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Abstract 
In the process of studying how climatic changes 

will influence important forage crops at high 

latitudes, van Oijen et al. (2005) developed a plant 

model for two grass species, timothy (Phleum 

pratense L.) and perennial ryegrass (Lolium 

perenne L.). In order to study winter survival of 

the plants, the plant model requires routines to 

simulate winter conditions, such as snow 

accumulation, soil frost, ice cover and soil 

temperature. This report describes the 

development of the SnowFrost model that 

simulates snow accumulation and the formation of 

soil frost. Routines for simulating ice encasement 

will be added at a later stage. The SnowFrost 

model implements a degree-day-temperature-

index method in the snowmelt routines, and an 

energy balance approach to get an algebraic 

expression for soil frost formation. Our main focus 

when developing the winter model is to adequately 

simulate winter conditions from the plant's point of 

view, rather than accurately simulate the depths 

of snow cover and soil frost penetration. 

Simulations for a site with cold and stable winter 

conditions show promising results, and indicate 

that SnowFrost is suitable as a foundation for the 

continuing work of developing the winter routines 

for the plant model.  

 

 

 

 

 

 

 

 

 

 

 

 

Sammendrag 
For å studere hvordan framtidige klimaendringer 

ved nordlige breddegrader vil påvirke viktige 

forgressarter, har van Oijen m.fl. (2005) utviklet 

en plantemodell for to gress arter, timotei (Phleum 

pratense L.) og flerårig raigras (Lolium perenne 

L.). For å kunne simulere plantenes evne til å 

overleve vinteren, må den eksisterende 

plantemodellen utvides med rutiner som kan 

simulere vinterforhold, som for eksempel 

dannelsen av snødekke, teledannelse, dannelse av 

islag oppå jorda, samt jord temperatur. Denne 

rapporten beskriver utviklingen av modellen 

SnowFrost som simulerer dannelsen og tiningen av 

et snødekke, samt dannelsen av tele i jorda. 

Rutiner for å simulere innkapsling av planter i is vil 

komme på et senere tidspunkt. SnowFrost 

modellen benytter en grad-dag-temperatur-indeks 

metode i simuleringen av snøsmelting, og en 

tilnærming via energibalanse for å få en formel for 

beregning av teledyp. Vi har valgt å legge vekt på å 

utvikle modellen med tanke på at den skal brukes i 

en eksisterende plantemodell. Vårt hovedfokus blir 

dermed å simulere vinterforholdene ut fra det som 

er viktig for plantene, og ikke med tanke på 

nøyaktige simuleringer av snødybde og teledybde. 

De første simuleringene som er kjørt for en 

forskningsstasjon med et stabilt og kaldt 

vinterklima viser lovende resultater. Vi vil 

derfor bruke SnowFrost som et grunnlag i den 

videre utviklingen av vinterrutinene til 

plantemodellen.
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Introduction 

The global climate is changing, and during the next 

100 years, the global temperature is expected to 

increase by 1.4 - 5.8 °C. This temperature increase 

is related to a parallel increase in atmospheric CO2 

of up to 478 - 1099 ppm (McCarthy et al. 2001). In 

Norway, the temperature rise is likely to be larger 

in the northern parts compared to the southern 

parts. Also we can expect the winter weather in 

Norway to be more variable, e.g. milder 

temperatures and more precipitation as rain 

(Grønås, S. 2005), which might cause more water 

logging, and more ice encasement and less snow 

cover. The effects of these climate changes on the 

over wintering of important agricultural crops is 

among the topics studied in the Norwegian 

Research program WINSUR (2004-2008).  

 

As part of the WINSUR project, two of the most 

important grass species of silage, timothy (Phleum 

pratense L.) and perennial ryegrass (Lolium 

perenne L.), is studied. Timothy is able to survive 

winter conditions better than perennial ryegrass, 

but it shows poorer regrowth after harvesting. The 

reason why this is so is currently under 

investigation (van Oijen et al. 2005). This 

investigation involves the development of a model 

to adequately simulate the timothy regrowth 

dynamics over more than one season. In order to 

study the plant's abilities to withstand winter 

conditions like e.g. reduced photosynthesis due to 

snow cover, anaerobic conditions caused by ice 

encasement and periods of physiological drought; 

the current plant model will be expanded to 

include new routines for simulating snow cover, 

soil frost and ice encasement. This report 

describes the first version of a sub model that is 

going to simulate winter conditions for the plant 

model. The different winter conditions are 

organized in different modules; that is, one 

module simulates the snow dynamics (e.g. the 

formation and accumulation of snow, and 

snowmelt), and one module simulates soil frost. 

The SnowFrost model currently consists of these 

two modules. A module that simulates the 

formation of an ice layer on the soil surface will be 

developed later. 

 

The main objectives of the SnowFrost model are 

to produce daily values for snow Sdepth, together 

with a lower boundary of soil frost Fdepth. Important 

input data for the plant model is the duration of 

the snow cover and for how long the soil is frozen. 

The default parameterization of SnowFrost is 

based on previous modelling work of Riley and 

Bonesmo (2005) for a site located at Bioforsk 

Arable Crops Division, Kise, Norway (60.77 °N lat; 

10.8 °E long; 127 m above sea level). The required 

input variables to SnowFrost are daily mean values 

for air temperature Tair and precipitation P. 

 

The plant model, including all sub models like 

SnowFrost, are implemented in the Simulink ® 

software package. 

 

A table of all the symbols with their quantity and SI 

units used in the SnowFrost model is presented in 

appendix A. 
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1 Outline of the model, and 
general assumptions 
 
SnowFrost consists of two main modules. One 

module is related to snow accumulation, packing 

and densification of the snow cover and snowmelt; 

while the other module is related to the freeze-

thaw processes in the soil (see figure 1). 

 

 
Figure 1. Description of the system simulated in the 
SnowFrost model. 

 
The system's upper boundary is the soil surface 

during snow free periods, and the snow cover 

surface when snow is present. The system's lower 

boundary is set to the soil depth of zero annual 

temperature amplitude (see section 4.1). We 

assume that the processes simulated in the model 

is homogeneous throughout the site of interest. We 

also assume that the meteorological input 

(precipitation and temperature) is the same 

throughout the site, and that there is no spatial 

variation in the snow cover or in the soil 

composition at the site. At the moment, the soil 

water content xw is kept constant. In the 

succeeding model versions, soil water content will 

also be simulated. Further, the thermal 

conductivities of the soil λg and snow cover λs are 

kept constant. The thermal conductivity of frozen 

soil is assumed equal to that of unfrozen soil λg.  

 

Based on the input temperature Tair and 

precipitation P, SnowFrost determines the 

precipitation form; rain Pr, and snow Ps.  

 

Precipitation falling as snow Ps and snowmelt that 

refreezes within the snow cover Mf constitutes the 

solid parts of the snow cover Sdry. The snow cover, 

being a porous medium, can retain a limited 

amount of liquid water Swet resulting from either  

rain Pr, or melted snow M or both. If Swet exceeds a 

threshold value, referred to as the snow cover's 

retention capacity fcap (see section 2.2.3), Swet will 

add to the total snowmelt discharge M in the 

model. In the off winter season, or when there is 

no snow cover present, precipitation falling as rain 

adds directly to the surface water Wsurf. 

 

Currently in SnowFrost, Wsurf does not infiltrate 

into the soil (soil water content being kept 

constant). Later this will be taken into 

consideration, as we will model the soil water 

content. At this later stage, the infiltration 

capacity into the soil will be influenced by the 

presence of soil frost. 

 

The snow melts when there is enough energy 

present. SnowFrost use Tair as a measure for 

available energy (see section 2.2.2). Based on Tair 

and a degree-day factor KM, SnowFrost calculates 

a daily amount of snowmelt. 

 

Simulation of the lower boundary of soil frost Fdepth 

is related to the above ground temperature. If a 

snow cover is present, this will serve as an 

insulating layer, and therefore SnowFrost 

calculates an intermediate temperature 

Tsurf between the snow cover and the soil surface 

(see section 3.2). 

 

2 Snow Cover 
The general structure of the SnowFrost model is 

that meteorological data such as daily average 

temperature Tair and daily precipitation P drives 

the processes. The routines related to snow 

accumulation and snowmelt, and the numerical 
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values of the parameters are based on the 

modelling work of Riley and Bonesmo (2005). 

 

2.1 Precipitation 

The precipitation form is based on Tair, upper Tupper 

and lower Tlow critical temperatures. Based on air 

temperature Tair, a fraction of water fw of the 

measured precipitation P is calculated. If Tair > 

Tupper, all precipitation falls as rain; if Tair < Tlow 

the  

precipitation fall as snow, and if Tair is in between, 

the precipitation fall as a mixture of snow and 

water, i.e. fw is defined as 
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and the corresponding amounts of rain Pr and snow 

Ps are  
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2.2 Snow Dynamics 

2.2.1 Snow Accumulation 

The differential equation governing the amount of 

dry snow and ice in the snow pack is 

MMP
t

S
fs

dry −+=
d

d
 

where Sdry is the amount of water in solid phase 

stored in the snow cover, Mf is liquid water that 

freezes within the snow cover, and M is the snow 

melt discharge. 

 

The amount of liquid water stored in the snow 

pack Swet is governed by the equation 

 

fr
wet MMP
t

S
−+=

d
d

 

 

If the entire snow pack melted instantaneously, 

the resulting depth of water is known as the snow 

water equivalent SWE. In SnowFrost, SWE is 

calculated as the sum of water stored in dry snow 

Sdry and wet snow Swet 

 

wetdry SSSWE +=  

 

The differential equation describing the change in 

depth of the snow cover is 

 

depthpack
snowsnowNew

sdepth SMP
t

S
ρ

ρρ
−−=

d
d

 

 

where Sdepth is the depth of the snow cover, 

ρsnowNew is density of new snow, ρsnow is density of 

the snow pack and ρpack is an empirical parameter 

that incorporates the increase in snow density as 

the snow pack ages. The density of the snow pack 

ρsnow is calculated as 

 

depth
snow S

SWE
=ρ  

The density of the snow pack is bounded in the 

model so that it doesn’t exceed a maximum value 

of 480 kg m-3 (note: 1 mm of precipitation equals 1 

kg m-2 ). 

 

2.2.2 Melting of Snow 

One area of interest where the development of 

snowmelt routines was necessary was in the 

hydrological models. Here these routines were 

used to estimate watershed runoff in regions with 

a seasonal snow cover. One of the early versions of 

such a snowmelt model is based on a degree-day 

temperature index (Melloh 1999). 
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In SnowFrost the melting of snow M is based on a 

linear relationship between the degree-day factor 

KM and the air temperature Tair above a lower base 

temperature for melting Tbm  

 

( )

( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

≤

>−

>
>−

=

bmair

drybmairM

bmairdry

bmairbmairM

TT
perDaySTTK

TTperDayS
TTTTK

M

   when 0
when 

 and ,  when 
 when 

 

 

The degree-day-temperature-index KM is the 

melting rate of the snow pack. This factor, 

together with daily air temperature Tair, 

substitutes the energy balance of the snow pack, 

i.e. air temperature is used as an indicator of the 

surface energy balance. The factor KM is calculated 

as  

( ) maxmin    when   1 KKKKK MsnowcumM ≤+= ρ
 

 

where Kmax and Kmin are maximum and minimum 

values for KM, respectively, and Kcum  is an  

empirical parameter (Riley & Bonesmo 2005). 

 

2.2.3 Liquid Water Retention Capacity of the 

Snow pack  

The snow pack is able to retain a certain amount 

of liquid water. The maximum value fcapMax of this 

retention capacity fcap (dimensionless) is when the 

snow pack consists of only fresh snow. The 

retention capacity decrease as the snow pack 

changes character due to a combination of 

compression, aging and the addition of liquid water 

either from precipitation as rain or melted snow. 

In the SnowFrost model, these changes are 

assumed captured by the change in the density 

ρsnow of the snow pack (Riley & Bonesmo 2005). 

Liquid water is retained within the snow pack until 

the maximum limit is reached. Liquid water 

exceeding this limit percolates through the snow 

pack and adds to the amount of liquid water on the 

soil surface. The retention capacity fcap is a 

function of snow density ρsnow, the empirical 

parameter Ccum, and the parameters fcapMax and 

fcapMin 

 

( ) capMincapsnowcumcapMaxcap ffCff >−=   when 1 ρ
 

 

2.2.4 Refreezing of Melted Snow 

Along the lines of the snowmelt routine, all liquid 

water present within the snow pack may freeze as 

long as the air temperature drops below a lower 

base temperature for freezing Tbf. The rate of 

water that refreezes Mf is calculated as 
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where Kf is the refreezing parameter. 

 

2.2.5 Surface Runoff 

Liquid water on the soil surface comes from either 

rain or melted snow. At the moment,  

infiltration into the soil is not implemented so all 

excess water runs out of the simulated system as 

surface runoff. The rate of surface runoff Wout is 

calculated as 

 

drycap

frwetout

Sf
MPMperDay     SW

−

−++= 
 

where Swet is the amount of liquid water present in 

the snow pack, Pr is rain, M is the rate of 

snowmelt, Sdry is the amount of solid water (snow 

and ice) in the snow pack this day, and fcap 

(fraction) is the amount of liquid water the snow 

pack can retain. 

3 Frost Formation in the Soil 
In a closed system, the phase of any substance 

(gaseous, liquid and solid) is governed by the 

pressure and temperature within this system, e.g. 

the phase of water in a closed cylinder. Although 

the soil can not be regarded as a closed system,  
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soil water can occur in all phases throughout the 

course of one year. When considering soil water, 

both the temperature and pressure (the pressure 

of soil water is often referred to as the soil water 

potential) varies over the season. A drop in soil 

temperature below 0 °C, may cause soil water to 

freeze. This temperature is referred to as T* , the 

freezing temperature. However, both the amount 

of dissolved salts in the soil water and the soil 

water potential has an influence on the freezing 

point of soil water. This change in the freezing 

point is known as freeze-point depression. 

 

Soil frost in SnowFrost is regarded as one 

homogeneous layer of frozen soil that originates at 

the soil surface and expands downwards to the 

lower frost boundary Fdepth. The thickness of the 

frozen soil layer is called ζ (see figure 1). We use 

equation (22) in the derivation of an algebraical 

expression for the depth of the frozen soil layer. 

SnowFrost simulates the lower frost boundary 

under the following assumptions: 

 

• a one-dimensional stationary flow of 

energy from the lower frost boundary 

towards the soil surface 

• a constant heat flow at the system's lower 

boundary due to geothermal conditions Qg 

• ignore variation in soil thermal 

conductivity λg  

• no freeze-point depression, i.e. T* is equal 

to 0 ˚C regardless of the salt 

concentration and the soil water potential 

• a constant soil water content at field 

capacity throughout the winter 

 

In the process of calculating Fdepth, under the 

conditions of soil frost formation, we assume a 

linear variation in soil temperature T(z,t) with 

respect to depth below the soil surface z  

(note: during periods of no snow cover Tsurf = Tair) 

Equation 1 

( ) z
TT

TtzT surf
surf ς

−
+=

*

,  

 

where Tsurf is the temperature just above the soil 

surface at time t, and ζ is the depth of the frost 

layer from the soil surface to T* (the lower frost 

boundary). Equation (1) is valid only when soil frost 

is present (i.e. when ζ > 0). 

 

The melting of ice requires energy (335 kJ pr kg 

ice) and thus when water freezes; the same 

amount of energy is released. This energy is called 

latent heat of fusion Lf. If we consider a unit 

volume V of soil where mw is the mass of water in 

this soil volume, we can express the rate at which 

Lf is released as 

Equation 2 

t
mL w

f ∂
∂

 

where 
t

mw

∂
∂

represents the change in soil water  

mass mw with respect to time as soil water freeze. 

The freezing of water in a volume of soil entails a 

change in the amount of liquid water present. If 

we regard the area A of a soil column and dζ as a 

small increase in the frost layer, we can express 

the subsequent increase in ice content in this small 

volume dV as 

Equation 3 

ζdd AV =  

We denote the volume fraction of liquid soil water 

present in V by xw, and ρw is the density of water. 

Thus we can express wm∂  from equation 2 as 

Equation 4 

ζρ ∂=∂ Axm www  

Dividing the above equation by the unit area A, 

and inserting equation 4 into equation (2) we 
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obtain the following expression for the heat flux 

density 

Equation 5 

t
LxQ fwwE ∂

∂
=

ζρ  

where QE is the latent heat flux density released 

when the soil water xw in the volume dV freeze 

(see figure 3). 

 

In the model, the freezing of soil water is initiated 

when the air temperature just above the soil 

surface Tair drops below 0 ˚C (see figure 2). When 

the soil cools down, the heat flux density Qcool is 

directed upwards from the soil towards the air just 

above the soil surface. Now, we can envisage the 

soil surface as the active surface through which the 

energy flows. As heat keeps flowing through this 

active surface, the soil cools down. The soil 

temperature T(z,t) decreases, and when T(z,t) 

reaches T*, water in the soil surface layer freezes.  

 

 
 
Figure 2. The figure illustrate the initiation of  

soil frost with Tair < T*. 

 
Some of the heat that is extracted at the soil 

surface will be counterbalanced and retained 

within the soil due to Lf (heat released when soil 

water freezes). This somewhat inhibits the freezing 

process, and results in the latent heat flux density 

QE from equation (5). If more energy is extracted 

at the soil surface than Lf can counterpart, i.e. 

Qcool > QE, the active surface (where the heat from 

freezing counterbalances the upward heat flux due 

to the temperature difference between soil and 

air) will shift downwards until it’s counterbalanced 

again, and a new equilibrium between the heat 

extracted Qcool and QE is established; resulting in 

the formation of a frozen soil layer of depth dζ 

(see figure 3). 

 
Figure 3. A frozen soil layer of depth dζ is developing. QE 

is released when the soil water in this layer freeze. 

 
If the cold conditions with Tair < T* prevails, the 

thickness of the frozen soil layer dζ will increase 

(see figure 4).  

 

 
Figure 4. Development of a frozen soil layer:   
ζ1 and ζ2 are the thickness of the frozen soil layer at two 
different times t1 and t2, respectively. QE is the latent 
heat flux density from the small volume dV of depth dζ, 
and Qfs is the heat conducted through the frozen soil 
layer (shaded area). 
 

From the one-dimensional heat equation, equation 

(15) in Appendix B.1 we have the heat flux density  

z
TQ
∂
∂

−= λ   
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We obtain 
z
T
∂
∂

 in this equation by differentiating 

equation (1) with respect to z, that is  

ζ
surfTT

z
T −
=

∂
∂ *

 

Now we can express the heat flux density Qfs 

through the frozen soil layer ζ (the shaded area in 

figure 4) by inserting the above expression in 

equation (15) to obtain  

Equation 6 

ζ
λ

λ

surf
g

gfs

TT
z
TQ

−
−=

∂
∂

−=

*  

Due to the cooling of the soil, heat released by the 

freezing process QE is conducted through the 

frozen layer. In figure 4, Qfs is the heat flux density 

through this frozen layer of depth ζ2. This heat flux 

density at soil depth z = ζ2 is balanced by the 

latent heat flux density QE, and by equating 

equations (6) and (5) we obtain 

Equation 7 

ζ
λζρ surf

gfww

fsE

TT
t

Lx

QQ

−
−=

∂
∂

−

=
*  

(note: Qfs = 0 when ζ = 0). 

Now, suppose the lower frost boundary is zero 

when we start the simulation at time t0, and at 

time t, it has reached the depth Fdepth, and we 

have a frozen  soil layer of thickness ζ. An estimate 

of the depth of this frost layer can be found by 

rearranging equation (7), and performing the 

integrations as follows 

Equation 8 

( )∫∫ −=
t

t
surf

fww

g
F

tTT
Lx

depth

0

dd *

0 ρ
λ

ζζ  

We can simplify the integral on the right hand side 

in the above equation above by assuming that soil 

water freeze at 0 ˚C, which means setting T* = 0. 

By expanding the differential dt to the difference 

∆t we find an approximation of the integral on the 

right hand side in equation (8). The increment ∆t 

indicates a time interval of 1 day. When 

calculating the soil frost, only frost days (Tsurf ≤ 0 

˚C) are considered (note: during periods of no 

snow cover Tsurf = Tair, and when a snow cover is 

present Tair represents the air temperature just 

above the snow surface). We call the integral on 

the right hand side in equation (8) F(t), i.e. 

( ) ( )∫ −=
t

t
surf tTTtF

0

d*  

which under the assumptions from above simplifies 

to 

( ) ( )∑ ∆−≈
i

isurf tTtF  

where the index i indicates days with frost 

formation (Johansen 1976). Solving the integral 

on the left hand side in equation (8) produces an 

algebraic expression for estimating the depth of 

the lower frost boundary 

Equation 9 

( )
fww

g
depth Lx

tF
F

ρ
λ2

=  

Here the simulated frost depth Fdepth is a function 

based on daily average values for air temperature 

above the soil surface on frost days.  

 

3.1 Ground Heat Flux 
The temperatures in the uppermost soil layers 

follow with some time lag, the diurnal variation in 

the air temperature. This temperature variation 

makes out a wavelike pattern, and also the 

amplitude of this temperature wave tends to 

decrease with soil depth. The annual soil 

temperatures also follow a wavelike pattern, in 

correspondence with the annual solar cycle.  

Figure (5) shows the annual temperature-wave for 

the Kise site, where the mean annual temperature 

for the period 1.1.91 - 31.12.02 was 4.8 ˚C. The 
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soil depth at which there is practically no change 

in the amplitude of this temperature-wave is 

termed depth of zero annual amplitude. According 

to Jansson and Karlberg (2001), we assume that 

the system’s lower boundary condition for heat 

conduction can be given as a constant heat flux 

density equal to a geothermal contribution 

parameter Qg.  

 
Figure 5. Annual temperature wave at Kise, Norway 
(1.1.92 - 31.12.92). Tair is daily mean air temperature, 
Tmean = 4.8 ˚C is mean air temperature over the normal 
period 1961 - 1990, Ts10, Ts20, Ts50 and Ts100  are mean 
daily soil temperatures at depths of 10 cm, 20 cm, 50 cm, 
and 100 cm, respectively. 
 
This heat Qg will add to QE and to a certain degree 

inhibit and slow down the formation of soil frost 

(see figure 6) 

{energy in at soil surface} =  

     {energy in at lower surface} 

        Qfs = QE + Qg 

 

When including the ground heat flux density Qg, 

the energy balance from equation (7) can be 

expressed as  

Equation 10 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+−=
−

−

+=

t
LxQ

TT

QQQ

fwwg
surf

g

Egfs

ζρ
ζ

λ
*  

 

 
Figure 6. The formation of soil frost is inhibited due to a 
geothermal heat contribution Qg. 

 
Rearranging equation (10), and performing the 

same integration as above in equation (8) we 

obtain 

Equation 11 

( )∫

∫∫

−

+−=

t

t
surf

fww

g

t

t

F

fww

g

tTT
Lx

t
Lx

Qdepth

0

0

d

dd

*

0

ρ
λ

ζ
ρ

ζζ

 

 
By solving equation (11) we obtain  

Equation 12 

( ) ( ) ( )
0

22 02 =−
−

+
fww

g
depth

fww

g
depth Lx

tF
F

Lx
ttQ

F
ρ
λ

ρ
 

 
 
The simulated frost depth Fdepth in SnowFrost is 

based on equation (12). 

 

Based on measurements at a site in Aas, Norway, 

(59.66 ˚N lat; 10.78 ˚E long; 70 m above sea 

level), using constant soil water content xw = 0.4, 

Olsen and Haugen (1997) estimated the soil 

thermal conductivity λg to 2 W m-1 K-1, and by 

assuming stationary conditions, they estimated the 

constant ground heat flux Qg to 0.3 MJ m-2 day-1 for 

this site. Stationary conditions means that when 

the thickness of the frozen soil layer cease to 

increase, that is when QE = 0 because no additional 



S.M. Thorsen, L.E. Haugen / Bioforsk FOKUS 2 (9) 
 

 

11 

ice is formed, there exists an equilibrium between 

the heat extracted at the soil surface Qfs and heat 

added from the ground beneath Qg, i.e. 

 

{energy out at soil surface} =  

                        {energy in at lower frost boundary} 

                                    Qfs = Qg 

 

Since Qg persists, this means that ground heat Qg 

that enters the frozen soil layer at the lower 

boundary is transported through this layer without 

any further increase in the layer's temperature 

(i.e. stationary conditions), see figure (7). 

 
Figure 7. Stationary conditions where heat flux density 

entering at the lower frost boundary Qg is the same as 

the heat flux density extracted at the soil surface Qfs. 

 

3.2 Effect of Snow Cover on Soil Frost 
Formation 
The presence of a snow cover has influence on the 

formation of soil frost, due to its insulating effect. 

According to Jansson and Karlberg (2001), we 

assume a steady state heat flow through the frozen 

soil layer and the snow pack, see figure 8. This 

means that the heat flux density through the 

frozen soil Qfs equals the heat flux density through 

the snow pack Qsnow, and thus from equations (15) 

and (6) 

                      Qfs = Qsnow 

depth

airsurf
s

depth

surf
g S

TT
F

TT −
−=

−
− λλ

*

 

 

 
Figure 8. The steady state heat flow through the frozen 

soil layer and the snow cover, where  

Qg = Qfs = Qsnow. 

 

where the thermal conductivities of the frozen soil 

layer and the snow cover (new snow) are λg and λs, 

respectively, and Fdepth and Sdepth is the depths of 

the frozen soil layer and the snow cover both at 

time t, respectively. According to our assumption 

T* = 0 ˚C, we can rearrange the above equation 

and obtain 

Equation 13 

depths

depthg

air
surf

F
S

TT

λ
λ

+
≈

1
 

The thermal conductivity of snow is closely related 

to the snow density. For simplicity, in SnowFrost 

we use λS for new snow. This is considerably lower 

than λg for the sand-type soil with a soil water 

content xw of 0.4, which we use in SnowFrost. 

According to Jansson and Karlberg (2001) a 

reasonable estimate for the ratio λg / λs  in our 

situation seems to be λg / λs ≈ 10 , where in 

SnowFrost λs is fixed at a constant value. As the 

snow density changes due to climatic factors, so 

will λs. Further testing of SnowFrost will indicate 

if we should make λs a function of liquid water 

content in the snow cover Swet, and snow density 

ρsnow , or if the current simplification suffices.  
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We have from equation (8) that the depth of the 

frozen soil layer is related to the history of the air 

temperature above the soil surface Tsurf. The 

surface temperature from equation (13) is in turn 

related to whether or not soil frost is present. In 

the case of a present snow cover, but no soil frost, 

the temperature in the void between the soil 

surface and the bottom of the snow cover will lie 

around 0˚C. To incorporate this we have 

introduced an additional empirical expression for 

Tsurf to preserve the insulating effect of the snow 

cover. The γ  parameter ensures that Tsurf stays 

close to 0˚C (note: in SnowFrost when soil frost is 

present Fdepth < 0) 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<
−

=

=

−

0 if 
101

0 if     

depth

depth

depth

air

depth
S

air

surf F

F
S

T

FeT

T

depthγ

 

 

Soil frost increases as long as Tsurf or Tair is below 

0˚C. Soil frost decreases either as a function of the 

surface temperature (when this is above 0˚C), or 

due to a constant contribution of heat from the 

ground Qg (the latter is small compared to the 

first), or as a function of both. Heat contribution 

from infiltrating rainwater is currently not 

considered in the model. 

 

3.3 Thaw Process 

The thaw of soil frost is a complex process. A 

frozen volume of soil thaws when it absorbs more 

energy than what is extracted from it during the 

freezing process. Among the sources of available 

energy to heat frozen soil is absorbed radiation, 

the exchange of sensible heat from warmer 

ambient air, geothermal heat from unfrozen lower 

soil layers, and percolating rainwater with a 

higher temperature. The thaw routine in 

SnowFrost is currently very simple. A certain 

amount of energy melts a certain amount of ice. 

We thus simulate soil thaw Sthaw along the same 

lines as for soil frost; saying that days when  

Tair > 0˚C yields a certain amount of soil thaw. We 

calculate  

Equation 14 

( )
fww

g
thaw Lx

tThaw
S

ρ
λ2

=  

 

where ( ) ( )∑ ∆−≈
i

iair tTtThaw (the index i 

indicates days with soil thaw), and Sthaw is an 

algebraic expression estimating the amount of soil 

thaw. By subtracting Sthaw from Fdepth we simulate 

the process of soil thaw. 
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4 Simulation Results and 

Discussion 
The SnowFrost model is based on the previous 

modelling work of Bonesmo and Riley (2005) for 

Kise. We used Kise as a test site to see how the 

model behaves with relatively stable winter 

conditions. The parameter values used for the 

preliminary runs of SnowFrost are adapted from 

Bonesmo and Riley. In the snowmelt routine we use 

a base temperature for snowmelt Tbm. According to 

Melloh (1999), the degree-day-temperature-index 

approach for snowmelt adopted in SnowFrost 

serves best in forested rather than open areas. 

 

Observations on the lower frost boundary were 

obtained using a Gandahl gauge. During snowmelt 

in spring, the snow adjacent to the Gandahl gauge 

apparatus might melt faster, creating a funnel and 

thus causing the soil frost to thaw more rapidly 

around the gauge apparatus compared to the rest 

of the field (Colleuille and Gillebo, 2002). On cold 

nights in early spring we can observe the opposite 

situation around the funnel, namely additional soil 

frost formation. These situations increase the 

uncertainty in the soil frost observations during 

snow melt periods. 

 

Regarding the thawing routine, although this 

approach is quite crude, the simulations of the 

freezing and thawing processes are satisfactory at 

the moment. They will be revised in a later version 

of the model. 

 

Figures 9a-9f show the results from three runs of 

SnowFrost at Kise. The simulation periods are 1 

June (day number 1 in figures 9a-9f) to 31 May (day 

number 365 in figures 9a-9f) the following year 

(note: in figure 9c the plot period is 01.10.1995 - 

31.05.1996). Each figure consists of two panels; in 

the upper panel the blue solid line shows the air 

temperature Tair after being smoothed by a moving 

average; the bar diagram shows precipitation P. 

The lower panel shows simulated snow cover Sdepth 

(solid blue line), observed snow cover (dotted blue 

line), simulated frost depth Fdepth (solid black line), 

observed frost depth (dotted magenta line). To get 

an impression 

of when the soil becomes frost free, we have 

plotted the times when the observed soil 

temperature at four different depths (10 cm, 20 

cm, 50 cm and 100 cm) changes from negative to 

positive. The symbols (in magenta colour) 

corresponding to these times are:  

ο for 10 cm, * for 20 cm, ◊ for 50 cm, and 

□ for 100 cm. Enclosed in red boxes in the lower 

panels is the total frost sum during the simulation 

period. This frost sum was calculated as 

∑ ∆tTair  

on days where Tair < 0˚C. To get a preliminary 

evaluation of how SnowFrost performs, for each 

run we calculated the root mean square error 

(RMSE) and the squared Pearson correlation r for 

snow cover ( )2 and snowsnow rRMSE  and soil 

frost ( )2 and frostfrost rRMSE , respectively. The 

RMSE was calculated as 

( )

n

SimO

O
RMSE

n

i
ii∑

=

−
= 1

2

1
 

where O  is the mean of the observations, Oi are 

the n observations, and Simi are the corresponding 

simulation values. A perfect match between 

observations and simulated values would yield 

RMSE = 0. See table 1 for the results of each run. 
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Table 1: Simulation results 

Simulation 

period 

Snow 

RMSE    r2 

Frost 

RMSE    r2 

01.06.93 - 31.05.94 0.46   0.89 0.52   0.09 

01.06.94 - 31.05.95 1.31   0.58 0.35   0.08 

01.06.95 - 31.05.96 0.77   0.91 0.12   0.91 

01.06.96 - 31.05.97 1.30   0.63 0.30   0.69 

01.06.97 - 31.05.98 1.45   0.76 0.25   0.02 

01.06.98 - 31.05.99 1.01   0.79 0.27   0.81 

 
Table 1. Column 1 show the simulation period for each 
run (note: run # 3). Column 2 shows root mean square 
error for snow RMSEsnow. Column 3 show squared Pearson 
r for snow. Column 4 shows root mean square error for 
frost RMSEfrost. Column 5 show squared Pearson r for 
frost. 
 

In figure 9a and 9b we can see the simulated snow 

cover captures the variation in observed snow 

cover quite well both these winters, although it is 

overestimated in 1993-1994 and underestimated in 

1994-1995. In 1993-1994 and 1994-1995 the 

simulated frost layer appears earlier than 

observed. The maximum value of Fdepth does not 

differ too much from the observed maximum frost 

depth for 1993-1994, but is underestimated for 

1994-1995. The timing of complete snowmelt is 

somewhat earlier than observed in the winter of 

1993-1994, and quite good for 1994-1995. The 

timing of soil thaw is way too early in 1993-1994, 

but quite good in 1994-1995. 

 

In figure 9c the simulated snow dynamics for 1995-

1996 is quite good. For both figures 9c and 9d, the 

expanding period of soil frost is also captured 

nicely, although the timing of soil thaw comes at 

the end of both simulation periods. In figure 9d, 

the simulated snow dynamics are captured to some 

extent. The timing of simulated soil thaw is quite 

good this period. 

 

In figure 9e, the snow dynamics is simulated 

nicely. There are several freeze/thaw incidents 

this period, but Fdepth still resembles the tendency 

in the observed soil frost. The simulated soil thaw 

comes too late this period. In figure 9f, the snow 

dynamics is captured nicely, although 

underestimated due to complete melt 

approximately in mid winter. The Fdepth is 

underestimated this period. Simulated soil thaw 

also comes too late in this period. 

 

The variations in the snow cover and soil frost 

simulations are enhanced by inaccuracy in snow 

depth and frost depth measurements as well as in 

the model itself. The snow cover and its properties 

are of great importance when estimating for 

instance the depth of the soil frost, and soil 

temperature during winter (Kennedy and Sharrat, 

1998). Throughout each simulation we assume the 

thermal conductivity of the snow cover λs to be 

fixed. We use a value for λs that corresponds to 

that of new snow. Obviously, λs changes as the 

physical properties of the snow cover change. One 

consequence of this is that the insulation effect of 

the snow cover is too big. This then leads to an 

underestimation of the frost depth. Another aspect 

regarding the simulation of snow cover is in 

relation to actual snow density and actual snow 

depth. These variables are difficult to measure in 

practice. The depth of the snow cover affects the 

insulation ability, and one of the factors affecting 

the thermal conductivity is the density of the snow 

cover. Both the depth and the thermal 

conductivity of the snow cover affect the soil frost 

dynamics. In the continuing work we aim to 

improve the model's ability to estimate duration of 

the snow cover, i.e. the timing of snowmelt, and 

the timing of soil thaw. 

 

Among the issues we will address in the succeeding 

modelling work are: add a tipping-bucket routine 

for the simulation of soil water processes; 

implement the effects of soil frost on the soil 

infiltration capacity, add a module for the 

simulation of ice encasement of plants, replace the 

fixed λg, λs and ρsnow with functions relating them 

to the liquid water content of soil and snow, 

include new routines for the simulation of the soil  
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Figure 9a. Simulation results for the winter of 1993-1994. 
In the upper panel: solid line is smoothed Tair, bars 
represent precipitation. Lower panel: solid lines 
represent Sdepth and Fdepth; dotted lines represent observed 
snow cover depth and depth of soil frost, respectively. 
Magenta symbols represent times when the observed soil 
temperature at four depths (ο = 10 cm, * = 20 cm, ◊ = 50 
cm,  = 100) changes from negative to positive. Number 
in the red box represents frost sum. 

 

 

Figure 9b. Simulation results for the winter of 1994-1995. 

 

 

Figure 9c. Simulation results for the winter of 1995-1996. 
Note that plot period was 1.10.95-31.05.96. 

 
Figure 9d. Simulation results for the winter of 1996-1997. 

 

 

 

 

 

 

 

Figure 9e. Simulation results for the winter of 1997-1998. 

 
 

 
Figure 9f. Simulation results for the winter of 1998-1999. 
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temperature throughout the year, evaluation of 

model performance, and model testing at different 

locations in Norway covering different climatic 

conditions. The main purpose of SnowFrost is to 

simulate winter conditions within a plant model in 

order to study the winter survival of forage crops. 

Thus SnowFrost must meet the requirements of 

the plant model.  

 

We conclude that the results shown in figures 9a-9f 

are quite promising, and that SnowFrost is suitable 

as a foundation for the continuing work. In order to 

get an impression of how new versions of the 

model perform, we will compare our simulation 

results with results from the Swedish COUP-model 

of Jansson and Karlberg (2001) using the same 

parameterisation. 
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Appendix A Symbols 
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Appendix B Energy Transport in 

the Soil 
The soil temperature in is governed by energy 

supply from the surroundings, and the thermal 

conductivity of the soil. The thermal conductivity 

λg is the main mechanism for energy transfer in the 

soil, and thus knowledge about this parameter is of 

great importance. This λg  can either be estimated 

from temperature and soil water content  

measurements at different depths in the soil 

profile, or calculated from empirical expressions 

(Hillel, 1980). 

 

B.1 Fourier's Law 
Fourier’s law describes the conduction of heat in a 

medium. This law says how the temperature varies 

with time and distance in a heated medium, for 

instance a heated rod. 

 

B.1.1 Example 
As a one-dimensional example, we can envisage a 

rod of a homogenous material. Assume that the 

cross section area A is perpendicular to the length 

of the rod, and that temperature T is constant on 

each cross section. Assume also that the rod's 

lateral surface is insulated, and no heat can pass 

through this surface. Then heat will flow through 

the rod in a fluid-like manner from warmer to 

cooler sections. The heat flux density Q at 

position z and time t in this rod is the rate of flow 

of heat across a unit area of a cross section of the 

rod at position z. The result is the empirical 

principle known as Fourier's law (Edwards & 

Penney, 2004), which in one-dimensional form is 

Equation 15 

z
TQ
∂
∂

−= λ  

where Q is the heat flux density in the direction of 

z, the temperature function T(z,t) describes the 

rod's temperature in position z at time t, and the 

proportionality constant λ is the thermal 

conductivity of the rod. The negative sign indicates 

that energy flows from higher to lower 

temperatures. Fourier's law takes the general form 

Equation 16 

TQ ∇−= λ  

where T∇ is the temperature gradient in the 

medium, and λ  is the thermal conductivity of the 

medium. Equation (16) can be used to describe 

e.g. the spatial variation of temperature in soil. 

 

B.2 Derivation of the Heat Equation 
Suppose we have a rod like the one described in 

the example above. We have a cross section area A 

[m2] of the rod, the density of the rod ρ [kg m-3], 

the specific heat of the rod c [J kg-1 K-1] (the 

amount of energy required to raise 1 kg of the rod 

1 ˚C), and the temperature in position z at time t, 

described by the continuous function T(z,t). We 

now take a look at a small increment along the 

length of the rod ∆z, i.e. the interval [z, z + ∆z]. 

The rate F at which energy accumulates in this 

segment of the rod can be expressed as follows 

Equation 17 

F = {energy in} – {energy out} 

 

  
( ) ( )
( ) ( )[ ]tzTtzzTA

tzzAQtzAQ

zz ,,
,,

−∆+=
∆+−=

λ
 

 

where Tz denotes 
( )
z

tzT
∂

∂ ,
 . The time rate of 

change of the temperature, that is Tt, is related to 

both density ρ and specific heat c, so we need an 

expression that incorporates these two. From the 

expression of specific heat c, we know that the 

amount of energy required to raise the 

temperature of 1 m3 of the rod from 0˚C to 

temperature T is given by the product ( )Tcρ . The  

length of a tiny slice of the rod segment is dz, and 

the volume of this slice is ( )Adz , and thus the 

required amount of energy to heat this slice from 

0˚C to temperature T is given by the product 
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( )TAdzcρ . Now, to find the heat content Φ of 

the rod segment, we integrate over all the slices 

that comprise the segment's length ∆z 

Equation 18 

( ) ( )∫
∆+

=Φ
zz

z

ztzATct d,ρ  

The rod being insulated on the lateral surface, 

illustrates the principle of energy conservation1, 

and the equation of continuity 2. 

Equation (17) expresses the rate at which energy 

enters and leaves the rod segment. Since Φ is the 

heat content, and F (from equation (16)) is the 

rate of heat flow, we can obtain an expression for 

the rate of change in heat content as follows 

Equation 19 

( ) ( )[ ]tzTtzzTA
t zz ,,

d
d

−∆+=
Φ λ  

 

A second way to express this change in heat 

content is to differentiate the temperature 

function T(z,t) with respect to t in equation (18) 

within the integral, and then applying the Mean 

Value Theorem for Definite Integrals (see 

Appendix C) to solve the integral 

Equation 20 

( )

( ) ztzATc

ztzATc
t

t

zz

z
t

∆=

=
Φ

∫
∆+

,

d,
d
d

ρ

ρ
 

where z , from the interval (z, z + ∆), is the 

z value that produces  

( ) ( )∫
∆+

∆=
zz

z
tt ztzTztzT ,d,  

 

Now we can equate equations (19) and (20) 

                                                       
1 Energy can neither be created nor destroyed. 
2 This equation says that energy entering the medium at 
one rate must exit the medium at the same rate, 
assuming there are no places between entry and exit 
points to add or remove energy. 

Equation 21 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]
z

tzTtzzT
c

tzT

tzTtzzTAztzATc

zz
t

zzt

∆
−∆+

=

⇓

−∆+=∆

,,,

,,,

ρ
λ

λρ

 

 

By taking the limits as zz →  and 0→∆z , and 

introducing the thermal diffusivity constant DT 

ρ
λ
c

DT =  

we obtain the resulting one-dimensional heat 

equation 

Equation 22 

2

2

z
TD

t
T

T ∂
∂

=
∂
∂

 

We can use equation (22) to calculate heat 

transport in the soil. The three parameters 

thermal conductivity λs , heat capacity c and 

thermal diffusivity DT are often referred to as the 

thermal properties of the soil (Hillel, 1980).  
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Appendix C Mean Value Definite 

Integral 
We can define the average value of a continuous 

function f(x) over a closed interval [a, b] as the 

definite integral ( )∫
b

a

dxxf divided by the length 

of this interval. The Mean Value Theorem for 

Definite Integrals says this average value always 

occur at least once in the interval. 

 

Theorem 1.  
If the function f is continuous on the closed 

interval [a, b], then at some point [ ]bac ,∈  

( ) ( )∫−
=

b

a

dxxf
ab

cf 1
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Symbol Quantity SI Units Parameter 
Value 

A 
Ccum 
fcap 
fcapMax 
fcapMin 
fw 
γ 
Fdepth 
Kcum 
Kf 
KM 
Kmax 
Kmin 
Lf 
λg 

 
λs 
M 
Mf 
mw 
P 
Pr 
Ps 
perDay 
QE 
Qfs 
Qg 
ρpack 
ρsnow 
ρsnowNew 
ρw 
Sdepth 
Sdry 
Swet 
SWE 
t 
Tair 
Tsurf 
T* 
T(z,t) 
Tupper 
Tlow 
Tbm 
Tbf 
V 

Unit area 
Empirical parameter used for fcap calculation 
Retention capacity of snow cover 
Maximum retention capacity of snow cover 
Minimum retention capacity of snow cover 
Fraction of liquid water in precipitation 
Empirical parameter 
Simulated lower boundary of soil frost 
Empirical parameter used for Km calculation 
Degree-day-factor for refreezing 
Degree-day-factor for snowmelt 
Maximum value for KM 
Minimum value for KM 
Latent heat of fusion 
Thermal conductivity of soil  
(both unfrozen and frozen) 
Thermal conductivity of snow cover 
Rate of snowmelt 
Rate of snowmelt that refreezes within snow cover 
Mass of water in a soil volume 
Measured precipitation rate 
Precipitation as rain 
Precipitation as snow 
Empirical parameter 
Latent heat flux density 
Heat flux density through frozen soil layer 
Geothermal heat flux density 
Empirical parameter for snow densification 
Density of snow cover 
Density of fresh snow 
Density of water 
Simulated depth of snow cover 
Amount of water in solid phase in snow cover 
Amount of water in liquid phase in snow cover 
Snow water equivalent 
Simulation time step 
Daily average air temperature 
Air temp. between soil surface and snow over 
Freezing temperature of soil water 
Soil temperature at depth z at time t 
Upper critical air temperature 
Lower critical air temperature 
Lower base temperature for snow melt 
Lower base temperature for refreezing 
Unit volume of soil 

m2 

m3 kg-1 

 
 
 
 
 
m 
m mm-1, m3 kg-1 

mm °C-1 day-1 

mm °C-1 day-1 

mm °C-1 day-1 

mm °C-1 day-1 

kJ kg-1 
W m-1 K-1 

 
W m-1 K-1 
mm day-1 

mm day-1 
kg 
mm day-1 

mm day-1 

mm day-1 
day-1 
W m-2 

W m-2 

W m-2 

m m-1 day-1 
kg m-3 

kg m-3 

kg m-3 

m 
mm 
mm 
mm 
day 

°C 
°C 
°C 
°C 
°C 
°C 
°C 
°C 
m3 

1 
0.36 
 
0.17 
0.04 
 
65 
 
0.99 
1.5 
 
6.19 
4.0 
335 
2.0 
 
0.2 
 
 
 
 
 
 
 
 
 
3.47 
0.02 
 
100 
1000 
 
 
 
 
 
 
 
0 
 
1.0 
-3.0 
0.7 
-1.4 
1 

 



Symbol Quantity SI Units Parameter
Value 

Wout 
xw 
z 
ζ  

Rate of liquid water on soil surface 
Volume fraction of liquid water in soil 
Soil depth 
Thickness of frozen soil layer 

mm day-1 

 
m 
m 

 
0.4 

Tabel 2: Table of symbols used in the report on the SnowFrost model. 


