 

Tørkestyrke: Middels Svak Middels Svak Middels Svak Middels Svak 

Vårkorn         

Middel 84 98 54 68 42 40 24 34 

Median 75 98 50 60 50 38 25 30 

CV% 72 54 86 62 84 90 107 80 

Sein potet        

Middel 74 81 50 54 32 35 15 20 

Median 75 75 38 45 25 30 20 22 

CV% 73 55 89 71 91 69 138 106 

Seine grønnsaker        

Middel 64 67 44 45 20 23 10 14 

Median 50 60 25 45 25 15 0 8 

CV% 80 61 93 70 110 88 188 136 

Tidligpotet
1
        

Middel 23 16 10 5 8 5 3 2 

Median 25 15 0 0 0 0 0 0 

CV% 99 99 141 160 176 176 286 282 

1 
Lignende verdier kan ventes også for mange tidlige grønnsakskulturer 

Til sein potet i de sørlige og nordlige delene av Østlandet er behovene i middel henholdsvis 

ca. 75-80 mm og 50-55 mm, med bare små forskjeller på ulike typer jord. På Sørlandet og 

Sør-Vestlandet er de omkring 30-35 mm og i Midt-Norge bare ca. 15-20 mm. De beregnete 

behovene til tidligpotet var i gjennomsnitt mye lavere enn til sein potet, men i praksis brukes 

det trolig større mengder, da en mer intensiv vanningsstrategi velges av mange til den 

verdifulle veksten.  

Midlere vanningsbehov til seine grønnsaker, som gulrot, er noe mindre en behovene til sein 

potet (ca. 65 og 45 mm i de sørlige og nordlige delene av Østlandet, 20-25 mm på Sørlandet 

og Sør-Vestlandet og bare 10-15 mm i Midt-Norge).  De relativt lave behovene til denne 

veksten skyldes at nedbørsmengdene øker i alle regionene utover høsten.   
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De gjennomsnittlige behovene som er nevnt ovenfor er imidlertid ikke representative for 

vannmengdene som det kan være behov for i enkelte år, på grunn av den store variabiliteten 

mellom år som finnes i alle regioner. Variasjonskoeffisienter på 60-80% er vanlige for mange 

vekster på Østlandet, og verdiene er betydelig høyere i de andre regionene. Variabiliteten er 

ofte noe høyere på mer tørkesterk jord enn på tørkesvak jord, som følge av den lavere 

vannlagringskapasiteten hos sistnevnte. Variabiliteten er ekstremt stor for vekster som trenger 

vanning tidlig i sesongen, slik som tidligpotet, spesielt i Midt-Norge. I slike tilfeller er 

begrepet ‟midlere vannbehov‟ relativt meningsløst. 

Stor variabilitet mellom år har innvirkning på kapasitetsbehovene ved dimensjoneringen av 

vanningsanlegg. Den prosentvise fordelingen av år med ulike behov ble derfor beregnet for 

vårkorn og sein potet. Dette viste at det i Midt-Norge var behov for mindre enn to vanninger 

pr. år i 80% av alle år på middels tørkesterk jord. I andre ytterlighet, i den sørlige delen av 

Østlandet, inntreffer dette i bare omkring 30% av alle år. Det ble ikke funnet noen statistisk 

sikre forskjeller i middelsbehovene for vann mellom periodene 1973-1990 og 1991-2008. 

Beregninger ble også utført for å estimere den maksimale vanningskapasiteten som trengs for 

å kunne møte behovene i forhold til økende andel av alle år. For å møte behovet i 80% av alle 

år, trengs en kapasitet som er i gjennomsnitt 50% høyere enn det midlere behovet. Økes 

kravet til 90% av alle år, må kapasiteten ofte dobles, mens hvis behovet skal møtes hvert 

eneste år, trengs det en vanningskapasitet som er ca. tre ganger så stor som middelbehovet. 

For å kunne vurdere validiteten av de beregnete behovene i forhold til gjeldende praksis hos 

norske bønder, ble det innhentet opplysninger om vannforbruk til vanning fra et antall større 

vannforsyningsanlegg i et av de viktigste distriktene der det praktiseres vanning til korn, potet 

og grønnsaker i den nordlige delen av Østlandet. Arealet som disse anleggene forsyner vann 

til representerer omkring 2% av totalarealet som kan vannes i Norge. Opplysningene ble brukt 

for å sammenligne faktisk vannforbruk med de beregnete behovene. Det ble i hovedsak funnet 

relativt god overensstemmelse mellom praksis og teori. De beregnete behovene i distriktet 

forklarte 55-85% av variasjonen i vannmengdene som ble levert fra de ulike anleggene over 

en periode på nesten 20 år. Det kan dermed antas at modellsimuleringene er realistiske sett i 

forhold til faktisk vannforbruk til jordbruksvanning i Norge. 

 

Hovedkonklusjonen er at denne rapporten gir en rimelig vurdering av de sannsynlige 

vannbehovene til jordbruksvanning, og deres variabilitet, hos de viktigste åkervekstene og 

grønnsaker som vannes i landets dominerende jordbruksregioner. I forhold til faktisk 

dyrkerpraksis, knytter det seg en del usikkerhet til enkelte av estimatene som er gitt, for 

eksempel de for tidlig potet. Disse vannes trolig mer intensivt enn det som er antydet her, dvs. 

ved lavere kritiske vannunderskudd og/eller ved å erstatte en høyere andel av underskuddet. 

Dette ville innebære et høyere vannforbruk. Det samme gjelder trolig for enkelte grønnsaker. 

Til slutt bør det nevnes noen åpenbare mangler i denne rapporten, nemlig vanningsbehovene 

til frukt og bær, som er viktige spesielt på Vestlandet, og til eng og beite, som er viktige i 

sentrale dalstrøk, som den øvre del av Gudbrandsdal. Disse emnene bør undersøkes nærmere.   
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7.1 Appendix I.  Irrigation in Norway: Some statistics from the 1999 agricultural 

survey. Agricultural area, irrigated area, number of farms with irrigation, irrigation 

method, water source and %-distribution of farms by percentage of area irrigated. 
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Appendix I .      Irrigation in Norway: Some statistics from the 1999 survey (Statistics Norway). Agricultural area, area that may be irrigated,  

 

number of farms with irrigation, irrigation method, water source and %-distribution of farms by percentage of area irrigated 

                 District  Agric. area (ha) Irrigated area  Equipment used (%) Water source Percent of area irrigated 

Region/County Total  Irrigated 
% of  
total  

% of 
 irrig. 

No. 
farms 

Rain- 
gun 

Sprin
-kler 

Trickle 
drip 

River, 
beck 

Lake, 
tarn 

Ground
-water 

<24
% 

25-
49% 

50-
74% 

75-
99% 

100 
% 

  
  

  
 

  
   

  
 

  
    

  

Eastern (north) 292836 60079 20.5 45.5 4162 

   
  

 
  

    
  

Akershus 81408 8169 10.0 6.2 468 63 45 10 56 42 9 15 21 21 21 22 

Hedmark 108626 25242 23.2 19.1 1256 69 42 1 63 40 5 12 21 22 22 23 

Oppland 102803 26668 25.9 20.2 2438 59 64 1 73 29 3 10 24 27 21 19 

  
  

  
 

  
   

  
 

  
    

  

Eastern (south) 199114 42300 21.2 32.0 3379 
   

  
 

  
    

  

Østfold 77134 12472 16.2 9.4 667 71 43 4 48 52 6 7 16 20 25 33 

Vestfold 43568 12325 28.3 9.3 829 72 50 7 49 47 15 9 14 18 26 33 

Telemark 26189 4242 16.2 3.2 626 40 61 11 61 36 10 15 28 24 15 18 

Buskerud 52224 13261 25.4 10.0 1257 59 58 4 71 28 4 11 25 24 19 22 

  
  

  
 

  
   

  
 

  
    

  

South/South-west 129139 12833 9.9 9.7 1670 

   
  

 
  

    
  

A.Agder 12037 3339 27.7 2.5 505 36 79 3 55 52 3 13 25 24 18 20 

V.Agder 20276 3330 16.4 2.5 497 25 79 7 68 35 6 19 26 22 15 19 

Rogaland 96827 6164 6.4 4.7 668 41 61 4 62 40 6 17 29 23 15 15 

  
  

  
 

  
   

  
 

  
    

  

Central  226552 6181 2.7 4.7 783 

   
  

 
  

    
  

Møre/Roms. 61580 2036 3.3 1.5 306 21 81 3 88 9 5 18 20 25 18 20 

S.Trøndelag 76471 1645 2.2 1.2 204 41 66 3 80 18 5 27 29 21 10 13 

N.Trøndelag 88501 2500 2.8 1.9 273 49 67 5 33 65 6 21 25 21 14 21 

  
  

  
 

  
   

  
 

  
    

  

Western 94782 10664 11.3 8.1 2162 

   
  

 
  

    
  

Hordaland 47113 3113 6.6 2.4 727 9 83 23 74 21 11 13 22 24 12 29 

Sogn/Fjord. 47669 7552 15.8 5.7 1435 18 87 7 85 14 7 12 25 27 14 22 

  
  

  
 

  
   

  
 

  
    

  

Total 942424 132057 14.0 100.0 12609 48 64 5 67 33 6 12 23 24 19 22 
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Appendix II.   

Research note 23.10.2003.  Estimation of pan evaporation from weather data (Hugh Riley) 

 

Background: 

In Norway, a pan evaporimeter designed by J. Thorsrud at Kise Research Station has been 

used to estimate potential evapotranspiration (ETo) for agricultural crops for many years. This 

instrument has a surface area of 0.25 m² and a depth of 60 cm. The water surface is kept at 

ground level. Measurements of evaporation, rainfall and overflow are normally made on a 

daily basis from May to September. Data obtained with this instrument has been used in much 

of our research on irrigation requirement, and is still used for advisory purposes. 

 

Several studies in Scandinavia have shown that this and other similar evaporimeters often 

give slightly lower overall evaporation than that calculated using the Penman equation. There 

is also a consistent seasonal imbalance, the equation giving higher figures in spring and lower 

figures in autumn than evaporimeters. This may be due to soil heat flux being ignored. 

Further, the latter equation gives negative values in winter under Scandinavian conditions. 

 

In Sweden, a small evaporimeter designed by S. Andersson has been used in agricultural 

research and extension. This is a much smaller instrument than that of Thorsrud, and it 

responds rapidly to weather variations. Johansson (1969) derived an equation relating 

measurements from Andersson‟s evaporimeter to global SW radiation (X1) and an advection 

term (X2), the latter being the product of mean wind-speed and vapour pressure deficit (w(es–

e)), all measured on a daily basis (equation 1). (In this and other equations, radiation is given 

here in MJ m
-2

, wind-speed in m s
-1

 at and vapour pressure deficit in mbar). 

 

(1) ETo (mm d
-1

) = 0.14 + 0.0884*X1 + 0.0975*X2         (n=181, R² = 0.91)  

 

I have previously found this equation to accord well with Thorsrud evaporimeter data from 

Kise (Riley 1989). I derived similar equations for both Thorsrud (equation 2) and Andersson 

(equation 3) evaporimeters, using 1979-82 evaporation data from Kise.  

 

(2) ETo (mm d
-1

) = 0.44 + 0.0662*X1 + 0.1050*X2         (n=593, R² = 0.53) 

(3) ETo (mm d
-1

) = -0.23 + 0.0992*X1 + 0.1950*X2        (n=546, R² = 0.78) 

 

The smaller constant term and larger coefficients in eq. (3) than in eq. (2) reflect the more 

sensitive response of the Andersson evaporimeter to changes in weather conditions. It yielded 

on average 16% higher evaporation at Kise than did the Thorsrud evaporimeter, varying from 

5% to 22% between the four years.  

 

This study:  

This research note describes an attempt to obtain an equation that is generally valid for 

conditions in Norway (and other similar regions), in order to predict growing season potential 

evaporation, using data from the many automatic weather stations now in existence. Such data 

is required for irrigation scheduling. It may also be used in models, such as the EU-rotate_N 

fertilizer response model presently being developed (which uses pan evaporation as input).    

Seventeen seasons‟ records (1987-2003) of Thorsrud evaporimeter values and weather 

data from the automatic weather station at Kise are used (a total of 2601 days or 85 months), 

covering a range of conditions (mean seasonal evaporation sum 320 mm, range 260-400mm). 

This is considered to be representative of conditions in most agricultural regions of Norway. 
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Results: 

The new dataset yielded an equation (4) with similar coefficients to both eq. (1) and eq. (2). 

Both terms were statistically significant. Global radiation accounted for about three times as 

much of the variation in evaporation as did the advection term. Daily values calculated with 

this equation are plotted against measured values in fig. 1.  

 

(4) ETo (mm d
-1

) = 0.48 + 0.0717*X1 + 0.1071*X2         (n=2061, R² = 0.51) 

 

Fig. 1. Daily values of evaporation May- September 1987-2003 at Kise, measured with 

Thorsrud evaporimeter and calculated from weather data using equation (4). 

 

The large scatter in this figure reflects the relatively slow response of the Thorsrud 

evaporimeter due to its high thermal capacity. Uncertainty in daily values also derives from 

the fact that measurements over weekends are often arbitrarily ascribed to individual days. 

Nevertheless, it is clear that the equation often overestimates low daily evaporation values and 

underestimates high daily values. A possible reason for this may be that evaporation is higher 

in June and July than in May and August, whereas the differences in radiation are fairly small.  

 

To account for such a seasonal effect, equation (5) was derived, including a quadratic effect of 

month number (X3 , May = 5, May² = 25 etc.). This gave a significant increase in the variance 

accounted for, and better agreement between measured and calculated values in individual 

months (fig. 2). 

 

(5) ETo (mm d
-1

) = -5.38 + 0.0594* X1 + 0.1088*X2  + 1.84*X3 - 0.134*(X3)²  

(n=2061, R² = 0.55) 
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Fig. 2. Mean monthly sums of evaporation May- September 1987-2003 at Kise, measured 

with Thorsrud evaporimeter and calculated from weather data using equations (4) and (5). 

 

In order to evaluate the equations under the whole range of conditions represented by the 

dataset, individual calculated monthly sums are plotted against measured values in fig. 3. This 

figure confirms the better data fit of equation (5), but it also shows that neither equation gave 

adequate estimates of high evaporation in three of the 85 months (June 1992, July 1994 and 

July 1996). Regression of monthly sums revealed coefficients of determination of 80% and 

standard errors of prediction around 7 mm per month. This seems reasonably accurate. 

 

 
Fig. 3. Individual monthly sums of evaporation calculated from Kise weather data using 

equations (4) and (5) plotted against measured values for the growing seasons 1987-2003. 

 



 

Riley & Berentsen. Bioforsk Rapport vol. 4 nr. 174 2009 

58 

 

Examination of the annual sums for each equation showed very similar values for equations 

(1) and (2), and for equations (4) and (5). Equation (3), that based on the Andersson 

evaporimeter, gave values closer to those measured in two years with high evaporation sums 

(1994 and 1996), but otherwise considerably higher than those obtained with the Thorsrud 

evaporimeter (fig. 4). Equations (4) and (5) gave higher values than equations (1) and (2). 

 

 

Fig. 4. Individual annual sums of evaporation calculated from Kise weather data using 

equations (1), (3) and (4) plotted against measured values for 1987-2003. 

 

Summary and conclusion: 

A dataset of seventeen growing seasons‟ pan evaporation and weather data was used to derive 

equations for predicting potential evaporation from global radiation, wind-speed and vapour 

pressure deficit. The equations gave in most cases good agreement with measured values, 

especially when monthly evaporation sums were considered. However, they gave too low 

values in a few cases with very high evaporation. The best result was obtained with an 

equation (no. 5) that included „dummy‟ variables to account for seasonal effects. Equation (5) 

may be used to estimate pan evaporation in the period May – September in many parts of 

Norway, and it can probably also be used without serious error for April and October, for 

which months it predicts average evaporation at Kise of about 36 and 10 mm, respectively. 

 

References: 

Johansson, W. 1969.Meterologiska elements inflytande på avdunstningen från Anderssons  

evaporimeter. Grundförbättring, 22, 82-105. 

Riley, H. 1989. Irrigation of cereals, potato, carrot and onion on a loam soil at various levels  

of moisture deficit. Norwegian J. Agric. Sciences 3: 117-145. 
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Appendix III.   

 Normal (1961-1990) precipitation sums (mm) for a selection of localities in four regions of Norway, compared to the weather stations chosen to 

represent each region in the simulation study. 

 

Kise for the Eastern region (north):     

 
 

Station 

no. Locality 

Mun. 

code Municipality 

Altitude 

m a.s.l. April May June July Aug. Sept. 

Apr.-

June 

July-

Sept. 

Growing 

season Year 

1220 Jønsberg 417 Stange 218 28 44 60 74 68 61 132 203 335 552 

1226 Løten 415 Løten  349 33 48 67 81 71 67 148 219 367 610 

604 Flisa 425 Åsnes 184 36 50 67 75 69 70 153 214 367 617 

665 Elverum 427 Elverum 188 36 55 71 86 76 77 162 239 401 670 

565 Vinger 402 Kongsvinger 175 36 52 68 77 80 79 156 236 392 664 

1355 Vinstra 516 Nord-Fron 241 16 34 52 60 55 48 102 163 265 430 

1190 Biri 502 Gjøvik 190 37 57 71 87 91 86 165 264 429 754 

1171 Einavatn 529 Vestre Toten 406 45 51 72 78 81 77 168 236 404 710 

1150 Østre Toten 523 Østre Toten 264 32 44 60 77 72 66 136 215 351 600 

493 Hvam 236 Nes i Akershus 162 36 48 64 71 75 78 148 224 372 670 

1112 Eidsvoll Verk 237 Eidsvoll 181 44 55 69 76 84 88 168 248 416 789 

2410 Ask 605 Ringerike 77 31 44 60 74 73 68 135 215 350 580 

2487 Nesbyen II 616 Nes i Buskerud 165 20 40 52 66 63 53 112 182 294 460 

2074 Brandbu - Vest 534 Gran 142 37 47 59 73 73 70 143 216 359 640 

1255 KISE 412 Ringsaker 128 34 44 59 66 76 64 137 206 343 585 

   
Mean 205 33 48 63 75 74 70 144 219 363 622 

      Std. deviation 84 8 6 7 7 9 11 19 25 44 97 
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Ås for the Eastern region (south):      

 

Station 

no. Locality 

Mun. 

code Municipality 

Altitude 

m a.s.l. April May June July Aug. Sept. 

Apr.-

June 

July-

Sept. 

Growing 

season Year 

195 Ørje 119 Marker 123 56 69 79 92 95 101 204 288 492 829 

328 Sander 128 Rakkestad 144 41 54 69 72 84 89 164 245 409 795 

393 Trøgstad 122 Trøgstad 158 42 55 67 77 85 89 164 251 415 783 

1715 Rygge 136 Rygge 40 43 57 63 73 88 94 163 255 418 829 

1729 Jeløy 104 Moss 12 42 59 58 69 86 90 159 245 404 779 

113 Prestebakke 101 Halden 157 47 59 78 76 84 98 184 258 442 895 

315 Kalnes 102 Sarpsborg 56 42 58 72 73 83 94 172 250 422 853 

2686 Drammen 602 Drammen 61 48 70 70 87 100 109 188 296 484 950 

2707 Rove 702 Holmestrand 79 49 69 65 79 94 107 183 280 463 945 

3000 Larvik 709 Larvik 28 55 70 64 79 109 112 189 300 489 1050 

2745 Melsom 720 Stokke 26 54 70 65 79 103 109 189 291 480 1029 

3029 Skien II 806 Skien 24 39 63 60 74 97 99 162 270 432 840 

3053 Notodden 807 Notodden 34 32 55 56 74 83 84 143 241 384 691 

3210 Gvarv 822 Gvarv 26 34 65 64 81 95 96 163 272 435 780 

1785 ÅS 214 Ås 95 39 60 68 81 83 90 167 254 421 785 

   

Mean 71 44 62 67 78 91 97 173 266 439 856 

      Std. deviation 52 7 6 7 6 8 9 16 20 34 100 
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Særheim for the Southern / South-Western region:      

 

Station 

no. Locality 

Mun. 

code Municipality 

Altitude 

m a.s.l. April May June July Aug. Sept. 

Apr.-

June 

July-

Sept. 

Growing 

season Year 

4456 Sola 1124 Sola 7 50 68 73 91 115 156 191 362 553 1180 

4416 Hognestad 1121 Time 19 56 68 72 94 115 157 196 366 562 1254 

4436 Egersund 1101 Eigersund 4 73 85 84 103 133 169 242 405 647 1491 

4590 Fister 1133 Hjelmeland 1 63 73 85 105 121 177 181 403 624 1440 

4265 Flekkefjord 1004 Flekkefjord 5 91 102 100 119 158 208 293 485 778 1965 

4111 Mandal 1002 Mandal 138 72 92 86 98 135 166 250 399 649 1534 

4177 Lindesnes 1029 Lindesnes 13 60 71 65 78 102 125 196 305 501 1159 

3904 Kjevik 1001 Kristiansand 12 59 86 75 88 141 164 220 393 613 1299 

3814 Landvik 904 Grimstad 6 58 82 71 92 113 136 211 341 552 1230 

3606 Arendal 903 Arendal 44 52 69 63 79 97 117 184 293 477 1040 

3845 Herefoss 928 Birkeland 85 62 87 68 92 116 139 217 347 564 1293 

3656 Nelaug 929 Åmli 142 60 86 78 99 109 140 224 348 572 1230 

3534 Risør 901 Risør 36 54 76 61 88 110 114 191 312 503 1090 

3586 Lyngør 914 Tvedestrand 4 43 64 50 71 91 94 157 256 413 869 

4432 SÆRHEIM 1120 Klepp 14 58 68 74 94 123 158 200 375 575 1260 

   
Mean 35 61 78 74 93 119 148 210 359 572 1289 

      Std. deviation 48 11 11 12 12 18 29 33 56 86 253 
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Kvithamar for the Central region:      

 

Station 

no. Locality 

Mun. 

code Municipality 

Altitude 

m a.s.l. April May June July Aug. Sept. 

Apr.-

June 

July-

Sept. 

Growing 

season Year 

6965 Kvarme 1717 Frosta 25 46 44 54 71 70 105 144 246 390 830 

7012 Stiklestad 1721 Verdal 49 53 49 63 78 73 108 165 259 424 900 

7067 Mære 1702 Steinkjær 20 45 42 53 72 61 98 140 231 371 820 

6976 Eggen 1719 Levanger 95 45 42 52 72 64 103 139 239 378 815 

6981 Staup 1729 Inderøy 42 43 42 74 68 96 90 159 254 413 780 

7091 Berg 1736 Snåsa 127 57 45 67 98 85 133 169 316 485 1040 

7155 Ørland 1621 Ørland 9 60 50 66 85 86 133 176 304 480 1048 

6618 Øyum 1638 Orkdal 22 53 41 61 86 80 111 155 277 432 965 

6715 Leinstrand 1601 Trondheim 11 50 45 60 81 73 102 155 256 411 832 

6827 Løksmyr 1653 Melhus 165 63 55 75 96 85 122 193 303 496 1021 

6830 Selbu 1664 Selbu 197 49 51 72 98 92 104 172 294 466 840 

6603 Lensvik 1622 Agdenes 15 84 61 62 86 80 154 207 320 527 1310 

6490 Rindal 1567 Rindal 231 62 49 71 92 90 134 182 316 498 1109 

6480 Surnadal 1566 Surnadal 39 83 64 86 117 119 173 233 409 642 1394 

6910 KVITHAMAR 1712 Stjørdal 12 49 53 68 94 87 113 170 294 464 892 

      Mean 71 56 49 66 86 83 119 171 288 458 973 

      Std. deviation 74 13 7 9 13 14 23 26 45 70 185 
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Appendix IV.   

Description of the water balance model incorporated in EU-Rotate_N (C. Ramos & J. Doltra) 

 

Here we will explain how crop evapotranspiration (ETc) is calculated. We will follow 

basically the dual crop coefficient as described by Allen et al. (1998). 

 

In this approach ETc is calculated as: 

ETc = E + T  = (Ke + Kcb) · ETo         (1) 

Where E is soil evaporation and T is crop transpiration, Ke is the soil evaporation coefficient, 

Kcb is the so called basal crop coefficient, and ETo is the reference evapotranspiration. 
 

Calculating transpiration  

 

Daily crop transpiration is calculated by: 

T = Kcb·ETo           (2) 

where the basal crop coefficient Kcb is defined as the ratio ETc/ETo when the soil surface is 

dry but the crop is transpiring at the potential rate, with no restriction due to water stress. This 

coefficient varies as shown schematically in Fig. 1. We see that Kcb varies with crop stage: 

initial, development, midseason, and late season or maturity. Values for Kcb for several 

vegetable crops are shown in table 1.  

Table 2 gives the length of crop stages for several vegetable crops, planting dates and 

climate regions. These lengths are critical in ETc calculation. Allen et al. (1998) give the 

default lengths of these stages for many crops including vegetables. However, they advise of 

using locally obtained values when available. Many times the only local data available on 

crop growth and development is the total length of the crop season; in this case, one can 

estimate the duration of each stage by correcting the values given in table 2 for a given stage, 

keeping the same proportion as the total length of the crop season as shown in table 2, that is, 

multiplying the stage durations listed in table 2 by the ratio: (total crop season duration 

observed)/(total crop season duration listed in table 2. Snyder (2000) gives % duration of each 

plant development phase for many vegetable crops, although they differ slightly of those 

calculated from table 2. Crop Kc coeeficients given by Snyder (2000) are also somewhat 

different for those given by Allen et al. (1998). 

The initial stage runs from planting to a groundcover around 10%; the crop 

development stage runs from 10% ground cover to effective full cover (see pags. 95-97 of 

Allen et al., 1998) For row crops, effective full cover can be reached when leaves of plants 

from adjacent rows begin to intermingle, and soil shading is nearly complete. In other cases, 

such as crops taller than 0.5 m, effective full cover is reached when ground cover fraction is 

about 0.7-0.8, and soil shading do not change significantly with further growth. Another way 

of determining the occurrence of effective full cover is when the leaf area index (LAI) reaches 

3.  
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Fig. 1  Basal crop coefficient (Kcb) curve for a crop using growth stage lengths of 25, 25, 

30 and 20 days (from Allen et al. 1998). 

  

The mid-season stage goes from effective full cover to the start of maturity. The 

yellowing or senescence of leaves indicates the start of the maturity stage. This stage can be 

short for those vegetables that are harvested before reaching maturity. The late season or 

maturity stage runs from the start of maturity to harvest or full senescence. 

Values of Kcb given in table 1 are for average climate conditions of daily wind 

velocity at 2 m height and an air RHmin of 45%. An adjustment of Kcb for mid-season and 

late season stages when climate conditions are quite different of those mentioned can be done 

by the formula:      

 

(3) 
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TABLE 1. Basal crop coefficients, Kc, for non stressed, well-managed vegetable crops in 

subhumid climates (RHmin  45%, u2  2 m/s) for use with the FAO Penman-Monteith ETo (from 

Allen et al., 1998) 

Crop 
   

a. Small Vegetables 0.15 0.95 0.85 

Broccoli  0.95 0.85 

Brussel Sprouts  0.95 0.85 

Cabbage  0.95 0.85 

Carrots  0.95 0.85 

Cauliflower  0.95 0.85 

Celery  0.95 0.90 

Garlic  0.90 0.60 

Lettuce  0.90 0.90 

Onions    

 - dry  0.95 0.65 

 - green  0.90 0.90 

 - seed  1.05 0.70 

Spinach  0.90 0.85 

Radishes  0.85 0.75 

b. Vegetables - Solanum Family (Solanaceae) 0.15 1.10 0.70 

Egg Plant  1.00 0.80 

Sweet Peppers (bell)  1.00
1
 0.80 

Tomato  1.10
1
 0.60-

0.80 

c. Vegetables - Cucumber Family (Cucurbitaceae) 0.15 0.95 0.70 

Cantaloupe  0.75 0.50 

Cucumber    

 - Fresh Market  0.95
1
 0.70 

 - Machine harvest  0.95 0.80 

Pumpkin, Winter Squash  0.95 0.70 

Squash, Zucchini  0.90 0.70 

Sweet Melons  1.00 0.70 

Watermelon  0.95 0.70 

d. Perennial Vegetables (with winter dormancy and initially bare or 

mulched soil) 

   

Artichokes 0.15 0.95 0.90 

Asparagus 0.15 0.90
7
 0.20 
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1
Beans, Peas, Legumes, Tomatoes, Peppers and Cucumbers are sometimes grown on stalks 

reaching 1.5 to 2 meters in height. In such cases, increased Kcb values need to be taken. For 

green beans, peppers and cucumbers, 1.10 can be taken, and for tomatoes, dry beans and 

peas, 1.15. Under these conditions h should be increased also.  
2
 The Kcb end value for potatoes is about 0.35 for long season potatoes with vine kill.  

3
 The Kcb for asparagus usually remains at Kcb ini during harvest of the spears, due to 

sparse ground cover. The Kcb mid value is for following regrowth of vegetation following 

termination of harvest of spears.  

 TABLE 2. Lengths of crop development stages for various vegetables, planting periods and 

climatic regions (days) (from Allen et al., 1998) 
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Under conditions of no water stress, transpiration on a given day is calculated by applying 

equation (1) and Kcb is determined using the information in Tables 1 and 2. In the next 

section we will describe how transpiration is determined under conditions of water stress. 

 

Calculating Kcb when there is water stress 

 

When soil water availability is limiting transpiration, then: 

T = Ks · Kcb · ETo   (4) 

where Ks is a water stress coefficient that equals 1 under no water stress and is zero when The 

Ks coefficient varies with soil water availability in the root zone as shown in Fig. 2. 

Here we introduce some soil water definitions:  

 Total available water (TAW) 

 Readily available water (RAW) 

 Soil water depletion 

 Critical Soil Water content (SWcrit) 

 

TAW is the water content in the root zone between FC (field capacity) and PWP (permanent 

wilting point): 

TAW = 1000 ( FC - WP) Zr         (5) 

Where  represents volumetric water contents at field capacity (FC) and wilting point (WP), 

Zr is root depth in meters and TAW is given in mm. 

 

RAW represents the ready available water, that is the amount of water that can be extracted 

from soil between FC and PWP without the plant experiencing any water stress. It is 

convenient to express RAW as a fraction p of TAW, that is: 

AW = p·TAW  (6) 

The value of p depends on the crop, on the soil texture, and on the evaporative demand, as 

measured by ETc (with no stress). Table 3 gives p values for different vegetable crops for 

ETc values of 5 mm/day. For other ETc values p can be calculated using:  

p = ptable 3 + 0.04·(5-ETc)  (7) 

 

Now, from eq. 5, 6 and 7, we can define the critical soil water content (SWcri,, mm) at which 

transpiration starts to decrease as: 

SWcrit = [ FC – p· ( FC - WP)] ·Zr ·1000     (8) 

 

It is supposed that soil water between FC and SAT (saturation) can be extracted by the plants 

at the potential rate, and no stress due to a lack of oxygen is considered. 
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Fig. 2  Variation of the water stress coefficient (Ks) with the soil water content or the 

corresponding water deficit for the soil root zone (from Allen et al. 1998). 

 

To obtain Ks for a given case on a soil grid, we follow the steps: 

 Sum water depth for all cells with roots ( W) (i.e.: 50 i,j) 

 Calculate the sum of SWcrit for all cells with roots ( SWcrit) (i.e.: 50 [ FC – p·( FC -

WP)]i,j 

 Calculate Ks: 

o If W  > SWcrit  then  Ks = 1 

 

o If    50· PWpi,j < W  <  SWcrit   then Ks = ( W - 50· PWpi,j)/( SWcrit -

50· Wpi,j ) 

 

 

o If W  < 50· Wpi,j  then Ks = 0 
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Table 3. Ranges of maximum effective rooting depth (Zr), and soil water depletion fraction 

for no stress (p) for some crops (from Allen et al., 1998). 

 

Once we obtain Ks, then transpiration is calculated by equation (4). Now, this transpiration is 

distributed among all cells with roots. For this, we assume water uptake from each cell is 

proportional to the proportion of roots in the cell and to its available water content: 

Ti,j = T*[Ri,j·Ksi´j / ( Ri,j*Ksi,j]  (8) 

where Ri,j is the ratio of root length (or mass) in cell i,j to the total root length, and Ksi,j  is 

calculated using the same type formula as for the whole soil profile with roots: 

 

o If  i,j > crit i,j  then  Ks i,j = 1 

 

o If    PW i,j < i,j < crit i,j  then Ks = ( i,j - PW i,j)/( crit i,j  - WP i,j ) 

 

o If i,j < WP i,j  then Ks = 0 

2 The values for p apply for ETc  5 mm/day. For different ETc values, p can be 

adjusted using:  p = ptable 3 + 0.04·(5-ETc)  
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Calculating E 

 

Soil evaporation is assumed to occur only from the surface soil layer that usually is taken to 

be 10 cm thick. In addition, when a crop is present E is assumed to occur only in the 

“exposed” soil surface (that is taken to be equal to 1-fc, where fc stands for fraction cover). 

 

Evaporation is calculated as: 

E = Ke · ETo  (9) 

where Ke is the soil evaporation coefficient. This coefficient varies with the fraction of the 

soil exposed to solar radiation and on the water content of the soil evaporation layer, as 

described later. 

The evaporation coefficient is calculated as: 

Ke = Kr (Kc max - Kcb) <=  few Kc max    (10) 

where:  

 Ke is the soil evaporation coefficient 

 Kcb is the basal crop coefficient  

 Kc max is the maximum value of Kc following rain or irrigation 

 Kr is a dimensionless evaporation reduction coefficient dependent on the cumulative 

depth of water depleted (evaporated) from the topsoil (evaporation layer)  

 few fraction of the soil that is both exposed and wetted, i.e., the fraction of soil surface 

from which most evaporation occurs. 
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Equation (10) can also be expressed as: 

Ke = min (Kr (Kc max - Kcb), few Kc max)  (11) 

 

The calculation procedure consists in determining:  

 the upper limit Kc max 

 the soil evaporation reduction coefficient Kr 

 the exposed and wetted soil fraction few 

 

Calculating Kc max 

 

Kc max represents an upper limit on the evaporation and transpiration from any cropped 

surface and reflects the constraint placed by the available energy for evapotranspiration. Kc 

max ranges from about 1.05 to 1.30 when using the grass reference ETo:  

 

 (12) 

 

where: 

 h is the mean maximum plant height (m) during the period of calculation (initial, 

development, mid-season, or late-season)  

 Kcb is the basal crop coefficient 

 

Equation (12) ensures that Kc max is always greater or equal to the sum Kcb + 0.05. This 

requirement suggests that wet soil will always increase the value for Kcb by 0.05 following 

complete wetting of the soil surface, even during periods of full ground cover. 

More details on the justification for equation (12) can be found in Allen et al. (1998) 

RHmin is the mean value for the daily minimum air relative humidity (%). If this variable is 

not given in the weather data, it can be derived from them as follows: 

 

(13)  

where Tdew is mean dewpoint temperature and Tmax is mean 

daily maximum air temperature during the given growth stage. Where dewpoint temperature 

is not available or is of questionable quality, RHmin can be estimated by substituting mean 

daily minimum air temperature, Tmin, for Tdew:  

 

    (14) 

In the case of arid and semi-arid climates, Tmin in equation (14) should be adjusted by 

subtracting 2°C from the average value of Tmin to better approximate Tdew. 

 

Calculation of the soil evaporation reduction coefficient Kr 

Soil evaporation from the exposed soil (not covered by the crop) is assumed to take place in 

two stages: an energy limiting stage, and a falling rate stage. When the soil surface is wet, Kr 
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is 1. When the water content in the upper soil becomes limiting, Kr decreases and becomes 

zero when the total amount of water that can be evaporated from the topsoil is depleted (fig. 

3). 

 

 

 

 

 

Fig. 3 Variation of the soil evaporation reduction coefficient with soil moisture (after Allen et 

al., 1998) 

In Fig. 3 soil moisture is expressed as volumetric water content (upper axis) or as water depth 

(lower axis). Some of the additional terms used are: 

 

 TEW: total evaporable water. It is the maximum depth of water that can be evaporated 

from the soil when the evaporation layer has been initially completely wetted and 

drained [mm]. 

 REW: readily evaporable water. It is is the maximum depth of water, below field 

capacity, that can be evaporated from the evaporation layer without restriction during 

stage 1). The depth normally ranges from 5 to 12 mm and is generally highest for 

medium and fine textured soils. Typical values for REW are given in Table 4. In the 

EUROTATE model,  FC and WP  are calculated using pedotransfer functions (see 

below). This parameter is analogous to the Q parameter in the STICS evaporation 

approach.  
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Table 4. Typical soil water characteristics for different soil types (after Allen et al., 

1998) 

Soil type (USDA 

Soil Texture 

Classification)  

Soil water characteristics  Evaporation parameters  

FC  WP  (FC -  WP)  Amount of water that 

can be depleted by 

evaporation  

   stage 

1 

REW  

stages 1 and 2 

TEW* (Ze = 

0.10m)  

 m
3
/m

3
  m

3
/m

3
  m

3
/m

3
  mm  mm  

Sand  0.07 - 0.17  0.02 - 0.07  0.05 - 0.11  2 - 7  6 - 12  

Loamy sand  0.11 - 0.19  0.03 - 0.10  0.06 - 0.12  4 - 8  9 - 14  

Sandy loam  0.18 - 0.28  0.06 - 0.16  0.11 - 0.15  6 - 10  15 - 20  

Loam  0.20 - 0.30  0.07 - 0.17  0.13 - 0.18  8 - 10  16 - 22  

Silt loam  0.22 - 0.36  0.09 - 0.21  0.13 - 0.19  8 - 11  18 - 25  

Silt  0.28 - 0.36  0.12 - 0.22  0.16 - 0.20  8 - 11  22 - 26  

Silt clay loam  0.30 - 0.37  0.17 - 0.24  0.13 - 0.18  8 - 11  22 - 27  

Silty clay  0-30 - 0.42  0.17 - 0.29  0.13 - 0.19  8 - 12  22 - 28  

Clay  0.32 - 0.40  0.20 - 0.24  0.12 - 0.20  8 - 12  22 - 29  

 

TEW (mm) is estimated using the equation:  

TEW = 1000 ( FC - 0.5 WP) Ze (15) 

where: 

 FC : volumetric soil water content at field capacity [m
3
 m

-3
] 

 WP : soil water content at wilting point [m
3
 m

-3
] 

 Ze depth of the surface soil layer that is subject to drying by way of 

evaporation [we assume 0.10m]. 

 

In the second evaporation stage, the evaporation rate is reducing with soil drying. This stage 

starts when the soil moisture deficit (De) (that is, the amount of water content, expressed as 

water depth, below field capacity) exceeds REW. At this point, the soil surface is visibly dry, 

and the evaporation from the exposed soil decreases as follows: 

 

 

    (16)  
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where: 

 Kr is a dimensionless evaporation reduction coefficient dependent on the soil water 

depletion (cumulative depth of evaporation) from the evaporation layer (Kr = 1 when 

De, i-1 < REW),  

 De, i-1 cumulative depth of evaporation from the soil evaporation layer, below field 

capacity, at the end of day i-1 (the previous day) [mm],  

 

Calculating the exposed and wetted soil fraction 

In crops with incomplete ground cover, evaporation from the soil does not occur uniformly 

over the entire surface, but is greater where exposure to sunlight occurs and where there is 

more air ventilation. 

The location and the fraction of the soil surface exposed to sunlight change to some 

degree with the time of day and depending on row orientation. The procedure presented here 

predicts a general averaged fraction of the soil surface from which the majority of evaporation 

occurs. Diffusive evaporation from the soil beneath the crop canopy is assumed to be largely 

included in the basal Kcb coefficient.  

If the complete soil surface is wetted, by precipitation or sprinkler irrigation, then the 

fraction of soil surface from which most evaporation occurs, few, is essentially defined as (1 - 

fc), where fc is the average fraction of soil surface covered by vegetation and (1 - fc) is the 

approximate fraction of soil surface that is exposed. However, for irrigation systems where 

only a fraction of the ground surface is wetted, few must be less or equal to fw, the fraction of 

the soil surface wetted by irrigation (Figure 4). Therefore, few is calculated as: 

  few = min(1 - fc, fw)   (17) 

where: 

 1 - fc is the average exposed soil fraction not covered (or shaded) by vegetation [its 

range is taken as 0.01 - 1] 

 fw: is the average fraction of soil surface wetted by irrigation or precipitation [0.01 - 

1]. 
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Fig. 4 Variation of few (cross-hatched areas) in different situations of groundcover and 

irrigation system (after Allen et al., 1998) 
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Equation 17 assumes that the fraction of soil wetted by irrigation occurs within the 

fraction of soil exposed to sunlight and ventilation. This is generally the case, except perhaps 

with drip irrigation.  

In the case of drip irrigation, where the majority of soil wetted by irrigation may be 

beneath the canopy and may therefore be shaded, to estimate few the value for fw is multiplied 

by [1-(2/3)fc], as a first approximation. 

 In summary, few calculation for the different irrigation systems is: 

 Basin, border or sprinkler irrigation:   

few = 1-fc  (17a) 

 Furrow irrigation: 

few = min (fw, 1-fc) (17b) 

 Drip irrigation: 

few = min ((1-fc), (1-0.67 fc)fw) (17c) 

 

Determining fw on each day 

On each day of the application, the following rules can be applied to determine fw for that and 

subsequent days in a more simplified manner:  

 Surface is wetted by irrigation: fw is the fw for the irrigation system 

 Surface is wetted by irrigation and rain: fw is 1.0 (precipitation) 

 Surface is wetted by significant rain with no irrigation: fw = 1 

 Where there is neither irrigation nor significant precipitation: fw is the fw of the 

previous day. 

 

 Table 5 presents typical values for fw.  

 

Table 5. Typical values of wetted soil surface fraction, fw, by 

irrigation or precipitation (after Allen et al., 1998). 

Wetting event fw 

Precipitation 1.0 

Sprinkler irrigation 1.0 

Basin irrigation 1.0 

Border irrigation 1.0 

Furrow irrigation (every furrow), narrow bed 0.6...1.0 

Furrow irrigation (every furrow), wide bed 0.4... 0.6 

Furrow irrigation (alternated furrows) 0.3...0.5 

Trickle irrigation 0.3... 0.4 

 



 

Riley & Berentsen. Bioforsk Rapport vol. 4 nr. 174 2009 

77 

 

Estimating plant height on each day (hi) 

Plant height on day i is used for estimating fc, and also in Kcb adjustment for climate, 

therefore, since it is not always measured, it is estimated by the following expression: 

hi = max (Kcb/Kcb mid * hmax, hi-1) (18) 

Determining fc on each day 

Since usually fc is not available for each day, it can be estimated using the relationship:  

 

    (19) 

 

where fc is the effective fraction of soil surface covered by vegetation [0 - 0.99], 

Kcb is the value for the basal crop coefficient for the particular day or period, 

Kc min is the minimum Kc for dry bare soil with no ground cover [  0.15 - 0.20], 

Kc max is the maximum Kc immediately after wetting (Equation 12), and 

h is mean plant height [m]. Usually, to prevent numerical instability, the following restriction 

is imposed: difference Kcb - Kc min to  0.01. 

This equation should be used with caution and, whenever possible, validated from 

field observations. Kc min is the minimum crop coefficient for dry bare soil when 

transpiration and evaporation from the soil are near baseline (diffusive) levels. Kc min usually 

is taken as 0.15. The value of Kc min is an integral part of all Kcb coefficients.  

Equation 19 substitutes the N-ABLE equation for calculating the fraction cover that 

has been used in the first EUROTATE model. Therefore, the related parameter WLRT (dry 

weight when roots are in mid point between rows) will not be necessary anymore to calculate 

the fraction cover. 

 

Daily water balance of the evaporation layer 

The estimation of Ke in the calculation procedure depends on the water content of the 

evaporation layer (in fact, only of the part of it wetted and exposed, few) and calculating this 

water content requires a daily water balance computation for this part of the surface soil layer. 

The daily soil water balance equation for the exposed and wetted soil fraction few is (Figure 

5):  
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Fig. 5  Water balance of the wetted and exposed part of the evaporation layer (Ze) 

 

This balance is: 

 

(20) 

where: 

 De, i-1 is the cumulative depth of evaporation, below field capacity, from the exposed 

and wetted fraction of the topsoil at the end of day i-1 [mm] 

 De, i is the cumulative depth of evaporation, below field capacity, from the exposed 

and wetted fraction of the topsoil at the end of day i [mm], 

 Pi is the precipitation on day i [mm],  

 ROi is the precipitation run off from the soil surface on day i [mm] 

 Ii is the irrigation depth on day i that infiltrates the soil [mm],  

 Ei is the evaporation on day i (i.e., Ei = Ke ETo) [mm],  

 Tew, i is the depth of transpiration from the exposed and wetted fraction of the soil 

surface layer on day i [mm],  

 DPe,i is the deep percolation loss from the topsoil layer on day i if soil water content 

exceeds field capacity [mm]. 

  fw fraction of soil surface wetted by irrigation [0.01 - 1],  

 few is the exposed and wetted soil fraction [0.01 - 1]. 

 

Limits on De, i  

When topsoil is at field capacity (after drainage has taken place following heavy rain or 

irrigation), the minimum value for the depletion De, i is zero. When water content of the 

topsoil is greater than field capacity De, i  has negative values. As the soil surface dries below 

field capacity, De, i increases and in absence of any wetting event will steadily reach its 
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maximum value TEW (Equation 15). At that moment no water is left for evaporation in the 

upper soil layer, Kr becomes zero, and the value for De, i remains at TEW until the topsoil is 

wetted once again. The limit imposed on De, i  is consequently:  

De, i    TEW   (21) 

Initial depletion  

To initiate the water balance for the evaporating layer, we calculate De, i from its initial soil 

water content. We can assume that the topsoil is near field capacity following a heavy rain or 

irrigation when the excess of water has drained, i.e., De, i-1 = 0. If a long period of time has 

elapsed since the last wetting, we can assume that all evaporable water has been depleted 

from the evaporation layer at the beginning of calculations, i.e., De, i-1 = TEW = 1000 ( FC – 

0.5 WP) Ze      

Precipitation and runoff  

Daily precipitation Pi in amounts less than about 0.2 ETo is normally entirely evaporated and 

can usually be ignored in the Ke and water balance calculations. The amount of rainfall lost 

by runoff can be calculated using the runoff module. 

Irrigation  

Ii is generally expressed as a depth of water that is equivalent to the mean infiltrated irrigation 

depth distributed over the entire field. Therefore, the value Ii/fw is used to describe the actual 

irrigation depth infiltrated over the fraction of the soil that is wetted. 

Evaporation  

Evaporation beneath the vegetation canopy is assumed to be included in Kcb and is therefore 

not explicitly quantified. The computed evaporation across the field, Ei, is given by Ke ETo 

and it is assume to occur only in the exposed, wetted topsoil. Therefore, Ei/few provides for 

the actual evaporation over the fraction of the soil that is both exposed and wetted.  

Transpiration  

Except for shallow rooted crops (i.e., where the depth of the maximum rooting zone is < 0.5 

to 0.6 m), the amount of transpiration from the evaporating soil layer is small and can be 

ignored (i.e., Tew = 0). In addition, for row crops, most of the water extracted by the roots 

may be extracted from beneath the vegetation canopy. Therefore, Tew from the few fraction of 

soil surface can be assumed to be zero in these cases.  

Deep percolation  

Following heavy rain or irrigation, downward drainage (percolation) of water from the 

exposed and wetted evaporation layer is calculated using the drainage algorithm. 

 As long as the soil water content in the evaporation layer is below field capacity (i.e., De, i > 

0), the soil will not drain and DPe, i = 0.  

Order of calculation  

In making calculations for determining Kcb and Ke, they should proceed in the following 

order: Kcb, h, Kc max, fc, fw, few, Kr, Ke, E, DPe, De, I, Kc, and ETc.  
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Summary of calculations for ETc 

1. Estimate ETo (using the module already available) 

2. Determine the length of the four growth stages (if there is no plants, then we can assume 

we are in the initial phase: Kc = Kcb ini = 0.15) (if no local data are available, then use 

those in table 2). 

3. Determine the basal crop coefficient, Kcb: 

 Calculate basal crop coefficients for each day of the growing period: 

 select Kcb ini, Kcb mid and Kcb end from Table 2; 

i. Adjust Kcb mid and Kcb end to the local climatic conditions (Equation 3) 

ii. Determine the daily Kcb values (as explained in section: Calculating 

transpiration)  

4. Adjust Kcb for water stress (Kcb adjusted = Ks · Kcb) 

 Calculate the water stress coefficient, Ks: 

i. Determine p and SWcrit for all cells with roots (equations 5,6 and 7) 

ii. Determine Ks using equations 7a and 7b 

5. Determine the evaporation coefficient, Ke: 

6. Calculate the maximum value of Kc ( Kc max) using equation 12, and determine for each 

day of the growing period:  

 Plant height, h (equation 18) 

 the fraction of soil covered by vegetation, fc (equation 19),  

 the fraction of soil surface wetted by irrigation or precipitation, fw (Table 5),  

 the fraction of soil surface from which most evaporation occurs, few (equations 

17a, 17b, 17c depending of the type of irrigation),  

 the cumulative depletion from the evaporating soil layer, De, determined by means 

of a daily soil water balance of the topsoil (equation 20),  

 the corresponding evaporation reduction coefficient, Kr (equation 16), and  

 the soil evaporation coefficient, Ke (equation 11). 

7. Determine crop evapotranspiration: ETc = (Kcb adj + Ke) · ETo 

 

Calculations after determining ETc 

Once ETc is determined for each day, soil water content of each soil cell is determined taking 

into account water uptake by roots and all other water redistributions routines considered. 
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