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Many parties to the United Nation's Framework Convention on Climate Change (UNFCCC) base their reporting of change in Land Use, Land-Use Change and Forestry
(LULUCF) sector carbon pools on national forest inventories. A strong feature of sample-based inventories is that very detailed measurements can be made at the level
of plots. Uncertainty regarding the results stems primarily from the fact that only a sample, and not the entire population, is measured. However, tree biomass on sample
plots is not directly measured but rather estimated using regression models based on allometric features such as tree diameter and height. Estimators of model parameters
are random variables that exhibit different values depending on which sample is used for estimating model parameters. Although sampling error is strongly influenced
by the sample size when the model is applied, modeling error is strongly influenced by the sample size when the model is under development. Thus, there is a trade-off
between which sample sizes to use when applying and developing models. This trade-off has not been studied before and is of specific interest for countries developing
new national forest inventories and biomass models in the REDD+ context. This study considers a specific sample design and population. This fact should be considered
when extrapolating results to other locations and populations.
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United Nation’s Framework Convention on Climate Change
(UNFCCC) placed considerable emphasis on forests (Ellison
et al. 2014). Forests can play a role in removing greenhouse gases
from the atmosphere by storing carbon in forests and forest products

In its early efforts at promoting climate change mitigation, the

and by substituting fossil-based materials and energy. Deforestation,
forest degradation, and natural disturbances in forests are linked to
large emissions (e.g., Chazdon 2003). Following comprehensive
guidelines developed by the Intergovernmental Panel on Climate
Change (2006, 2014), parties to the UNFCCC must report changes
in carbon pools to the secretariat of the UNFCCC each year.
Many parties base their reporting for the Land Use, Land-Use
Change and Forestry (LULUCEF) sector on existing or newly estab-
lished national forest inventories (e.g., Tomppo et al. 2010). These

inventories are typically sample based and often use permanent field
plots or mixes of permanent and temporary plots. Provided that
sample sizes are adequate, change in carbon stocks in several pools
can be assessed within the range of degrees of accuracy appropriate
for the purpose (e.g., Petersson et al. 2012). A strong feature of this
type of sample-based inventory is that very detailed measurements
can be made at the level of plots; thus, uncertainty in the results
stems primarily from the fact that only a sample, and not the entire
population, has been measured. Utilizing sampling theory, the level
of uncertainty can be reduced to the specifically desired level by
increasing sample size.

However, in forest inventories, total biomass on sample plots—
and thus the corresponding carbon stocks—are not directly mea-
sured but rather estimated using models based on allometric features
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such as tree diameter and height. These allometric models are typi-
cally derived using data and regression analysis from a limited num-
ber of carefully measured sample trees. The biomass of these trees is
obtained from destructive sampling, in which the weight of different
tree components is carefully measured. In practice, models are scarce
and existing models are often used in other populations as well.
However, methodologically speaking, sample trees should originate
from the same population to which the resulting models will be
applied. Otherwise, the likely result is that carbon stock estimates
will be biased. However, even when the models are derived from the
same population to which they are applied, the use of models will still
add uncertainty to the estimates (e.g., Cunia 1987). Estimators of
model parameters are random variables that exhibit different values
depending on which samples are used for estimating them. Model
parameter uncertainties arising from allometric model development
can be large with small sample sizes and vice versa for large sample sizes.

As illustrated in Stahl et al. (2011, 2014), the total variance of an
estimator in a sample survey in which plot level values are predicted
using a model is the sum of the sampling error in the application
stage and the modeling error due to uncertainty in the model pa-
rameter estimates. Although sampling error is strongly influenced
by sample size when the model is applied, modeling error is strongly
influenced by the sample size when the model is developed. Thus,
there is a trade-off between what sample sizes to use when either
applying or developing models. This trade-off is of specific interest
for countries developing new national forest inventories and bio-
mass models in the REDD+ context (e.g., UN-REDD Programme
2014). Moreover, such trade-offs have thus far not been studied.
However, based on statistical theory, or Monte Carlo simulations in
case studies, the potential combined modeling and sampling error
has been investigated (e.g., Breidenbach et al. 2014 McRoberts et al.
2015, Stihl et al. 2014).

In this study we address the trade-off problem between sampling
and modeling errors. We provide results expressed in terms of the
uncertainty of living tree biomass and carbon stock estimates, for
different combinations of sample sizes, both for developing and for
applying biomass models. We simulate the case of a country that
plans to establish a new national forest inventory for estimating
carbon stocks for above- and belowground tree biomass. The study
is based on models derived by Marklund (1987, 1988) and data
from the Swedish National Forest Inventory (Swedish NFI; Axelsson
etal. 2010).

Materials and Methods

Uncertainties in the estimators of tree biomass in Sweden were
estimated according to Stdhl et al. (2011, 2014, Appendix 1). Stdhl
et al. (2011, 2014) divide the total variance of an estimator in a
sample survey into (1) the sampling error at the application phase
(81) that arises from the fact that only a sample and not the whole
population is observed and (2) the modeling error arising from
modeling rather than physically measuring the biomass on the sam-
ple plots. Modeling error is linked to the precision of the estimated
model parameters that were fitted to data from a separate and inde-
pendent destructive sample (52) from the same population as S1.
The biomass of living trees is estimated using area-based sampling,
in which one sample unit represents the biomass for a larger area and
all sample units together represent the biomass of the total area. It is
possible to reduce total variance in the biomass estimates by increas-
ing sampling intensity either in the application phase (S1), or in the
model development stage (52), or both.

Different sampling intensities in S1 and S2 were used to address
the trade-off problem between allocating resources to the two dif-
ferent surveys. In this study, S1 data were obtained from the Swedish
NFI (Axelsson et al. 2010) and the regression functions were based
on data from Marklund (1987, 1988). Biomass was estimated per
region (31 counties) using a ratio estimator (Appendix 2). To obtain
national-level estimates, the region-level estimates were summed.

Sampling Error—The Swedish NFI

The Swedish NFI is an annual, systematic, stratified, cluster-
sample inventory of Sweden’s forests and uses a periodic 5-year
inventory cycle (Figure 1, Aand B) . In 2013, 889 permanent survey
sample clusters from 31 regions were reinventoried. The clusters are
distributed all over the country in a pattern that is denser in the
southern than in the northern part of the country (Fridman et al.
2014). The clusters (tracts) are square shaped, with sample plots
along each side. Each cluster consists of four to eight sample plots
with a radius of 10 m. The total sampled area per tract varies from
4% 314 m” to 8 X 314 m”. The distance between plots within tracts
differs per geographic region (stratum) because of differing degrees
of autocorrelation (Ranneby et al. 1987). On each circular sample
plot, stem diameter is measured at breast height (dbh, 1.3 m above
the ground) for all living trees. All trees with a dbh greater than 99
mm are recorded on the plots. Using the Swedish NFI, the sample
variances of estimates depend on the sample design, the sample
intensity, and the population of interest. The Swedish NFI is unique
in the sense that it covers almost all land-use categories where trees
occur. Urban trees and trees in the mountainous regions have histori-
cally been excluded either because they are typically limited in number
or are located in areas characterized by sparse, marginal forest cover.
Given this approach, it is possible to estimate the biomass stocks of trees
in different land-use categories as well as the change in biomass stocks
over time and across different land-use categories.

To simulate different sample intensities in S1, estimates were
based on 889, 445, 224, and 123 sample units, respectively. Note
that a tract (not a plot) designates the sample unit. The 445 tracts
were obtained by systematically removing every second tract from
the original 889 tracts with a minimum limit of at least three tracts
per region (31 regions in total). This process was repeated twice until
only 123 sample units remained. The tracts are (more or less) or-
dered by latitude (Figure 1A). The uncertainty arising from the

sampling error associated with biomass estimates was estimated as

mean squared error (MSE; [Mt]?), denoted Var(D, ), where Dlisan
estimator of the difference between sample and population terms
(Appendix 2, Equation 24). This is a standard variance estimator for
a ratio estimator (e.g., Thompson 1992).

Model Error—Marklund’s Data

Tree biomass was not measured on the sample units but modeled
using regression functions. Marklund (1987, 1988) determined an
appropriate model for estimating biomass in which the dependent
variable was transformed using the natural logarithm. The same
model was used in this study for developing regression functions
based on different total numbers of derivation trees. Parameter es-
timates and summary statistics have been made available in Appen-
dix 3. The species Norway spruce (Picea abies), Scots pine (Pinus
sylvestris), and birch (Betula pendula and Betula pubescens) make up
approximately 93% of the standing volume in Sweden (Sveriges
Lantbruksuniversitet 2014). To independently predict above- and
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Figure 1. A. The position of the 889 permanent sample units that make up individual clusters of, normally, eight sample plots (four in
southernmost Sweden) with a radius of 10 m, as surveyed by the 2013 Swedish National Forest Inventory. The sample plots cover almost
all land measured in the field and may be divided into more than one land-use category. The position of sample units is not known to
landowners. B. Example of sample unit (tract) consisting of a cluster of ei%ht sample plots with radius 10 m. All trees on the plots are

measured for dbh and the species is registered. The country is divided into

and the distance between tracts differs by region.

belowground biomass, regression functions were developed for
Scots pine, Norway spruce, and birch using dbh and species as
independent variables. At the application phase, the Scots pine func-
tions were applied to all “pine-species,” the Norway spruce functions to
all “spruce-species,” and the aboveground birch model was applied to all
broadleaved species. Because of the lack of data, the belowground bio-
mass model for spruce was applied to all broadleaved species.

The regression functions were derived based on data acquired by
Marklund (1987, 1988). Marklund’s single-tree allometric regres-
sion functions were developed for predicting aboveground biomass
(branches, bark, stem, and needles, not leaves) for Scots pine, Nor-
way spruce, and birch. Belowground biomass refers to stump and
roots down to a root diameter of 5 cm (because of the method used
for stump excavation, some smaller roots are included) and was only
measured for Scots pine and Norway spruce. The stump height was
defined as 1% of the tree height. The total fresh weight of each tree
(in total, ~1,300 for aboveground measurements and ~660 for
belowground measurements) and the fresh weight of samples from
different fractions were measured in field. The dry weight of each
sample, defined as the constant weight at 105° C, was determined in
the laboratory. The calculation of dry weight per fraction was based
on these measurements. The trees were selected from approximately
130 stands from different parts of Sweden, covering a wide variety of
stand and site conditions. Where possible, Marklund sampled up to
four trees per plot in the classes 0-9.9, 10.0-19.9, 20.0-29.9, and
30.0 cm in dbh.

404  Forest Science * August 2017

ive regions and both the distance between plots within tracts

To simulate different intensities in developing regression func-
tions, 508 Scots pines, 546 Norway spruces, and 241 birches were
used to develop aboveground biomass functions (Appendix 3). The
trees were ordered by latitude, by plot within stand, and by dbh
within plot. Approximately every second tree was systematically
removed and new regression functions were fitted to data. The pro-
cess of systematically removing trees continued until the final regres-
sion functions were based on only eight, nine, and four trees for
Scots pine, Norway spruce, and birch, respectively.

Similarly, for belowground biomass, regression functions were
fitted to data for 296 Scots pines and 311 Norway spruces. Every
second tree was systematically removed until only nine Scots pines
and nine Norway spruces remained. The aboveground regression
functions were fitted to data using the “stem over bark” models
based on Marklund (1988) whereas the belowground regression
functions were fitted to data using the “stump and root system”
models (based on Marklund 1988). We estimate the uncertainty

arising from the model error as MSE (IMt]?), denoted V;;(bz)
(Appendix 2, Equation 29).

Results

Given an accepted level of uncertainty, Table 1 provides a hint of
how to allocate resources between S1 and $2. The MSEs are used for
comparing sample and model errors to total errors whereas the root

Downl oaded from https://academni c. oup. coni forestscience/article-abstract/63/4/402/ 4584085
by Norsk institutt for bioA konom user
on 13 March 2018



Table 1.  Estimated MSE [(M1)2] and RMSE [Mt] within parentheses for aboveground dry matter biomass in Sweden in 2013.

Sample intensity

Model
intensity 123 224 445 889

1,295

Sample MSE 27,048 12,836 6,945 3,478

Model MSE 236 219 222 246

MSE (RMSE) 27,284 (165) 13,055 (114) 7,167 (84,7) 3,724 (61.0)
648

Sample MSE 27,760 13,175 7,123 3,571

Model MSE 520 485 494 550

MSE (RMSE) 28,280 (168) 13,660 (117) 7,617 (87,3) 4,121 (64.2)
325

Sample MSE 27,082 12,848 6,949 3,483

Model MSE 1,048 970 990 1,096

MSE (RMSE) 28,130 (168) 13,818 (118) 7,939 (89,1) 4,579 (67.7)
163

Sample MSE 28,698 13,631 7,355 3,696

Model MSE 2,733 2,547 2,602 2,899

MSE (RMSE) 31,431 (177) 16,178 (127) 9,957 (99,8) 6,595 (81.2)
82

Sample MSE 24,598 11,605 6,322 3,151

Model MSE 2,927 2,673 2,745 3,011

MSE (RMSE) 27,525 (166) 14,278 (119) 9,067 (95,2) 6,162 (78.5)
42

Sample MSE 22,764 10,731 5,853 2,914

Model MSE 5,218 4,791 4,910 5,398

MSE (RMSE) 27,982 (167) 15,522 (125) 10,763 (104) 8,312 (91.2)
21

Sample MSE 18,775 8,896 4,818 2,413

Model MSE 15,540 14,423 14,781 16,313

MSE (RMSE) 34,315 (185) 23,319 (153) 19,599 (140) 18,726 (137)

Sample intensity refers to the number of sampling units (tracts of sample plots; S1) and model intensity refers to the number of trees used (52) for developing regression
functions (e.g., the number 1,295 in the first row refers to the application of three different equations based on 508, 546, and 241 individual trees for Scots pine, Norway

spruce, and birch, respectively; see Appendix 3).

mean squared error (RMSE) is used for relating errors to the esti-
mates of biomass in comparable units. On the basis of the complete
set of 889 sample units (S1) and using regression functions derived
from all 1,295 trees (52), the aboveground biomass estimated was
2,145 [Mt], with a corresponding RMSE of 3% or 61 [Mt] (Tables
1 and 3 and Figure 2).

Given the complete set of §1 sample units (889), the proportion
of the total MSE due to the biomass model parameter uncertainty
was estimated at 7, 13, 24, 44, 49, 65, and 87%, given 1,295, 648,
325,163, 82,42, and 21 trees for model development, respectively
(Table 1). As expected, the MSE due to sampling decreases with
increased sampling intensity. Given S1 sampling intensity, the true
unknown sample MSE is expected to be independent of the number
of trees (52) used for developing biomass models.

However, if 82 or fewer trees are used for model development,
then the estimated sample MSE decreases with the declining num-
ber of trees used for developing models (Table 1). This effect is due
to the effect of random sample selection because the sample MSE is
estimated from a sample and not measured. Given sampling inten-
sity in S1, the true unknown model MSE is expected to increase with
the decreasing number of trees used for model development. This
was also what we found. However, there was no major difference
between using either 82 or 163 trees (Table 1). This can also be
explained by random sample selection because the model MSE is
estimated from a sample and not measured. As expected, given
model intensity in §2, the estimated model MSE was independent
of sample intensity in S1.

On the basis of a complete set of sample units (51) and using
regression functions derived from all 607 trees (52), the below-

ground biomass was estimated at 615 [Mt] and the RMSE was
estimated at 3% or 17 [Mt]. Given all sample units (889), the model
MSE of total MSE was estimated to 26, 42, 57, 71, 77, and 86%
given 607, 303, 151, 75, 37, and 18 trees for model development,
respectively (Table 2 and Figure 3). As expected, the estimated MSE
due to sampling decreased as a function of increased sampling in-
tensity. With respect to sample intensity, the true unknown sampling
MSE was expected to be the same regardless of the number of trees used
for model development. However, the estimated sampling MSE in-
creased slightly with a decreasing number of trees for model develop-
ment (Table 2). This effect is due to the effect of random sample
selection. The estimated model MSE increased by decreasing the
number of trees for model development. As expected, the model
MSE indicated no major trend by sample intensity (Table 2).

Discussion

It should be emphasized that change in living tree biomass stocks
is reported under the UNFCCC/Kyoto Protocol framework and
not actual biomass stocks. Using the Swedish and Finnish National
Forest Inventories as case studies, Stdhl et al. (2014) estimated the
model uncertainty at approximately 10% for stocks and 1% for change
in stock. However, both measures are important. Therefore, we have
focused our study on the more “model-uncertain” estimate of stocks.

The interpretation of the results depends on the national situa-
tion for a country aiming at establishing a new survey for estimating
living biomass (and probably also other forest measures) at a na-
tional scale. Countries should have a survey budget and the costs
for developing models occur only once because models can be
reused whereas sampling costs are long-term, ongoing, running
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Table 2. Estimated MSE [(Mt)2] and RMSE [Mt] within parentheses for belowground dry matter biomass in Sweden in 2013.

Sample intensity

Model
intensity 123 224 445 889

607

Sample MSE 1,632 825 426 216

Model MSE 78.3 73.2 71.7 77.8

MSE (RMSE) 1,710 (41.4) 898 (30,0) 498 (22.3) 294 (17.1)
303

Sample MSE 1,783 900 466 236

Model MSE 171 159 156 169

MSE (RMSE) 1,954 (44.2) 1,059 (32.6) 622 (24.9) 405 (20.1)
151

Sample MSE 1,940 980 507 256

Model MSE 342 319 313 338

MSE (RMSE) 2,282 (47.8) 1,299 (36.0) 820 (28.6) 594 (24.4)
75

Sample MSE 1,979 1,000 516 262

Model MSE 651 609 596 646

MSE (RMSE) 2,630 (51.3) 1,609 (40.1) 1,112 (33.4) 908 (30.1)
37

Sample MSE 2,896 1,462 756 383

Model MSE 1,274 1,195 1170 1,272

MSE (RMSE) 4,170 (64.6) 2,657 (51.6) 1,926 (43.9) 1,655 (40.7)
18

Sample MSE 2,039 1,029 534 269

Model MSE 1,720 1,600 1562 1,678

MSE (RMSE) 3,759 (61.3) 2,629 (51.3) 2,096 (45.8) 1,947 (44.1)

Sample intensity refers to the number of sampling units (tracts of sample plots; S1) and model intensity refers to the number of trees used (S2) for developing regression
functions (e.g., the number 607 in the first row refers to applying two different equations based on 296 and 311 individual tress for Scots pine and Norway spruce,

respectively, see Appendix 3).

Table 3. Estimated stock of aboveground living biomass in
Sweden in 2013 [Mt] given different sampling intensities at
application and different numbers of trees for developing esti-
mation functions.

Sampling intensity

Model

intensity 889 445 224 123

1,295 2,145 2,024 2,017 2,076
648 2,163 2,039 2,030 2,089
325 2,128 2,006 1,996 2,054
163 2,185 2,057 2,046 2,102
82 1,935 1,827 1,816 1,877
42 1,849 1,747 1,736 1,796
21 1,747 1,647 1,638 1,686

costs. If the country can accept an RMSE of 100 [M¢] and, given
a similar sampling design and population of interest as in the
present study, then 450 sampling units and model development
based on 160 trees for estimating aboveground living biomass
may be sufficient. These numbers may need to be adjusted for
larger or smaller populations.

However, we generally do not recommend fewer than 300 model
trees and 900 sample units for estimating aboveground living bio-
mass. If fewer than 300 trees are used, then unstable sample
RMSEs and model RMSEs indicate that variances at a national
scale can be biased (recall that Figure 3 and Table 1 suggest a total
of 300 trees is required for developing three different models for
the groups of species “pine,” “spruce,” and “broadleaved”; see
also Appendix 3). On the basis of Table 1, some improvement
seems to be gained in reduced model RMSE from increasing the
S2 sample from 162 to 325 trees for developing models. It should
also be noted that model RMSE:s refer to variation in the estima-
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tion of model parameters and not to uncertainty arising from an
incorrectly specified model.

An incorrectly specified model can introduce bias. Such bias is
indicated in Table 3 based on sample intensity, especially for an 52
sample of fewer than 163 trees. Although we expect the model based
on all trees (1,295) to predict the most accurately, estimates based
on fewer than 163 trees seem to predict the most unreliably. This
outcome may be the result of random sample selection, but it may
also depend on how trees were removed (in each step every second
S2 observation per species was removed). Carefully choosing model
trees that represent a broad range across dependent and explanatory
variables may reduce the risk of model specification error and de-
crease the variance of parameter estimators. The systematic meth-
odology for selecting model trees was chosen to avoid dependence
between trees (to avoid more than one sampled tree per plot) and to
make the tree selection objective.

To study a wide range of combinations, we developed models
based on an unrealistically low number of model trees. These models
should not be used in practice. Furthermore, we note that there
is uncertainty in estimating the uncertainty of estimates, and
using fewer S1 trees may increase such uncertainty. Using too few
S1 trees may also increase the risk of bias from incorrectly spec-
ified models. However, the analysis of residuals from the trans-
formed model exhibits a rather constant homoscedastic residual
variation given dbh.

Given 300 or more trees for developing regression functions, the
RMSE that arises from sampling dominates the error budget (over
the modeling RMSE). However, it seems promising to further re-
duce the sample RMSE by increasing the S1 sample beyond 889
units. In practice, estimates based on the Swedish NFI are based on
a running average over five cycles. This has the explicit advantage of
increasing the S1 sample from 889 (one cycle) to approximately
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Estimated combined uncertainty (MSE) for sample and model errors of
aboveground tree biomass stock in Sweden 2013 [(Mtonne)?]
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Figure 2. Estimated MSE ([Mt]?) for aboveground tree biomass (dry matter) in Sweden in 2013. Sample intensity (123, ..., 889) refers
to the number of sampling units (tracts of sample plots; $1), and model intensity (1,295, ..., 21) refers to the number of trees used (52)

for developing regression functions.

Estimated combined uncertainty (MSE) for sample and model errors of
belowground tree biomass stock in Sweden 2013 [(Mtonne)?]
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Figure 3. Estimated MSE ([Mt]?) for belowground tree biomass (dry matter) in Sweden in 2013. Sample intensity (123, ..., 889) refers
to the number of sampling units (tracts of sample plots; S1), and model intensity (607, ..., 18) refers to the number of trees used ($2) for

developing regression functions.

4,400 (five cycles) units and may reduce the total RMSE from 60 to
approximately 30 [Mt]. However, given an RMSE of 30 [Mt] or
1.4%, a further increase in sample intensity is not likely to improve
accuracy very much. This assumption is based on the fact that the
relative importance of an unknown bias should be significant when,
because of sampling, the RMSE approaches zero. In other words,
given a situation in which we expect a bias of £3%, we do not gain
much by increasing sample intensity to further reduce RMSE. In-
creasing the sampling intensity from 445 to 889 units for estimates
of aboveground living tree biomass reduces the sampling RMSE by
only approximately 20 [Mt].

The proportion of belowground living biomass constitutes ap-
proximately 20—25% of the trees biomass in Sweden (given defini-
tions of aboveground and belowground biomass that exclude finer

roots). Compared with aboveground biomass, the goodness of fit in
parameter estimates is less precise. However, in many situations,
reliable estimates of belowground biomass are required. Aboveg-
round and belowground biomass are simultaneously estimated in a
national forest inventory survey, and we recommend using the same
sampling intensity for both. To avoid similar problems as described
for aboveground biomass, Tables 2 and 4 in combination suggest
that models based on at least 300 trees may be appropriate for
similar-sized populations.

Because the regression model is nonlinear, a Taylor expansion

was used to derive an expression of Var(D,). A Taylor expansion
series is an approximation and assumes that the model may be lin-
earized close to a specific value. This may not always be the case, and
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Table 4. Estimated stock of belowground living biomass in Swe-
den in 2013 [Mi] given different sampling intensities at application
and number of trees for developing functions.

Sampling intensity

Model
intensity 889 445 224 123
607 615 585 590 607
303 640 609 614 632
151 670 638 643 661
75 682 648 653 672
37 820 780 786 809
18 659 629 635 656

for small sample sizes it is likely that the Taylor expansion series
yields a biased approximation. The risk of using a Taylor expansion
series can be exemplified using the simplest possible model, in which
the biomass is modeled using a constant: 4; = ;. For large sample
sizes in §2, the expected (average) value of &, should be close to the
true average value of 4;; from the S1 population. This may not be the
case for smaller sample sizes in S2. Given any model, the risk of
heteroscedastic residual variation should be considered.

Measurement errors arising from the in-field measurement error
of independent variables (dbh) and registration errors from double-
counting or missing trees may influence the results at a local level
(Holdaway et al. 2014). However, because these errors are assumed
to be random, we do not think they should have a significant influ-
ence on estimates at the national scale. To study and reduce such
errors, a control inventory team can be used.

Models were not developed for all species, and this may intro-
duce bias, as for example when applying the birch models to all
broadleaved species. In the Swedish case and without appropriate
models, if for some reason such bias is approximately 10% for the
least common species (~7% of the total population), the bias at a
national scale should be less than 1%. This refers to estimates of
biomass stock. However, as emphasized above, UNFCCC/Kyoto
Protocol reporting requires estimates of change in stock. We assume
that such potential bias can be ignored for estimates of change in
stock because the bias at two consecutive inventory occasions is
correlated and tends to average out. This conclusion is very prom-
ising, especially for tropical countries with many species, because it
suggests that these countries can focus efforts on developing models
for groups of the most important species.

Conclusion

We have studied the trade-offs that arise from using different
sample sizes when applying and when developing models for pre-
dicting the carbon stock in living tree biomass at a national scale.
Given a standard design of a national forest inventory and a popu-
lation of similar size, our case study suggests that 300 modeling trees
should be sampled for model development and 900 sampling units
should be used for the application of estimation models to national
forest inventories. This suggestion should establish a minimum am-
bition for improving accuracy and arriving at an acceptable cost-
benefit compromise. For countries that are in the process of estab-
lishing national forest inventory procedures, investing additional
(adequate) resources in (allometric) model development can have a
positive impact on the overall reliability and robustness of estimated
forest-based carbon stocks and carbon stock change. Furthermore,
for the establishment of an appropriate and well-designed forest
carbon assessment model, the establishment and use of an adequate
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number of sampling units for the regular measurement of change in
forest carbon represents an important threshold for achieving reli-
able accounting measures. Finally, because the related costs occur
only once, it may be preferable to invest more resources in model
development than to invest additional resources in larger sampling
sizes during model application.

Appendixes and Supporting Materials
Appendix 1: Deriving a Formula for Estimating Uncertainty
Arising from Both Sampling and Model Errors

Stdhl et al. (2011) define a generic model of the population
mean, [Ly, as

1 M
= et @ w

where x; is a vector of regressor variables, e is a vector of model
parameters, and M is the population size. A model-based estimate of
this estimator is provide by

1 m
My = ;Eg(xiSb @) 2)
i=1

where 2 is the sample size, x5, are the regressors given sample S1,
and & are the estimated model parameters. Stdhl et al. (2011) as-
sume simple random sampling, and S1 refers to the national forest
inventory sample. The model parameters are estimated from a sep-
arate sample (52) from the same population as S1.

With the intention of estimating the uncertainty of the estimate,
further steps are (Stdhl et al. 2011)

A

Ly = My = fby — %Eg(xm: a) + %Eg(xfsn Q) — py =
i=1 i=1
3)
1 1 12
= ;lzg(xm) @) — ;zg(xim, @) + ;izzlg(xié“lx @) — py
4)

The term D; is the difference between sample and population
terms and is used for deriving sample uncertainty:

1 m
D, = %Eg(xim: @) — uy )
i=1

The term D, is the difference within sample and is used for
deriving model uncertainty:

1 m
D, = Zg{g(xim’ @) — g(XiSIr )} 6)

D, and D, are uncorrelated, thus

Vm’(ﬁ-y — Wy) = Var(fy)
= Var(D, + D,) = Var(D,) + Var(D,) (7)
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120 1 ! S Ogla
Var(D,) = Var[ng(x,m, a) — I.Ly} {2 X515 a)] Var(D,) = 2V¢lr[m D (G — ) gf:)]

i=1 k=1

= };2‘/517[ Eg(xm’ a)] (8) = Vﬂr[ E(d/e - a/e) : ag(d)]

=1 30(/?
If all g(x;s1, @) are uncorrelated, then Var(D,) = Var{lE(D,|S1)} + E{Var(D,|S1)}  (12)
" : dg(a) . :
Vard Xg(xisi, @)t = > Var(glxis,, @) 9) Given S1, o, 2 constant ¢, for each # (but a different con-
i=1 =1 stant for different 4s); thus,
If all g(x;5), a) have the same variance oﬁ, then )
1 o> Vﬂ’(D2|SI) = Vﬂ”[ E(dk — ) Ck] (13)
Var(D,) = L 0'; = ;g (10) k=1

Var(Dy) = Var[;E{g(xm, &) — gl a)}} Var(D,|S1) = kz Var(e, - (&, — ay)) + ZkEIZEICoU(ck

. (dk - ak): (78 (dt - at)) = (14)

1 m
= szﬂ/{ E{g(xiSla &) - g(xis1> a)}] (11) p PP
i=1 = > WVar(a, — o) + 2> > e, Cov(dy — ay, &, — a,)

To simplify the expression in Equation 11, Stahl et al. (2011) intro- =l A

duce a Taylor expansion series by linearization around g(x;s;, @). (15)
For large sample sizes, it is reasonable to use a Taylor expansion ) .

series, E(&) = a,and noting that @ = (v}, , - - - ,,), where pis Noting that £(&,) = e,

the number of parameters in the model: Cov(éy — ap, &, — o)) = EA[&, — o] — E[éy — o]}

g(XiSb &) g(szb a) { (Xsz a)} (&1 - 0(1) : {[dt - O[,] - E[OA[I - at]}) =
=E(a;— o] [a; — o])

og A .
+ {M(XiS]’ a)} (G — ) Thus, given S1,
g R p PP
a {aa,,("“" @) - @)t ac . VarDs1) = Savartd, - a0 +235 3 ackl
k=1 k=1t=k+1

If & is close to a, then the following terms can be ignored:

—ai] [a —a]) (16)
i{g(x &) — glxisy, @)}~ i[ ig(x. &) (o — ak)] Noting that (&) = ey and Varld, — &) = (Blé — ab),
iS1> iS1> aak iS1> k

i=1 i=1[k=1

E{VW(D2|51)} = E[ EC/%E([dk - ak]z)

k=1 i=1

4 "9
= E(dk — )¢ [Zafk(xisn &)]
+ 22 E fksz([OA‘k - ak] . [dr - at])

Given M iz (Xm &) then k=1r=k+1
= D ED B[ — a ) + 22 2 Elewe) - E([6y
- A A é A ag(d) k=1 k=1t=k+1
E{g(xim, a) — g(XiSh )} = E(ak — ) m 'W
i=1 k=1 k - ak] : [OA‘t - at])
S 0y D Thus HDIS) = B (G~ a) - @) = 0. and ViD=
i1 0% A EDIS) + EVarDIS) = EVarDJS1)
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Unconditionally for S1

2

Var(Dy) =~ ———n;*S; . (24)
P P 14 n , i~ Rty
Var(Ds) = S EE) - E(& — a) + 23 3 Eeye) (2a)
k=1 k=1lr=k+1 j=1
~E([a, — ai ] [a,— «,]) (17)  where S}i_ki.a” is the standard deviation based on l;,-j - }A?,« . ay.
Finally (sce Scahl et al. 2011, Appendix a), We will need the following derivatives:
. . dg dbh )
Pl deo(a ool —_— = L= —+ -
Var(Dy) = 33 Cover(dy, &) - ESI(K(). 2 )) do, b CXP("‘I @ ok + 1 (25)
P day Ja,
g dbh dbh
18 —° = = . _
(18) by Do ¢Mh+16”<%*“”ﬂb+) (26)
1 P (8g(d) Qﬁd)) .
Var(i) = —o? + C 4 G,) . u ~
ar(fLy) mo'g Ez ovg(dy, @) * Eg da, | oa . E([dl — ] .
E(éij - bij) ! ”
(19) s + (G — o] by

Appendix 2: Estimating Uncertainty Arising from Both Sampling
and Model Errors for a Ratio Estimator
In the present study, the estimated biomass of tree j within stra-

tum (region) 7 is (27)
bij = g(xij’ oy, OL2) = g(dbb”, oy, a2) (20) n; i
Tree biomass (4;) is not measured, but it is indirectly modeled using b i b aij
4 . ) =1 i=1
a general regression function (Marklund 1987, 1988): =&, — ] 4 ! - + 6y — an] - 4 ! -
dbhy : :
b = exp(al + a, -’) 21) ay 24y
J (dbhy; + 1) j=1 j=1
where @, and «, are regression parameters, 4bb is stem diameter (28)
measured 1.3 m above the ground for a tree from $2, and /is a
species-specific constant. where [@; — a;]and [@, — o] are random variables, and given
The stock of biomass (B,) is estimated using a ratio estimator: i ém i i bA;W-j
j=1 " =1
ni S1,A4; + and 4; - are constants:
AH zn,- a; zn,- a;
2.by =1 =1
A j=1 A
Bi=dAr——=4k (22) ,
Eﬂij 3l Eb,au‘j
j=1 — . s j=1
Var(D,) = Cov(,, a;) * EA: :
where A; is the measured area of stratum 7, b;; is the biomass of i=1 i
sample unit j (in stratum ), @; is the area of the sample unit 7, and ; < ij
is the number of sampling units of stratum 7. (Observe that the index a
j now refers to all trees on a sample unit but to a single tree in n 2
Equations 20 and 21.) S
In line with Equations 5 and 6, A oy
‘ +  (29)

ni

E (éii - bii)
j=1

+Ai°7:Ai'Ri+Ai(fei_Ri)

nj
E bii
j=1

=D, + D, (23)

The sample variance of the D, estimator is estimated by a stan-
dard variance estimator for a ratio estimate:
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Dy,= A+~ =~ A~ =

1 1
ni n;
Eﬂy Za,-,-
Jj=1 Jj=1

n

2%‘

j=1

+ COZ/(&z, dz) * EAZ *
i=1

31 szalii 31
+ 2+ Covldy, &)+ | DA, | DA

s
i=1 ! i=1

ni

At
E bazii
j=1

ni
E”ij
j=1



Var(D,) = C,; * (U11)2 + Cye (Ulz)2 +2:-Cp Uy Uy,
(30)

However, Equation 29 should be made per stratum for the three species:

Vﬂ’(Dz) =~ Cy- (U1|)2 +2:Cprr Uy Up+ Gy (UIZ)Z +
+ Ci3e (Uzl)2 +2:Cyy Uy » Uy + Cyy e (U22)2 +

+ Css'(U31)2+ 2:Cs+ U » Usp + Cﬁé‘(Un)z (31)
The covariance matrix for (&, &,) is
Scots pine Norway spruce Birch
gla,q,)  6(a,q,) Cy, Cy, Cys Cay Css  Csq
d(a,a,)  0(dya,) Cy C,, Cys Cuy Ces  Cgs

Appendix 3: Summary Statistics for the Sets of Equations

The covariance matrix of the parameter estimates is central when
estimating the model errors (e.g., Equation 31). The absolute values of
covariances (as well as the model errors) are expected to increase when
the number of trees () used for developing the model equations de-
creases. Seven and six sets of equations were derived for aboveground
and belowground biomass, respectively. Summary statistics for the sets
of equations are presented, including parameter estimates and covari-

ances. The following model was used (Marklund 1987, 1988):

dbh;;
In bij = + QZ’W
For aboveground individual tree biomass, the constant / was set to
122, 148, and 83 for Scots pine, Norway spruce, and birch, respec-
tively. For belowground individual tree biomass, the constant / was
set to 120 and 140 for Scots pine and Norway spruce, respectively («
is a model parameter, 4bh [mm], and & is biomass [g]).

At retransformation, correction for log bias is made by ¢*/2 (¢ is
the residual variation, Satoo and Madgwick 1982). R* is the coeffi-
cient of determination. The predicted biomass (dry weight) may be
converted to CO, equivalents by multiplying with 0.50 - 44/12
(Sandstrom et al. 2007).

Summary statistics for seven model combinations: aboveground
biomass:

& & n=1295 ¢ R &(dnd) 6(d,6) 6(dnd)

Scots pine 5.09 10.69 508 0.228 0.98 0.00148 —0.00249 0.00448

Norway  5.99 10.28 546 0.211 0.99 0.00059 —0.00113 0.00251
spruce

birch 4.32 10.70 241 0.294 0.98 0.00336 —0.00580 0.01122

a b n=048 ¢ R &(d,d) 6(d),6) 6(dnd)

Scots pine 5.13 10.61 254 0.264 0.97 0.00433 —0.00725 0.01298

Norway  6.00 10.25 273 0.216 0.99 0.00119 —0.00230 0.00520
spruce

birch 4.18 10.96 121 0.233 0.98 0.00498 —0.00857 0.01622

a b, n=325 ¢ R &d,d) 6(d,6) 6(dnd)

Scots pine 5.12 10.60 127 0.241 0.97 0.00822 —0.01379 0.02447

Norway  5.99 10.29 137 0.225 0.99 0.00237 —0.00452 0.01023
spruce

birch 4.11 11.12 61 0.248 0.99 0.00905 —0.01571 0.03074

& & n=163 b R 6(6,64) 6(dnd) 6(dnd)
Scots pine 5.20 10.46 64 0.294 0.96 0.02322 —0.03821 0.06677
Norway  6.00 10.26 69 0.248 0.99 0.00554 —0.01060 0.02424
spruce
birch 3.88 11.58 30 0.212 0.99 0.01469 —0.02635 0.05260
@ a4 n=82 ¢ R Hand) 6(dnd) 6(dnd)
Scots pine 4.90 10.92 32 0.168 0.99 0.01610 —0.02637 0.04567
Norway  5.98 10.34 35 0.193 0.99 0.00768 —0.01532 0.03564
spruce
birch 3.71 11.90 15 0.184 0.99 0.02971 —0.05425 0.10720
& & n=42 ¢ R 6(6,4) 66 6(dnd)
Scots pine 4.81 11.03 16 0.194 0.99 0.03075 —0.05240 0.09669
Norway  5.94 10.47 18 0.187 0.99 0.01369 —0.02779 0.06568
spruce
birch 3.67 11.97 8 0.233 0.99 0.06739 —0.13071 0.28196
@ a n=21 ¢ R G(dn,dy) 6(d1ds) G(dn,dn)
Scots pine 4.92 10.66 8 0.238 0.99 0.06931 —0.12411 0.24756
Norway  5.81 10.73 9 0.211 0.99 0.03570 —0.08156 0.21628
spruce
birch 3.72 12.17 4 0.194 0.98 0.33694 —0.67853 1.40554
Summary statistics for six model combinations: belowground
biomass:
& & n=607 ¢ R 6(4,4) 6(d,6) 6(dnd)
Scots pine 3.46 11.11 296  0.364 0.96 0.00580 —0.00985 0.01813
Norway  4.44 10.54 311 0.341 0.97 0.00265 —0.00507 0.01129
sprucev
@ G n=303 ¢ R 6(44) 6(ddy) 6(ddy)
Scots pine 3.48 11.01 148 0.331 0.97 0.00921 —0.01555 0.02853
Norway  4.49 10.45 155 0.341 0.97 0.00531 —0.01017 0.02267
spruce
& q n=151 ¢ R 6(6.d4) 6(d,k) 6(dnd)
Scots pine 3.56 10.88 74 0.325 0.97 0.01687 —0.02850 0.05260
Norway  4.54 10.40 77 0.324 0.97 0.00974 —0.01874 0.04190
spruce
a & n=75 ¢ R 6(4,4) 6(ddy) 6(ddy)
Scots pine 3.65 10.76 37 0.303 0.98 0.02635 —0.04473 0.08378
Norway  4.54 10.48 38 0.307 0.97 0.01847 —0.03600 0.08107
spruce
@ a n=37 ¢ R a(a,a;) 6(a,a) 6(dn,a,)
Scots pine 3.79 10.47 18 0.299 0.97 0.06014 —0.10216 0.18911
Norway  4.75 10.13 19 0.251 0.98 0.02441 —0.04703 0.10489
spruce
@ & n=18 ¢ R 6(d,4) 6(ddy) 6(ddy)
Scots pine 3.18 11.54 9 0.207 0.99 0.05480 —0.09539 0.18187
Norway  4.62 10.53 9 0.228 0.99 0.05272 —0.10502 0.23494
spruce
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