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Abstract 17 

 18 

Proper parameterisation and quantification of model uncertainty are two essential tasks in 19 

improvement and assessment of model performance. Bayesian calibration is a method that 20 

combines both tasks by quantifying probability distributions for model parameters and 21 

outputs. However, the method is rarely applied to complex models because of its high 22 

computational demand when used with high-dimensional parameter spaces. We therefore 23 

combined Bayesian calibration with sensitivity analysis, using the screening method by 24 

Morris (1991), in order to reduce model complexity by fixing parameters to which model 25 

output was only weakly sensitive to a nominal value. Further, the effect on the error term and 26 

the parametric uncertainty when fixing parameters were investigated in order to achieve a 27 

robust model. The process-based grassland model BASGRA was examined in the present 28 

study on two sites in Norway and in Germany, for two grass species (Phleum pratense and 29 

Arrhenatherum elatius). According to this study, a reduction of free model parameters from 30 

66 to 45 was possible. The sensitivity analysis showed that the parameters to be fixed were 31 
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consistent across sites (which differed in climate and soil conditions), while model calibration 32 

had to be performed separately for each combination of site and species. The output 33 

uncertainty decreased slightly, but still covered the field observations of aboveground 34 

biomass. A detailed analysis of the mean square error was included, and the error term for 35 

both the 66 and the 45 parameter model was dominated by errors in timing (phase shift) when 36 

considering the training data, whereas no general pattern was found in errors when using the 37 

validation data. Stronger model reduction should be avoided, as the error term increased and 38 

output uncertainty was underestimated.  39 

 40 
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 43 

1 INTRODUCTION 44 

Grassland covers about 70% of the world’s agricultural area (FAO). It has a central role in 45 

feeding ruminants and other herbivores, and the growing demand for meat may induce an 46 

even more intensive use in the future. 47 

Complex dynamic growth models are increasingly used to simulate the interactions between 48 

vegetation and environment. Such models are useful in order to forecast yield, study the effect 49 

of climate change on yield, optimize management and to better understand the system. It is 50 

common to apply the same model in different regions and for different species and cultivars, 51 

and it should work well in all the situations for which it is applied. This requires that it is 52 

properly parameterised, and that parameters and output uncertainty are well quantified. 53 

Among parameter estimation methods, Bayesian calibration (Berger, 1985) has the advantage 54 

that it, in addition to calibrating the parameter values, simultaneously quantifies parameter 55 

uncertainty (Campbell, 2006). It achieves this by calculating posterior parameter distributions 56 

as a function of the original parameter uncertainty (prior knowledge) and new information 57 

incorporated through the conditional probability distribution of the collected data (likelihood 58 

function). The method is still rarely used for complex models, but its application has been 59 

increasing in recent years (Gouache et al., 2013; Minunno et al., 2013; Thorsen and Höglind, 60 

2010; van Oijen et al., 2005a,b; Kennedy and O'Hagan, 2001).  61 

To estimate all the parameters of complex, parameter rich models simultaneously is often 62 

challenging. A major problem is the large computational effort required to investigate a high 63 



dimensional parameter space. As a result, predictive performance may be poor suggesting a 64 

need for model simplification (Cox et al. 2006). A study by Crout et al. (2014) identified 65 

several redundant variables in the Sirius wheat model. Here we focus on a different form of 66 

model simplification: reducing the number of free parameters in the model. Sensitivity 67 

analysis, or parameter screening, is a useful tool for model reduction that can make it easier 68 

and less time requiring to parameterise models by detecting the least sensitive parameters. 69 

These are parameters that can be fixed within their prior parameter boundaries without 70 

strongly affecting model robustness. Robustness is here referred to as the extent the model 71 

results are affected with when reducing the number of free parameters, where model results 72 

include the uncertainty in model outputs caused by parameter uncertainty. A simplification of 73 

a model by fixing the poorly sensitive parameters to nominal values will increase the 74 

efficiency of model calibration, but also result in underestimation of parameter uncertainty, 75 

since the parameter values that are fixed are not known for certain. A combination of 76 

sensitivity analysis and Bayesian calibration of a complex model was given by Raj et al. 77 

(2016), whereas the effect of model reduction on model uncertainty was not covered.  78 

Study of the mismatch (error term) between observed and simulated model output is a widely 79 

used procedure for model evaluation. A detailed analysis of the error term, decomposing it 80 

into the three components of bias, variance error and phase shift, was proposed by Kabayashi 81 

and Salam (2000). Their method is still rarely used (but see van Oijen et al. 2011; Ewert et al. 82 

2002), yet it adds valuable information about model behaviour.  83 

The process-based BASGRA (BASic GRAssland) model is used in this study. It is a model 84 

that simulates growth of Phleum pratense (L.) (Höglind et al., 2001; Thorsen and Höglind, 85 

2010; Thorsen et al., 2010; van Oijen et al., 2005a). BASGRA contains 66 parameters and is 86 

driven by the environmental variables air temperature, precipitation, relative humidity, global 87 

radiation and wind-speed at a daily resolution. It calculates 23 state variables of which 13 88 

quantify the state of the plant and 10 represent the above- and belowground environment. 89 

Only one output variable, aboveground biomass, is the focus of this study. This is one of the 90 

most often measured variables in grassland research. 91 

The general objective of this study was to examine the robustness of aboveground biomass 92 

predictions by the grassland model BASGRA. The impact of parameter screening and 93 

subsequent parameter reduction on aboveground biomass predictions were quantified in order 94 

to allow efficient quantification of output uncertainty. The specific objective of this study was 95 

to identify a minimum number of parameters required for the BASGRA model in order to 96 



estimate both the value of aboveground biomass and its uncertainty with sufficient accuracy, 97 

consistent between sites and species.  98 

Four sets of data were used: (1) total aboveground biomass of Phleum pratense (P. pratense) 99 

grown at Særheim, Norway, observed  at intervals of 1-2 weeks throughout the growing 100 

season including at the agricultural harvests, (2) observations (two per year) of biomass yield 101 

from the same experiment, (3) observations (three per year) of biomass yield from a mixed 102 

sward dominated by P. pratense grown at Rengen, Germany and (4) observations (two per 103 

year) of biomass yield from a mixed sward dominated by Arrhenatherum elatius (A. elatius) 104 

grown at Rengen, Germany. Model performance had been tested thoroughly for P. pratense 105 

growth at Særheim by (van Oijen et al., 2005a) and the full dataset of that study was used here 106 

for model training. The datasets from Rengen were further split up into one training and one 107 

test dataset. 108 

 109 

2 MATERIAL AND METHODS 110 

2.1 Grassland Growth Model 111 

The BASGRA (BASic GRAssland) model simulates the growth of grassland swards for any 112 

period of time (a short growing cycle, a sequence of growing cycles, a winter period, a 113 

sequence of whole years etc.). The model is based on the LINGRA model (Schapendonk et 114 

al., 1998), but differs in that it simulates the dynamics of both vegetative and reproductive 115 

tillers (Höglind et al., 2001; van Oijen et al., 2005a) and that it includes processes which 116 

occur during winter (Thorsen and Höglind, 2010; Thorsen et al., 2010), thus allowing for 117 

whole year simulations. The model was constructed with the aim to make it widely applicable 118 

by simulating the impact of a wide range of environmental drivers and with the intention to 119 

represent processes in a simple, yet realistic way.  120 

The model considers the effects of weather, soil type (water storage capacity) and grassland 121 

management (timing and frequency of harvest). It calculates 35 different output variables, 122 

including 23 state variables (13 for the state of the plant and 10 for the above- and 123 

belowground environment). Only one output variable, aboveground biomass, is focused on in 124 

this study. The model is parameter rich, containing 62 parameters (51 plant specific and 11 125 

site specific), and it requires time series of daily weather data (air temperature, precipitation, 126 

relative humidity, global radiation and wind speed). 127 



BASGRA was originally adapted for simulating P. pratense growth, but was in this study 128 

additionally used for simulation of A. elatius dominated species-rich grassland plots. The 129 

BASGRA model was therefore generalised in the present study by including four additional 130 

parameters. Specifically, the changes dealt with the linear equations for the elongation rate of 131 

leaves on vegetative tillers (LERV) and for leaf elongation rate per leaf of reproductive tillers 132 

(LERG). In both equations, constants for the y-intercept (denoted by a) and the slope (denoted 133 

by b) were replaced by unknown parameters (LERVa, LERVb, LERGa and LERGb). The 134 

generalised BASGRA model that was used in this study contains therefore a total of 66 135 

unknown parameters. 136 

In addition to unknown parameters, the BASGRA model contains 14 fixed values of which 137 

seven are considered as known and universal and the remaining seven are known site specific 138 

values, including latitude and constants for soil properties (Table S1). Both the fixed values 139 

(Table S1) and the nominal values for the parameters (Table S2) were derived from earlier 140 

literature studies (Höglind et al., 2001; Thorsen and Höglind, 2010; van Oijen et al., 2005a), 141 

whereas the site specific values for Rengen and the nominal plant specific values for A. 142 

elatius were obtained in the present study.  143 

The simulations were initiated in the year of establishment, except for the long-term 144 

experiment in Rengen for which the simulations were initiated in the autumn of the year prior 145 

to first harvest included in the analysis, and the model was in each case run for multiple years.  146 

BASGRA is implemented in FORTRAN and simulations are run from script-files in R. The 147 

most recent model version, BASGRA 2014, can be downloaded from the internet together 148 

with a user manual (Van Oijen et al., 2015). This is a slightly updated version of BASGRA 149 

2012 which was used in the present study. The major difference is that BASGRA 2014 150 

distinguishes three tiller categories instead of the two distinguished in BASGRA 2012. 151 

 152 

2.2 Field data 153 

Data from three different field experiments were used, including two sites (Særheim in 154 

Norway and Rengen in Germany) and two grass species (P. pratense and A. elatius).  155 

The first experiment was conducted at Særheim Research Centre at Klepp, about 8 km from 156 

the coast (58º46’N lat; 5º38’E long; 90 m above sea level) in Southwestern Norway. The 157 

composition of the soil is 60% sand, 27% silt, 6% clay, and 7% organic matter. The mean 158 



annual temperature is 7.1 ºC and the mean annual precipitation is 1280 mm (1961-1990). The 159 

experiment was carried out for P. pratense, the most widely grown forage grass species in 160 

Scandinavia, with the cultivar Grindstad, which is the most commonly grown timothy cultivar 161 

in Norway. The data were collected from two different fields, established in 1999 162 

(measurements for 2000) and 2000 (measurements for 2001 and 2002). The full dataset 163 

includes measurements at intervals of one to two weeks of a large number of variables during 164 

the first and second regrowth cycles in 2000–2002 (Höglind et al., 2005). Only the total 165 

aboveground biomass data from these experiments were used in the present study.    166 

The other two experiments were conducted at Rengen Grassland Farm of the University of 167 

Bonn, which is located in the Eifel Mountains, about 60 km west of the Rhine (50º13’N lat; 168 

6º51’E long; 490 m above sea level) in West Germany. The soil is an intermittently wet 169 

Pseudogley (Stagnic Luvisol). The mean annual temperature is 6.9 ºC and the mean annual 170 

precipitation 811 mm. The first experiment at Rengen consisted of P. pratense dominated 171 

grassland that has been established in 1988. Data of biomass yield were collected between 172 

1989 and 1994, with three harvests each year. The 1989 to 1991 data from this experiment 173 

were used as training data for sensitivity analysis and model calibration, while the remaining 174 

data from 1992-1994 were used as an independent test data set for model validation. The 175 

second experiment conducted at Rengen was established on an extensively grazed heathland 176 

in 1941 (Chytrý et al., 2009; Schellberg et al., 1999), naturally dominated by Calluna vulgaris 177 

L. and Nardus stricta L. In 1941, the turf layer was grubbed and reseeded with a grass/legume 178 

mixture. From this long-term experiment, we extracted data from one fertilizer treatment 179 

(Ca/N/P2O5/KCl) in the years 2000-2005. Long-term data up to 2014 on floristic composition 180 

show that the sward in this particular treatment is now dominated by A. elatius. Data of 181 

biomass yield, with two harvests each year, was collected and used in the present study. The 182 

data collected between 2000 and 2002 were used as training data, while the remaining data 183 

from 2003 to 2005 were used for model validation. 184 

 185 

2.3 Weather data 186 

Weather data were automatically collected from on-site weather stations, provided  187 

by Agrometeorology Norway (Agrometeorology Norway, 2015) and Rengen meteorological 188 

station. At both stations, the daily weather records included air temperature (ºC), precipitation 189 

(mm) and relative humidity (%). Wind speed (m/s) and global radiation (W/m2) was 190 



additionally recorded at Særheim. At Rengen, wind speed data were not available and 191 

averaged data over all Germany was used instead of local data, while global radiation was 192 

estimated according to Angstrom (Angstrom, 1924), based on observed sunshine hours (h) at 193 

Rengen. 194 

 195 

2.4 Sensitivity Analysis 196 

Sensitivity analysis determines the parameters that are the key drivers of a model, by 197 

investigating to what extent the variation in model output is influenced by different sources of 198 

variation in the model parameters (Saltelli et al., 2004). It is a suitable tool for model 199 

simplification in that the parameters that are detected to have minor impact on model output 200 

can be fixed to a nominal value. The sensitivity method introduced by Morris (Morris, 1991) 201 

is a screening method that is suitable for complex models where the number of parameters or 202 

the computational cost limit the possibility of numerical calculation.  203 

In the screening method by Morris, the parameter space is defined by a p-level grid within the 204 

parameter boundaries, and the parameter θi, where i=1,…,k, is assumed to vary across the p 205 

selected levels. Elementary effects (EEi) of the model output are calculated from two 206 

consecutive model runs according to Equation 1. 207 

𝐸𝐸𝐸𝐸𝑖𝑖(𝜽𝜽) = �
𝑦𝑦(𝜃𝜃1, … ,𝜃𝜃𝑖𝑖−1,𝜃𝜃𝑖𝑖 + ∆,𝜃𝜃𝑖𝑖+1, … ,𝜃𝜃𝑘𝑘) − 𝑦𝑦(𝜽𝜽)

∆
�        (1) 208 

Here, Δ is in the range of [1/(p-1), 1-1/(p-1)], p is the number of levels, θ is any selected 209 

parameter vector in the parameter space such that the transformed point (θ+eiΔ) remains 210 

within the parameter space for each index i=1,2,…,k and ei is a vector of zeros with a unit 211 

corresponding to its i’th component.   212 

The finite distribution (Fi) of elementary effects (EEi), denoted EEi(θ)~Fi, is constructed by r 213 

elementary effects that are sampled using an efficient design that constructs r trajectories of 214 

(k+1) points in the parameter space. Two sensitivity measures can then be calculated from 215 

EE: (1) µ (the mean value), which evaluates the overall influence of the parameters on model 216 

output, and (2) σ (the standard deviation), which is used to detect parameters involved in 217 

interaction with other parameters or whose effect is nonlinear. To avoid the problem of effects 218 

of opposite signs which occur when the model is non-monotonic, we will in this study use µ* 219 

(the mean of the absolute value of EE) that was introduced by Campolongo et al. (2007).  220 



For dynamic models that simulate daily outputs, the sensitivity of model parameters may 221 

change with time. It is consequently most appropriate to consider the outputs over the whole 222 

time series (Lamboni et al., 2009), but the large number of responses that need to be evaluated  223 

makes this approach challenging for parameter rich models. In this study, the total 224 

aboveground biomass over all harvests was selected as the response.    225 

In this study, the screening method of Morris was first applied to the dataset from Særheim 226 

2000-2002, evaluating the total aboveground biomass summed over the individual harvests of 227 

P. pratense. Secondly, the method was applied to the dataset from Rengen 2000-2002, 228 

evaluating the total aboveground biomass summed over the individual harvest dates of A. 229 

elatius. The ranking order of the parameters with respect to sensitivity was determined, and 230 

groups consisting of the 45, 9 and 4 most sensitive parameters were defined.  231 

 232 

2.5 Bayesian calibration 233 

The Bayesian framework is based on Bayes theorem (Berger, 1985) and is given in Equation 234 

2.  235 

𝜋𝜋(𝜽𝜽|𝑫𝑫) =
𝜋𝜋(𝜽𝜽) ∙ 𝑓𝑓(𝑫𝑫|𝜽𝜽)

𝑓𝑓(𝑫𝑫)
∝ 𝜋𝜋(𝜽𝜽) ∙ 𝑓𝑓(𝑫𝑫|𝜽𝜽)       (2) 236 

Here, θ is the vector of the model parameters and D is the observed data. The resulting 237 

posterior parameter distribution (𝜋𝜋(𝜽𝜽|𝑫𝑫)) is the probability distribution for the parameters 238 

conditional on the data, determined as a combination of our prior knowledge of the 239 

parameters before new data are included (𝜋𝜋(𝜽𝜽), the prior parameter distribution) and the 240 

distribution of the new data conditional on model parameterisation (𝑓𝑓(𝑫𝑫|𝜽𝜽), likelihood 241 

function). The integrated likelihood (𝑓𝑓(𝑫𝑫)) is the marginal probability of the data, which is a 242 

constant. With only few experimental data, the prior parameter distribution will highly affect 243 

the posterior probability distribution, but the more such data are added to the calibration, the 244 

smaller will be the impact of the prior parameter distribution.  245 

Integration problems make exact calculations impossible when the parameter space is highly 246 

dimensional. In this study, calculations were done using the Markov chain Monte Carlo 247 

(MCMC) algorithm Random walk Metropolis (Liu, 2001). The prior probability distributions 248 

were described by beta distributions with minimum, maximum and nominal value given in 249 

Table S2. Prior independence was assumed, and the joint distribution was thus determined as 250 



the product of the marginal parameter distributions. The likelihood function was determined 251 

by the distribution of measurement error, following van Oijen et al. (2005b). As specific 252 

information of the precision of the measurements was not available, the standard deviation of 253 

each measurement was set to 5% of its observed value. The model was calibrated separately 254 

to each of the four datasets described above, i.e. two datasets from Særheim and two datasets 255 

from Rengen. For each of the four datasets, the full model as well as the reduced models 256 

consisting of the 45, 9 and 4 most sensitive parameters were calibrated. The non-calibrated 257 

parameters in the reduced models were fixed to their nominal values.  258 

 259 

2.6 Model fit and validation 260 

Model performance was evaluated on the basis of the root mean square error for the mismatch 261 

between simulated and observed biomass yields normalised by the mean of the observed 262 

aboveground biomass (NRMSE). In addition, the mean square error (MSE) for the mismatch 263 

between simulated and observed biomass yield was calculated and decomposed into three 264 

components (Kobayashi and Salam 2000), given in Equation 3. 265 

𝑀𝑀𝑀𝑀𝐸𝐸 = (𝑴𝑴� −𝑫𝑫�)2 + (𝑀𝑀𝑆𝑆𝑀𝑀 − 𝑀𝑀𝑆𝑆𝐷𝐷)2 + 2𝑀𝑀𝑆𝑆𝑀𝑀𝑀𝑀𝑆𝑆𝐷𝐷(1 − 𝑟𝑟)       (3) 266 

Here, 𝑴𝑴 is the vector of model simulations, 𝑫𝑫 is the vector of observed data, 𝑀𝑀𝑆𝑆𝑀𝑀 and 𝑀𝑀𝑆𝑆𝐷𝐷 267 

are the standard deviation of respectively model simulations and observed data, while 𝑟𝑟 is the 268 

correlation between them. The three components of the right-hand side of Equation 3 are the 269 

squared bias (henceforth referred to as ‘bias’), squared difference between the standard 270 

deviations (‘variance error’) and lack of correlation weighted by the standard deviations 271 

(‘phase shift’) (Kobayashi and Salam 2000).  272 

The error terms were calculated for the full model as well as for the reduced models 273 

consisting of the 45, 9, and 4 most sensitive parameters. For each model, it was calculated for 274 

all four training datasets (the data used for sensitivity analysis and Bayesian calibration), in 275 

order to show the effect of model reduction on how well the simulations fitted to the 276 

observations of the training data. Additionally, NRMSE was calculated for the separate test 277 

datasets from Rengen in order to validate the model’s ability to make predictions. In this case, 278 

the normalised root mean square error of prediction (NRMSEP) was calculated. 279 

Model uncertainty was calculated daily as minimum and maximum predicted aboveground 280 

biomass from 100,000 samples, sampled randomly from the posterior distributions. 281 



Additionally, uncertainty was calculated as the posterior coefficient of variation (CV) based 282 

on summed aboveground harvests over 100,000 samples, sampled randomly from the 283 

posterior distributions. The CV is a normalised measure of discrepancy of the probability 284 

distribution defined as the ratio of the standard deviation to the mean. 285 

 286 

3 RESULTS 287 

3.1 Sensitivity Analysis 288 

The sensitivity analysis explored the space within the prior parameter boundaries (Table S2), 289 

and was performed using the Morris method with 2000 trajectories and 4 levels. It was 290 

applied separately to the dataset at Særheim and Rengen. 291 

 292 

3.1.1 Dataset from Særheim, 2000-2002 293 

The sensitivity analysis was run for the BASGRA model, using the 2000-2002 weather data 294 

from Særheim and site specific harvest dates. The summary statistics of the elementary effects 295 

of each parameter were calculated and plotted in Figure 1a. The points in the upper right 296 

corner, with both high µ* and σ, indicate parameters to which the model is highly sensitive.  297 

 298 

[FIGURE 1] 299 

 300 

Twenty-one parameters stood clearly out as the least sensitive ones according to aboveground 301 

biomass (Figure 1a, points in the lower left corner). These poorly sensitive parameters 302 

consisted of 10 plant specific (LERGa, RRDMAX, LOG10CRTI, RATEDMX, LDT50A, 303 

LDT50B, KRDRANAER, TRANCO, HAGERE and CLAIV) and 11 site specific (FGAS, 304 

FO2MX, gamma, KRTOTAER, KSNOW, LAMBDAsoil, RHOnewSnow, RHOpack, Swret, 305 

SWrf and TrainSnow) parameters. By fixing the poorly sensitive parameters identified above 306 

to their nominal values (Table S2), a reduced version of the BASGRA model was constructed 307 

with 45 (plant specific) parameters.  308 

The reduced BASGRA model with 45 parameters is still parameter rich, and two even simpler 309 

models were constructed by fixing all parameters except for the nine and four most sensitive 310 



ones to their nominal values. The four parameters to which the model was most sensitive 311 

(Figure 1a) were a constant in the logistic curve for frost survival (KRSR3H), day length 312 

below which DAYLGE (day length effect on allocation, tillering, leaf appearance, leaf 313 

elongation) becomes less than 1 (DLMXGE), the initial and maximum value of rooting depth 314 

(ROOTDM) and day length below which phenological stage is reset to zero (DAYLB), where 315 

KRSR3H was by far the most sensitive. The group of the nine most sensitive parameters 316 

additionally included maximum SLA of new leaves (SLAMAX), day length below which 317 

phenological development slows down (DAYLP), the minimum SLA of new leaves as a 318 

fraction of maximum possible SLA (FSLAMIN), the maximum ratio of tiller and leaf 319 

appearance at low leaf area index (LAITIL) and the rate of elongation of leaves on non-320 

elongating tillers (LERVb). 321 

 322 

3.1.2 Dataset from Rengen, 2000-2002 323 

Summary statistics from the sensitivity analysis using the dataset from Rengen 2000-2002 324 

with site specific harvest dates are plotted in Figure 1b. Exactly the same parameters were 325 

detected in the groups of the four and nine most sensitive parameters as when using the 326 

dataset from Særheim. Also, the group of the 45 most sensitive parameters were quite similar, 327 

with the exception of three plant specific parameters. These parameters were: (1) the slope of 328 

linear dependence of duration of anaerobic conditions at which death rate is half the 329 

maximum  and the temperature that kills half the plants in a day  (LDT50B), (2) the maximum 330 

relative death rate due to anaerobic conditions (KRDRANAER) and  (3) the maximum leaf 331 

area index remaining after harvest, when no tillers elongate (CLAIV) that were included for 332 

Særheim. Oppositely,  the parameters:  (1) log10 of initial value of reserves (LOG10CRESI), 333 

(2) phenological stage above which elongation and appearance of leaves on elongation tillers 334 

decreases (PHENCR) and (3) maximum relative death rate of leaves and non elongating tillers 335 

due to shading (RDRSMX) stood out as sensitive at Rengen.  336 

  337 

3.2 Bayesian Calibration 338 

Bayesian calibration was performed for the model with the full parameter set and the reduced 339 

parameter sets of 45, 9 and 4 parameters. Two Markov chains were run in parallel 340 



for  500,000 iterations and convergence occurred within the first  100,000 iterations for all 341 

cases.  342 

Point estimates were calculated from the Markov chains of the posterior probability 343 

distributions, as maximum a posteriori (MAP) estimates, and given in Table 1, for both the 4 344 

and the 45 parameter sets. Many estimates differed strongly from the nominal values for both 345 

the 4 and 45 parameter sets. Only two MAP values were similar to the nominal value; this 346 

was the case for the maximum surface temperature at which hardening is possible 347 

(THARDMX) and LUE-increase with increasing fraction of elongating tillers (KLUETILG) 348 

for the field data of P. pratense grass growth at Særheim, respectively, using the complete 349 

dataset and the harvest data only. The largest difference was found for the common logarithm 350 

of the initial value of reserves (LOG10CRESI) that was reduced by 213% when the field data 351 

of P. pratense dominated grass growth at Rengen was used.  352 

The most sensitive parameter according to the sensitivity analysis, KRSR3H, was in all cases 353 

(Table 1) found to have been overestimated in the prior given the lower MAP values for this 354 

parameter compared to its nominal value. When field data of P. pratense grass growth were 355 

used, the value of the parameter was reduced by 18% or less, with the highest reduction for 356 

the field data from Rengen. A much higher decrease was estimated for A. elatius dominated 357 

grass growth data from Rengen, with a 58% reduction in the 4 parameter set. According to the 358 

45 parameter set, smaller decreases were found for all cases, with a maximum decrease of 359 

15% at Særheim, using only the harvest observations of P. pratense grass growth.  360 

Also the value of DLMXGE was reduced after model calibration. For the 4 parameter set, the 361 

highest reduction (59%) was detected when the field data of A. elatius dominated grass 362 

growth at Rengen were used, while also the two datasets from Særheim exhibited a high 363 

reduction (30 and 31%). According to the 45 parameter sets, a 35% decrease was found for 364 

the complete dataset at Særheim, while only smaller reductions (<18%) were detected for the 365 

other datasets.  366 

ROOTDM increased by about 40% for both the complete dataset of P. pratense grass growth 367 

data from Særheim and for the harvest observations of A. elatius dominated grass growth data 368 

from Rengen, while a decrease of 24 and 18% was detected for the P. pratense aboveground 369 

biomass from both Særheim and Rengen, respectively, when the 4 parameter set was 370 

calibrated. According to the 45 parameter set, opposite results were detected, with a decreased 371 

value for the complete P. pratense grass growth dataset from Særheim and the A. elatius 372 



dominated grass growth data from Rengen of respectively 21 and 70% and an increase for P. 373 

pratense dominated grass growth at Rengen of 18%.  374 

For DAYLB, generally increased values appeared after calibration, except for a reduction of 375 

36% for P. pratense grass growth data using only harvest observations at Særheim and a 376 

reduction of 79% for A. elatius dominated grass growth according to the 4 parameter set.  377 

 378 
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 380 

3.3 Model outputs and validation 381 

3.3.1. Training dataset 382 

Model outputs were calculated for the four cases of field data and the four parameter sets, using 383 

the MAP parameter estimates. The NRMSE and MSE (Table 2) and the percentage 384 

decomposition of the MSE (Figure 2) were calculated for the training data to identify the 385 

model’s ability to adapt to the underlying structure in the data. As a mean value over the four 386 

different cases of field data, the 66 parameter set had the lowest NRMSE with only 0.08, 387 

whereas the 45 parameter set gave only slightly poorer fit (NRMSE = 0.09) (Table 2). For all 388 

four different cases of field data, the decomposition of MSE for both the 45 and 66 parameter 389 

set (Figure 2a-d) were dominated by the phase shift component (more than 64-100% of the total 390 

MSE), followed by the bias (2-32%) and the variance error (< 10%). Individually, the two sets 391 

of parameters (45 and 66) gave best fit for two cases of field data each. While the 45 parameter 392 

set gave the overall best fit for the harvest observations of P. pratense dominated grass growth 393 

data from Rengen and the A.elatius dominated grass growth data from Rengen, the 66 parameter 394 

set gave best fit for the complete set of field data of P. pratense grass growth at Særheim and 395 

for the P. pratense grass growth field data with only harvest observations from Særheim. The 396 

4 and 9 parameter sets gave the worst and the second worst fit for all cases according to NRMSE 397 

(Table 2). The decomposition of MSE (Figure 2a-d) showed high variability between the cases 398 

of field data. Both the P. pratense grass growth field data with only harvest observations from 399 

Særheim and the A. elatius dominated grass growth data from Rengen were dominated by the 400 

bias (73-91%) component for both the 4 and 9 parameter sets. For the complete set of field data 401 

of P. pratense grass growth at Særheim with 9 parameters, the phase shift component 402 



dominated, whereas the effect was more equally spread out between the components for the 403 

remaining cases.        404 

 405 
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 408 

Robustness of predicted aboveground biomass was evaluated for the four parameter sets at 409 

Særheim and Rengen. Model error (NRMSE) was used as a measure of model fit while the 410 

posterior coefficient of variation (CV) summed over the harvests, was used as a measure of 411 

model uncertainty. In Figure 3a and b, NRMSE and CV are plotted as functions of the 412 

fraction of parameters determined in the calibration (0.06 (4 parameters), 0.14 (9 parameters), 413 

0.68 (45 parameters) and 1 (66 parameters)). For both Særheim (Figure 3a) and Rengen 414 

(Figure 3b), model discrepancy (NRMSE) decreases clearly when increasing the faction of 415 

parameters from 0.06 toward 0.14 and to 0.68, whereas no improvement was detected when 416 

increasing the fraction of parameters from 0.68 to 1. As model discrepancy decreases, model 417 

output uncertainty (CV) increases with the fraction of parameters determined in the 418 

calibration. Clearly, a higher increase was determined until the fraction of parameters was 419 

0.68, whereas no increase was detected when increasing the fraction of parameters from 0.68 420 

to 1. In Figure 3c and d, NRMSE and CV are plotted as functions of the highest normalised 421 

µ* among the parameters left out from the calibration (3.2 (4 parameter set), 2.1 (9 parameter 422 

set), 0.2 (45 parameter set), 0 (66 parameter set)). For both Særheim (Figure 3c) and Rengen 423 

(Figure 3d), model discrepancy (NRMSE) increases and model uncertainty (CV) decreased 424 

clearly when increasing the highest normalised µ* among the parameters left out from the 425 

calibration, but for parameters having a lower normalised µ* than 0.2, no or smaller effects 426 

were detected on model discrepancy and model uncertainty.   427 

  428 
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 430 

In Figure 4, model outputs calculated from the estimated MAP values of the 45 parameter 431 

model and the 4 parameter model are plotted together with the training data. For P. pratense, 432 



grass growth at Særheim in 2000 (Figure 4a), an almost perfect fit was found for all the field 433 

observations when the 45 parameter set was used. For the 4 parameter model, on the other 434 

hand, a poor estimation was found, with much lower estimations compared to the 435 

observations.  436 

Also for 2001 and 2002 (Figure 4b), the 45 parameter model estimated aboveground biomass 437 

adequately. For the first cut in 2001, the estimated aboveground biomass decreased slightly 438 

before the harvest, whereas for the second cut in 2002 an underestimation occurred. For the 4 439 

parameter set model, large underestimations appeared for all field observations, which is in 440 

line with the results from 2000 (Figure 4a). However, the second year actually estimated the 441 

first part of both the first and second regrowth well, but the growing stopped too early and 442 

caused an underestimation in aboveground biomass for the last part of both re-growing 443 

periods in the second year.   444 

For the P. pratense swards at Særheim, only including harvest observations, the 45 parameter 445 

model fitted perfectly to the observations in both the years 2000 (Figure 4c) and 2001-2002 446 

(Figure 4d). The 4 parameter model underestimated aboveground biomass for all the 447 

observations. The model fitted to the P. pratense dominated grass growth in Rengen (a three 448 

cut system) provided a quite nice fit with the 45 parameter model (Figure 4e). For the first and 449 

third cut of the first year, the second cut in the second year and the second cut in the third 450 

year, the estimated aboveground biomass decreased slightly before the harvest. The remaining 451 

observations fitted well to the observations, except for the third cut in the second year, where 452 

almost no regrowth was estimated, thus causing strong underestimation of aboveground 453 

biomass. The 4 parameter model generally underestimated the observed aboveground 454 

biomass. For the first year, the observed aboveground biomass was low, and fitted quite well 455 

to the estimated results, as was also the case for the last cut in the third year.  456 

All other observations were highly underestimated. For A. elatius dominated grass growth in 457 

Rengen (Figure 4f), the fit between model outputs from the 45 parameter model and observed 458 

data was good, but the periods in between the observations seemed to be highly incorrect. 459 

Several drops in aboveground biomass were estimated between the cuts. The second cut in the 460 

second and third year seemed to be perfectly estimated. The 4 parameter model highly 461 

underestimated aboveground biomass for all the field observations, except that the last cut in 462 

the last year gave a perfect fit. 463 

 464 
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 466 

3.3.2. Validation dataset 467 

The NRMSEP and MSEP (Table 3) and the percentage decomposition of the MSE (Figure 5) 468 

was calculated for the P. pratense and the A. elatius dominated grass growth at Rengen, using 469 

the validation data. For both datasets, the model with the 45 parameter set predicted grass 470 

growth best, with a mean NRMSEP over species of 0.65. The second best model was the fully 471 

parameterised model with an average NRMSEP of 0.67. The 9 parameter model gave mean 472 

NRMSEP of 0.75 while the worst prediction was made by the 4 parameter model with 0.79 as 473 

mean NRMSEP. The A. elatius dominated grass growth data from Rengen were dominated by 474 

the bias (63-90%), followed by phase shift (5-37%) and variance error (< 5%) (Figure 5b). 475 

For the P. pratense dominated grass growth data from Rengen on the other hand, the effect 476 

was more spread out between the components, except for the error with the 45 parameter set 477 

that was dominated by the phase shift component (92%). 478 

 479 
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 482 

Predictive uncertainty in model outputs induced by parameter uncertainty is shown in Figure 483 

6, together with field observations. The uncertainties are given as prior parameter knowledge 484 

and posterior parameter knowledge, both according to the 45 and the 4 parameter model, 485 

calculated by sampling randomly 100,000 samples from the prior distribution and from the 486 

posterior chains. Model output are then calculated for each parameter set, and uncertainty 487 

plotted as minimum and maximum model output for each day. Figure 6a gives the results for 488 

the P. pratense dominated sward at Rengen 1991-1994. The output uncertainty for this 489 

situation decreased slightly when using the results from the 45 parameter model calibration 490 

compared to our prior probability distributions of the parameters. According to the 4 491 

parameter model, a much clearer decrease was found in predictive uncertainty, compared to 492 

both the prior and the posterior uncertainty from the 45 parameter model. All observations fall 493 

within both the prior and the posterior uncertainties, except the first observation of each year, 494 

which did not fall within the posterior uncertainty from the 4 parameter model. Figure 5b 495 



gives the results for the A. elatius dominated sward at Rengen 2003-2005. Also here, the same 496 

pattern of decreased uncertainties for the posterior uncertainties compared to the prior was 497 

found. All observations did fall within the prior uncertainty and the posterior uncertainty for 498 

the 45 parameter model, but only one of the observations fell within the posterior predictive 499 

uncertainty for the 4 parameter model. 500 

 501 
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 503 

4. DISCUSSION 504 

Process-based growth models, as the BASGRA model, are usually parameter rich. Satisfactory 505 

simplification of such models has previously been shown (Oomen et al. 2016; Raj et al. 2016). 506 

Based on the sensitivity analysis performed in this study, reduction of the number of model 507 

parameters seems possible for the BASGRA model as well. Results from the analysis showed 508 

large differences between the impact of parameters on model output, which is consistent with 509 

similar studies of other parameter rich crop models (Confalonieri, 2010; Confalonieri et al., 510 

2010a; Confalonieri et al., 2010b; Richter et al., 2010; Thorsen et al., 2010). The screening 511 

method by Morris was easy to interpret and suitable in order to range the parameters according 512 

to their influence on model outputs. From the Morris method, we found some parameters that 513 

could be safely ignored in the calibration of our model, for our data. However, by calibrating 514 

the model with only a subset of parameters, rather than all of them, the error term (NRMSE) 515 

increased and the parametric uncertainty (CV) incorrectly decreased. When considering the 516 

error term and the parametric uncertainty as a function of the fraction of parameters kept in the 517 

calibration, a threshold of 0.7 of the parameters seemed to be required in order to have an 518 

acceptable model fit (NRMSE ≤ 0.1) and not a too highly underestimated uncertainty (CV ≥ 519 

0.4) for both Særheim and Rengen. Considering the error term and the parametric uncertainty 520 

as a function of the highest normalized µ* among the parameters left out from the calibration, 521 

this study showed that parameters with a lower normalized µ* than 0.2 could be left out of a 522 

Bayesian calibration. This was valid for our simulations at both Særheim and Rengen, but need 523 

to be checked with other models and data as well for a generalisation. Consequently, the Morris 524 

method identified those parameters with such a small contribution to model output that they 525 

could be set equal to any value within their range without affecting model output considerably.  526 



The importance of site specific sensitivity analysis, in order to investigate the stability of the 527 

sensitivity by the variety of climatic conditions for which the model is used, was highlighted 528 

by Confalonieri et al. (2010b). Accordingly, in this study the sensitivity analysis was 529 

performed using weather variables from two different sites in order to investigate the 530 

consistency of the ranking order of parameters according to their sensitivity to the model 531 

output across sites. The ranking order was not exactly the same across sites, but the same 532 

pattern was identified with the groups of sensitive and poorly sensitive parameters being very 533 

similar at both sites. This underlines the generality of the results and suggests that site specific 534 

sensitivity analysis is not needed for the range of variation in climate and soil conditions 535 

covered in the present study.  536 

Three reduced models were developed, based on the sensitivity analysis of the BASGRA 537 

model, containing only the 4, 9 and 45 most sensitive parameters. The models were calibrated 538 

and error terms calculated based on model output from the new parameter values. According 539 

to both the training and the validation data, the error term for the differences between 540 

observed values and the estimated model output was similar for the fully parameterised model 541 

(66 parameters) and the reduced model consisting of 45 parameters. The 45 parameter model 542 

fitted well to all observations in all cases with training data, except one regrowth for the P. 543 

pratense dominated sward at Rengen that was not estimated properly. This small difference in 544 

the error term indicates that model reduction is possible without affecting model performance 545 

and that the response of aboveground biomass could be explained using fewer or simpler 546 

relationships. For the 45 and the fully parameterised model, the error term for differences 547 

between observed and simulated values was dominated by differences in timing (phase shift) 548 

considering the training data, whereas no general pattern was found in the decomposition of 549 

MSE for the validation data. However, a too strong model reduction should be avoided, as can 550 

be seen from the highly increased error term when considering the 4 and 9 parameter model. 551 

According to the training dataset, the 4 parameter model generally underestimated 552 

aboveground biomass highly. 553 

Model calibration depends highly on the variability in the calibration data, and it is important 554 

to include as much valuable information about the processes as possible. A successful 555 

calibration requires appropriate data for model calibration (Yapo et al. 1996). In this study, we 556 

only had harvest observations for the aboveground biomass at Rengen. Therefore, the 557 

Bayesian calibration was performed twice for P. pratense grass growth in Særheim, firstly by 558 

using the full time series of aboveground biomass observations and secondly by only 559 



including the aboveground biomass observations at regular harvests as calibration data, in 560 

order to visualise the effect. The model predictions fitted the output at harvest best when only 561 

the regular harvest observations were included in the analysis, but at the same time the growth 562 

and regrowth periods became unrealistic with high regrowth during winter when in practice 563 

growth is severely restricted by low temperature and solar radiation. In order to estimate grass 564 

growth through time, and not only make predictions of yield at harvest, it is consequently 565 

important to include data from the regrowth period into the calibration. 566 

For Rengen, only harvest observations were included in the calibration. For the 45 parameter 567 

model, the P. pratense swards seemed to have a nice and realistic estimation of grass growth 568 

also between harvests, according to the training dataset. For the A. elatius dominated sward on 569 

the other side, highly unrealistic values were estimated. Although the harvest observations 570 

fitted almost perfectly, an unrealistic decline in aboveground biomass was estimated prior to 571 

several of the harvests. These poorer results for A. elatius may be due to physiological or 572 

morphological differences between this species and the better studied P. pratense that was not 573 

covered in the model. In addition, by including more observation points for biomass between 574 

harvests in the calibration dataset, the result would have looked different, as illustrated with 575 

the two calibrations for Særheim, with time series of biomass growth observations. 576 

Output uncertainty caused by parameter uncertainty was included in the study, and a high 577 

uncertainty on model outputs was estimated based on prior parameter knowledge of all 66 578 

parameters. The uncertainty was largest at harvest, and declined thereafter, with an estimated 579 

lower boundary of zero aboveground biomass for all days included. The posterior uncertainty 580 

of the 45 parameter model was based on the posterior parameter knowledge of the 45 most 581 

sensitive parameters, with the remaining parameters fixed at a certain value. The uncertainty 582 

was slightly reduced through the analysed period, caused by a combination of fixing uncertain 583 

values and by updating the remaining parameter uncertainty with new knowledge through 584 

observed data. All observed validation values for Rengen were within both the prior and the 585 

posterior uncertainty for the 45 parameter model. The 4 parameter model highly reduced the 586 

output uncertainty. The same data were included in the calibration of the 4 and the 45 587 

parameter models, but the much higher number of uncertain parameters to be fixed at a 588 

certain value in the 4 parameter model, highly affected the uncertainty. Several of the 589 

observations fell outside the posterior uncertainty, which clearly demonstrated the danger of 590 

fixing uncertain parameter values. However, fixing only the 21 most uncertain values did not 591 

seem to affect significantly, thus confirming their weak effect on model output.   592 



In the present study, the estimated MAP values for the parameters highly depended on the 593 

dataset used in the calibration. It is therefore important to calibrate the model for the specific 594 

case for which the model will be used i.e. specific sites and species as well as the target output 595 

variable (harvest only versus biomass growth dynamics).  596 

Additionally, estimated MAP values depended on the model calibration procedure (45 or 4 597 

parameter model). High variations were detected for the four most sensitive parameters when 598 

comparing the MAP values estimated from the calibration of the 4 parameter model compared 599 

to the 45 parameter model. As several of these 45 parameters proved to have an influence on 600 

model output, covariances between the parameters led to different estimates for the 4 most 601 

sensitive parameters depending on the values used for the remaining 41 (fixed to their 602 

nominal value in the 4 parameter model, while they are fixed to their MAP value in the 45 603 

parameter model).  604 

Winter observations were not included in this study, and the unimportant parameters 605 

identified included several “winter” processes governing the dynamics of water in the forms 606 

of snow cover and ice layer. Still, a parameter governing the rate of death due to frost 607 

(KRSR3H) appeared to be the most sensitive parameter. This unexpected result may be 608 

explained by the operations in the Morris method and its use of prior boundaries instead of 609 

prior probabilities. As the prior probability of the parameter was given by a beta distribution 610 

with its maximum value being the most probable and almost zero probability for the lower 611 

part of its interval, the sensitivity analysis includes these values as well. Since these values of 612 

negligible probability highly impacted model output, the parameter was regarded as sensitive. 613 

Similarly, the width of the parameter boundary will impact parameter sensitivity to model 614 

output, since model output will be less impacted when a parameter is only allowed to be 615 

varied within a narrow boundary compared to a wider boundary. Consequently, a parameter to 616 

which the model is very sensitive may only be so because it has a wide prior boundary. Once 617 

we know the value of a parameter very well (e.g. after a calibration leading to a narrow 618 

marginal posterior distribution for that parameter), the sensitivity can disappear. The Morris 619 

method applied to the prior gives higher sensitivity than Morris applied to the posterior. 620 

Sensitivity is consequently not purely a function of model, parameter and environmental 621 

conditions at the simulation site, but depends on our knowledge as well.   622 

The BASGRA model was built in order to estimate 21 different output variables, but only the 623 

aboveground biomass was considered in this study. Consequently, the simplifications made 624 

here based on sensitivity analysis, and the parameterisation done by Bayesian calibration are 625 



only relevant for this single output variable. In order to retain the complexity of the model and 626 

the ability to estimate several model outputs, more output variables should be considered in 627 

the analysis and more observed data included. Biomass yield is the most commonly used 628 

model output in practice, and this study is therefore highly important and relevant. 629 

The validation of well calibrated simulation models is often limited because of insufficient 630 

data. Long-term experiments, from where the data in this study were derived, are an excellent 631 

source especially because management is kept constant and environmental conditions are 632 

well-known. In order to validate the model and to test its suitability also at broader scales, 633 

however, other sources need to be explored. Remote sensing may contribute to calibration as 634 

well as validation of such models through the provisioning of crop parameters and variables 635 

such as leaf area index (Darvishzadeh et a., 2011), crop phenometrics (Parplies et al., 2016) 636 

and dry matter yield (Quan et al., 2017), the latter by coupling remote sensing information 637 

with a radiative transfer model. That way, simulations could also be supported through 638 

coupling such data with spatially explicit site information on e.g. soil properties in a 639 

Geographic Information System.   640 

 641 

5 CONCLUSION 642 

The objective of this study was to examine the impact of parameter screening and subsequent 643 

parameter reduction on aboveground biomass predictions by the grassland model BASGRA, 644 

in order to efficiently be able to include uncertainty in model outputs. According to this study, 645 

a reduction of model parameters from 66 to 45 was possible. The error term, for both the 45 646 

and the fully parameterised model was characterised by the timing (phase shift) when 647 

considering the training data, while no general pattern was found in the decomposition of the 648 

MSE for the validation data. The sensitivity analysis showed that the parameters to be fixed 649 

were consistent across sites (variation in climate and soil conditions), while model calibration 650 

had to be performed separately for each specific case (site and species) for which the model 651 

was used. The output uncertainty decreased slightly, but still covered the field observations of 652 

aboveground biomass. Strong model reductions to 9 or 4 parameters should be avoided 653 

because they lead to highly increased error terms and underestimated model output 654 

uncertainties. In order to estimate the periods between the regular harvests adequately, it 655 

proved to be important to include data from the regrowth period as well, in addition to the 656 

aboveground biomass at the regular harvests, especially for the A. elatius sward at Rengen. 657 



The model has originally been built for P. pratense grass growth, and physiological or 658 

morphological differences between the two species may have been neglected. Better 659 

predictions could possibly have been identified in the model by including regrowth data 660 

during calibration. 661 
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Table 1: Nominal values and maximum posterior (MAP) estimates from Bayesian calibration of the 4 and 45 773 
most sensitive parameters from (1) P. pratense growth at Særheim, (2) harvest observations of P. pratense 774 
growth at  Særheim, (3) harvest observations of P. pratense dominated grass growth at Rengen and (4) harvest 775 
observations of A. elatius dominated grass growth at Rengen. 776 

* The first number is nominal value for P. pratense and the second number is for A. elatius  777 

Parameter Nominal value P. pratense 
Særheim 
All data 

P. pratense 
Særheim 
Harvest data 

P. pratense 
Rengen 
Harvest data 

A. elatius 
Rengen 
Harvest data  

 The reduced parameter set of 4 parameters 
DAYLB 0.392 0.479 0.250 0.508 0.655 

DLMXGE 0.992 0.688 0.693 0.964 0.406 
KRSR3H 1.00 0.982 0.946 0.821 0.417 

ROOTDM 0.761 1.26 0.621 0.579 1.23 
 The reduced parameter set of 45 parameters 

COCRESMX  0.141  0.0989  0.185  0.0967  0.179 
CSTAVM  0.230  0.130  0.331  0.218  0.194 

DAYLB  0.392  0.530  0.438  0.447  0.0811 
DAYLP  0.632  0.683  0.617  0.604  0.487 

DLMXGE  0.992  0.649  0.823  0.891  0.816 
Dparam  0.00320  0.0029  0.0032  0.0029  0.0036 

FSLAMIN  0.466  0.641  0.329  0.161  0.355 
Hparam  0.00560  0.0069  0.0086  0.0061  0.007 

K  0.500  0.513  0.584  0.630  0.509 
KLUETILG  0.500  0.413  0.500  0.476  0.145 

KRESPHARD  0.0100  0.0234  0.0212  0.00783  0.0295 
KRSR3H  1.00  0.911  0.847  0.911  0.889 

LAICR  3.80  2.14   6.30  2.55  3.09 
LAIEFT  0.200  0.226  0.189  0.172  0.220 
LAITIL  0.567  0.776  0.391  0.593  0.974 
LERGb  2.89  0.736  5.86  7.67  8.38 
LERVa -2.76 -6.42 -2.83 -7.27 -4.47 
LERVb  0.520  0.685  0.470  0.472  1.05 

LFWIDG (0.00850/0.00600)*  0.006  0.0102  0.00987  0.0104 
LFWIDV (0.00490/0.00300)*  0.005  0.005  0.0046  0.0027 

LOG10CLVI  1.50  1.98  1.56  1.03  1.67 
LOG10CRESI  0.500  0.393  0.673 -0.565  0.766 

LOG10LAII  0.00 -0.767 -0.530 -0.290  0.204 
LT50MN -(26.7/16.0)* -20.1 -21.9 -20.1 -20.9 
LT50MX -4.79 -5.04 -4.49 -4.44  -5.08 

NELLVM  2.0918\1  1.14  1.10  1.35  1.99 
PHENCR  0.495  0.713  0.823  0.636  0.373 

PHY (63.1/110.0)*  57.3  75.3  74.8  88.2 
RDRSCO  0.0712  0.0604  0.0559  0.0969  0.0797 
RDRSMX  0.0600  0.0566  0.0504  0.0502  0.0854 
RDRTEM  0.00100  0.0013  0.0009  0.0008  0.0009 

reHardRedDay  145  98.5  155   142  114 
RGENMX  0.0109  0.0197  0.0158  0.00847  0.0147 
ROOTDM  0.761  0.660  0.553  0.937  0.231 

RUBISC  5.78  4.31  5.87  4.83  3.94  
SHAPE  0.539  0.866  0.489  0.484  0.440 

SINMAX1T  0.00450  0.0046  0.0058  0.0040  0.0049 
SLAMAX  0.0600  0.0612  0.0476  0.0714  0.0792 

TBASE  3.61  3.23  3.90  4.25  4.12  
TCRES  1.89  2.69  2.10  2.44  3.27 

THARDMX  14.7  14.7  13.7  14.8  14.8 
TILTOTI400  1600  1030  1410  1290  897 

TOPTGE  12.6  9.21  11.5  8.89  7.58 
TsurfDiff  0.623  2.59  0.939  3.30  3.15 

YG  0.842  0.823  0.732  0.798  0.849 



Table 2: Normalised root mean square errors (NRMSE) and the mean square errors (MSE) in parentheses 778 
calculated between model outputs and observed aboveground biomass of P. pratense grass growth at Særheim, 779 
harvest observations of P. pratense grass growth at Særheim harvest observations of P. pratense dominated grass 780 
growth at Rengen and A. elatius dominated grass growth at Rengen (training data).  The model outputs are 781 
calculated for the models constructed by the fully parameterised model and the models with the 4, 9 and 45 most 782 
important parameters according to sensitivity analysis, using MAP values on the calibrated parameters and their 783 
nominal values for the others and for the total parameter set.  784 

Dataset 4 par 9 par 45 par 66 par 
P. pratense Særheim  

All data 
0.8129 
(131,090) 

0.4423 
(38,806) 

0.1105 
(2,423) 

0.0940 
(1,751) 

P. pratense Særheim 
Harvest data 

0.8277 
( 467,450) 

0.3919 
( 104,800) 

0.0211 
(302) 

0.0195 
(259) 

P. pratense dominated Rengen 
Harvest data 

0.7855 
(66,801) 

0.7059 
(53,939) 

0.1578 
(2,696) 

0.1614 
(2,821) 

A. elatius dominated Rengen 
Harvest data 

0.7483 
(84,887) 

0.8119 
(99,934) 

0.0578 
(505) 

0.0606 
(557) 

 785 

 786 

 787 

 788 

Table 3: Normalised root mean square errors of prediction (NRMSEP) and the mean square errors (MSE) in 789 
parentheses calculated for the difference between calculated and observed aboveground biomass at harvest of P. 790 
pratense dominated grass growth at Rengen and A. elatius dominated grass growth at Rengen (validation data).  791 
The model outputs are calculated for the models constructed by the fully parameterised model and for the models 792 
with the 4, 9 and 45 most important parameters according to sensitivity analysis, using MAP values on the 793 
calibrated parameters and their nominal values for the others and for the total parameter set. 794 

Dataset 4 par 9 par 45 par 66 par 
P. pratense dominated Rengen 

Harvest data 
0.5911 
(32,575) 

0.6153 
(35,292) 

0.5764 
(30,972) 

0.6414 
(38,356) 

A. elatius dominated Rengen 
Harvest data 

0.9945 
( 189,520) 

0.8839 
( 147,690) 

0.7325 
( 102,810) 

0.6804 
(88,719) 
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Figure 1: Results from sensitivity analysis of the BASGRA model, using the Morris method for a) Særheim 807 
weather data, soil data and harvest dates in 2000-2001, b) Rengen weather data, soil data and harvest dates in 808 
2000-2001. Only the nine most important parameters according to the sensitivity analysis are named. These are: 809 
a constant in the logistic curve for frost survival (KRSR3H), day length below which the day length effect on 810 
allocation, tillering, leaf appearance and leaf elongation becomes less than 1 (DLMXGE), the initial and 811 
maximum value of rooting depth (ROOTDM), day length below which phenological stage is reset to zero 812 
(DAYLB), maximum SLA of new leaves (SLAMAX), the minimum SLA of new leaves as a fraction of 813 
maximum possible SLA (FSLAMIN), the maximum ratio of tiller and leaf appearance at low leaf area index 814 
(LAITIL) and the rate of elongation of leaves on non-elongating tillers (LERVb). 815 

 816 

Figure 2: The percentage decomposition of mean square error (MSE) into bias, variance error and phase shift for 817 
the 4, 9, 45 and 66 parameter model for the training data with a) P. pratense grass growth at Særheim, b) harvest 818 
observations of P. pratense grass growth at Særheim, c) harvest observations of P. pratense dominated grass 819 
growth at Rengen and d) harvest observations of A. elatius dominated grass growth at Rengen. 820 

 821 

Figure 3: Normalised root mean square error (NRMSE) and parametric uncertainty (CV) as a function of the 822 
fraction of parameters included for a) Særheim and b) Rengen, and NRMSE and CV as a function of the highest 823 
normalised µ* (mean from the Morris method) among the parameters left out from the calibration for c) 824 
Særheim and d) Rengen. 825 

 826 

Figure 4: Observed values and model outputs of the BASGRA model using MAP estimates of the 45 and 4 most 827 
sensitive parameters according to sensitivity analysis  for a) P. pratense grass growth at Særheim in 2000 b) P. 828 
pratense grass growth at Særheim in 2001-2002 c) harvest observations of P. pratense grass growth at Særheim 829 
for 2000 d) harvest observations of P. pratense grass growth at Særheim for 2001-2002 e) harvest observations 830 
of P. pratense dominated grass growth at Rengen 1989-1992 and f) harvest observations of A. elatius dominated 831 
grass growth at Rengen for 2000-2002. Time is equivalent to the number of days, starting at sowing day. 832 

 833 

Figure 5: The percentage decomposition of mean square error (MSE) into bias, variance error and phase shift for 834 
the 4, 9, 45 and 66 parameter model for the validation data with a) harvest observations of P. pratense dominated 835 
grass growth at Rengen and b) harvest observations of A. elatius dominated grass growth at Rengen. 836 

 837 

Figure 6: Prior and posterior (for the 45 and 4 parameter models) output uncertainty and observed values for (a) 838 
P. pratense dominated grass growth in Rengen 1991-1994 and (b) A. elatius dominated grass growth in Rengen 839 
2003-2005.  840 
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