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Abstract. Forest management affects the distribution of tree
species and the age class of a forest, shaping its overall struc-
ture and functioning and in turn the surface–atmosphere ex-
changes of mass, energy, and momentum. In order to at-
tribute climate effects to anthropogenic activities like for-
est management, good accounts of forest structure are nec-
essary. Here, using Fennoscandia as a case study, we make
use of Fennoscandic National Forest Inventory (NFI) data
to systematically classify forest cover into groups of simi-
lar aboveground forest structure. An enhanced forest classi-
fication scheme and related lookup table (LUT) of key for-
est structural attributes (i.e., maximum growing season leaf
area index (LAImax), basal-area-weighted mean tree height,
tree crown length, and total stem volume) was developed,
and the classification was applied for multisource NFI (MS-
NFI) maps from Norway, Sweden, and Finland. To pro-
vide a complete surface representation, our product was in-
tegrated with the European Space Agency Climate Change
Initiative Land Cover (ESA CCI LC) map of present day
land cover (v.2.0.7). Comparison of the ESA LC and our
enhanced LC products (https://doi.org/10.21350/7zZEy5w3)
showed that forest extent notably (κ = 0.55, accuracy 0.64)
differed between the two products. To demonstrate the poten-
tial of our enhanced LC product to improve the description
of the maximum growing season LAI (LAImax) of managed
forests in Fennoscandia, we compared our LAImax map with
reference LAImax maps created using the ESA LC product
(and related cross-walking table) and PFT-dependent LAImax
values used in three leading land models. Comparison of the
LAImax maps showed that our product provides a spatially
more realistic description of LAImax in managed Fennoscan-

dian forests compared to reference maps. This study presents
an approach to account for the transient nature of forest struc-
tural attributes due to human intervention in different land
models.

1 Introduction

The structural properties of a forest largely determine the
amount of mass, energy, and momentum exchanged with the
atmosphere contributing to weather and climate on multiple
scales (Bonan, 2008). Given their controls on photosynthe-
sis, albedo, and evapotranspiration, structural attributes like
canopy leaf area and tree heights are crucial variables in
modeling carbon, water, and energy fluxes in forests. Leaf
area index (LAI, defined as the hemisurface area of foliage
per unit horizontal ground surface area; Chen and Black,
1992) is considered an essential climate variable (ECV;
GCOS, 2012) as it quantifies the areal interface between the
land surface and the atmosphere, hence representing a con-
trol over the exchange of mass and energy between the ter-
restrial biosphere and the atmosphere (Bonan, 2015). Sim-
ilarly, canopy top and bottom heights, ztop and zbottom, are
important variables required for calculating roughness length
and displacement height that largely determine aerodynamic
resistances to heat, moisture, and momentum transfer (Oke,
2002). In land models, land surfaces are often classified by
the main aggregate land cover (LC) classes: vegetation, ur-
ban, inland water, bare soil, and ice – typically with the assis-
tance of optical satellite remote sensing (Friedl et al., 2002;
Hansen et al., 2000; Poulter et al., 2015). The vegetation
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LC class is further divided into a number of subclasses ac-
cording to their biophysical properties, grouping them into
what is often termed plant functional types (PFTs) or “broad
groupings of plant species that share similar characteristics
(e.g., growth form) and roles (e.g., photosynthetic pathway)
in ecosystem function” (Wullschleger et al., 2014). LC maps
are converted into PFT maps using various model-dependent
algorithms (e.g., Lawrence and Chase, 2007; Reick et al.,
2013) or “cross-walking” tables (e.g., ESA LC, 2017, manual
p. 75; Poulter et al., 2015).

Differences in forest structure within a given LC type (or
PFT) can differ substantially (Kuuluvainen et al., 2012; New-
ton, 1997), and preserving within-LC (or within-PFT) differ-
ences in forest structure is necessary for more accurate mod-
eling of surface fluxes in forests. While some land models
assimilate local information on present day forest structure
from satellite remote sensing to account for within-PFT vari-
ation (e.g., Community Land Model 4.5, CLM4.5, Oleson et
al., 2013; Jena Scheme of Atmosphere Biosphere Coupling
in Hamburg, JSBACH, Reick, 2012), future structure must
still be prescribed. Because land use transitions in model-
ing simulation studies of anthropogenic LC change are often
represented by a change in PFT area in land models, post-
disturbance changes to structure within forest PFTs go unde-
tected (Lawrence et al., 2012; Reick et al., 2013). Hence, a
forest classification that accounts for major variation in key
structural attributes, such as LAI or canopy height, may lead
to better predictions of surface fluxes in forests, not only in
studies of prescribed land cover and/or management change,
but also for dynamic vegetation studies that rely on fixed
PFT parameters obtained from lookup tables (LUTs). The
time-invariant nature of the fixed parameter LUTs may be
avoided by increasing the number of forest classes within a
single forest PFT with sufficient differentiation in key struc-
tural attributes (i.e., from young to mature forests). In addi-
tion to grouping forests according to their shared phenologi-
cal characteristics, further grouping according to their struc-
tural characteristics (i.e., accounting for the effects of forest
management) would strengthen prediction confidence in in-
tensively managed regions.

LC data needed by land models should ideally be represen-
tative of sufficiently large areas because incorporating frag-
mented data stemming from individual research sites and in-
dividual research experiments is limited by available com-
puting resources and rapidly increasing model complexity.
Most countries are currently conducting National Forest In-
ventories (NFIs) to quantify the extent and amount of forest
resources with standardized reporting for compiling global
Forest Resources Assessments (FRAs; e.g., FAO, 2015). NFI
data have previously been used in research aiming to attribute
climate effects to management activities because they reflect
the human influence on forest structure (Bright et al., 2014;
Naudts et al., 2015, 2016). However, as NFI data character-
ize only forested areas, other LC data are needed to form
the complete surface representation required by land mod-

els. The state-of-the-art LC products, such as the European
Space Agency (ESA) Climate Change Initiative (CCI) LC
product (ESA LC, 2017), allow for cross-walking from LC
classes to PFTs used in land models. It is noteworthy that
ESA LC products have high spatial resolution (0.003◦) com-
pared to the common global grid sizes (e.g., 0.5–1◦) used
in land models, which allows for more flexibility in cross-
walking and LC data aggregation.

In this study, we develop a forest classification scheme
based on NFI data to better characterize the transient nature
of forest key structural attributes to provide more realistic
starting values for different land model simulations. We de-
velop our concept using NFI data from Fennoscandia as it
represents one of the most intensively managed forested re-
gions of the world (e.g., Kuuluvainen et al., 2012). From the
perspective of climate modeling, NFI data are well suited for
enhancing the structural description of forests in global LC
datasets because similar data are available for most devel-
oped countries and new data are collected systematically. The
aims of this study are to (1) develop a semi-objective clus-
tering analysis approach to come up with an LC-dependent
structural LUT, which reflects the transient nature of the key
forest structural attributes in managed forests, (2) create a
new forest LC product for Fennoscandia based on multi-
source NFI (MS-NFI) data to allow for the spatial applica-
tion of the LUT of key structural attributes, (3) augment the
new forest classification by importing non-forest LC classes
of the ESA LC product to form the complete surface rep-
resentation required by land models, (4) compare the for-
est extent of the new LC product with the original ESA LC
product to point out geographic areas where the largest dif-
ferences occur to provoke discussion on alternative informa-
tion sources for parameterizing land models, and (5) visual-
ize and compare maps of our maximum growing season LAI
(LAImax) with reference LAImax maps produced using the
ESA LC product, a model-generic cross-walking table (Poul-
ter et al., 2015), and PFT-dependent LAImax values used in
three land models: JSBACH, Joint UK Land Environment
Simulator (JULES), and Organizing Carbon and Hydrology
in Dynamic EcosystEms (ORCHIDEE).

2 Materials and methods

2.1 Data

2.1.1 NFI plot data

Norwegian NFI data (Tomter et al., 2010) from 2007 to 2015
and Swedish NFI data (Fridman et al., 2014) from 2011 to
2015 were used in this study. NFI employs a network of field
plots from which trees are measured and growth is moni-
tored systematically. NFI data are systematically collected
and processed by forest authorities and are used to quantify
the amount and extent of forest at a national level. The di-
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versity in forest structure throughout the Fennoscandian re-
gion is well represented in the Swedish and Norwegian NFI
data. The Norwegian NFI contained data from 10 813 circu-
lar 8.92 m radius sample plots (250 m2), while the Swedish
data were from 14 032 circular 10 m radius sample plots
(314 m2). Plots that were divided (i.e., not completely cir-
cular) or that did not have trees were excluded from the
data prior to the analysis. The main tree species of the area
are Norway spruce (Picea abies (L.) H. Karst.), Scots pine
(Pinus sylvestris, L.), and silver and downy birches (Betula
pendula Roth and pubescens Ehrh.). Monocultural plots of
birch are rare, but birches are common in plots with different
species mixtures. Plot data were classified as spruce-, pine-
, or deciduous-dominated (contains also other tree species)
forests based on species with the largest share of total stem
volume (m3 ha−1) on the sample plot (Table 1.).

2.1.2 MS-NFI data

NFI plot characteristics are extrapolated for areas between
the NFI plots using the non-parametric k–nearest-neighbor
(kNN) estimation method (e.g., Tomppo et al., 2014). The ex-
trapolation step is called multisource NFI (MS-NFI) because
it employs data from different remote sensing systems (i.e.,
satellite and aerial platforms) and NFI plots. MS-NFI applies
high-spatial-resolution (< 900 m2) satellite images to sepa-
rate forested areas from other LC classes and digital terrain
models to correct topographical distortions. In Fennoscan-
dia, the common stand size is only 1–2 ha (i.e., landscape
is fragmented by forests with different development stages)
and thus high-spatial-resolution satellite products are needed
to prepare the MS-NFI maps. All processing of the MS-NFI
data is done by forest authorities. MS-NFI maps are typi-
cally provided for forest variables such as Lorey’s height
(i.e., basal-area-weighted mean tree height) (H , m), forest
stand age (years), and stem volume (V , m3 ha−1) by species.
The newest MS-NFI maps for Finland (of 2013) and Swe-
den (of 2010) were downloaded from the Natural Resources
Institute Finland (LUKE) portal (LUKE, 2016) and from
the Swedish University of Agricultural Sciences (SLU) por-
tal (SLU, 2016). For Norway, MS-NFI data (compiled dur-
ing the first decade of the twenty-first century) called “SAT-
SKOG” (Gjertsen, 2007, 2009) and a forest resource map
called “AR5” (Ahlstrøm et al., 2014) were used to obtain all
required inputs and coverage of the northernmost forest areas
(i.e., Finnmark county; Supplement S1).

2.1.3 ESA LC product

The ESA LC-product series contains a set of annual maps
from 1992 to 2015 (ESA LC, 2017). The product series fol-
lows processing in which a baseline LC product is applied;
although the annual maps are not fully independent from
each other, they are temporally consistent. The baseline LC
product was based on MERIS FR and RR archive between

the years 2003 and 2012 and was back-dated and updated
based on data from other satellite sensors (AVHRR between
1992 and 1999, SPOT-VGT between 1999 and 2013, and
PROBA-V between 2013 and 2015). In this study, the newest
2015 (v.2.0.7) LC product was used as it is more likely to be
used by land modelers. This LC-product version has been
validated against GlobCover 2009 reference data (cf. p. 39 in
the product manual ESA LC, 2017). The spatial resolution of
the ESA LC product is ∼ 0.003◦, and it follows standardized
hierarchical classification by the United Nations Land Cover
Classification System (UN-LCCS), which allows for the con-
version of LC classes into PFTs based on a cross-walking
table (ESA LC, 2017, manual p. 75; Poulter et al., 2015).
The 2015 ESA LC product contains three LC classes to de-
scribe forests in Fennoscandia: broadleaved deciduous (60–
62), needleleaved evergreen (70–72), and mixed broadleaved
and needleleaved (90; ESA LC labels in parentheses). The
second label digit from the left is designed to indicate for-
est fraction within an LC pixel: the canopy is “closed” when
the forest pixel cover fraction is > 40 % (labels 61 and 71)
and “open” when the forest pixel cover fraction is between
15 and 40 % (labels 62 and 72). Labels 60 and 70 are used
to indicate that the within-pixel forest fraction is more than
15 %, but it is not known whether that pixel is closed or open.
The 2015 ESA LC product for Fennoscandia contained only
classes 60, 61, 70, and 90 (i.e., no pixels were assigned to
subclasses 62, 71, or 72).

2.2 Methods

2.2.1 Forest classification scheme

NFI data were first used to develop the forest classification
scheme based on four key forest structural attributes: total
stem volume (V ), Lorey’s height (H ), crown length (CL),
and LAImax (LAImax calculation is described in Supple-
ment S2; Fig. 1). V defines species dominance, H corre-
sponds with the aerodynamic height or ztop (Nakai et al.,
2010), CL is needed to estimate canopy bottom height or
zbottom (i.e., zbottom =H – CL; modeling of CL described in
Supplement S3), and LAImax quantifies the exchange surface
area between the land surface and the atmosphere. First, a
clustering analysis of the NFI data was used to find medoids
of the four-dimensional (4-D) V –H–CL–LAImax clusters be-
cause forest variables are not independent from each other.
After defining the 4-D cluster centers, another Euclidean-
distance-based classifier was used to define the 4-D cluster
boundaries in order to apply the classification on MS-NFI
data. An overview of the analysis is shown in Fig. 1.

The Norwegian and Swedish NFI data were merged and
grouped into species groups (i.e., spruce, pine, and decidu-
ous dominated) to account for differences in forest structural
properties. First, the optimal number of structural subgroups
within each species group (i.e., spruce, pine, deciduous) was
analyzed. The optimal number of clusters was assessed by
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Table 1. Descriptive statistics for the National Forest Inventory (NFI) data. Abbreviations: n is the number of sample plots, dbh is diameter
at breast height, H is basal-area-weighted mean tree height (i.e., Lorey’s height), and V is total stem volume.

dbh H V

(cm) (m) (m3 ha−1)

Area Species n Mean Range Mean Range Mean Range

Norway Spruce 3364 12.6 5.0–49.0 13.0 2.9–32.3 152.0 0.2–1492.4
Pine 3650 14.1 5.1–48.9 11.5 2.4–28.6 97.8 0.2–656.6
Deciduous 3799 9.4 5.0–99.9 8.3 2.4–24.8 53.0 0.2–592.9

Sweden Spruce 4552 16.2 1.0–52.0 15.3 1.4–40.2 177.8 0.5–1010.2
Pine 7028 16.2 1.0–64.6 13.6 1.4–32.1 120.0 0.6–752.3
Deciduous 2452 12.8 1.0–81.2 12.8 1.5–32.6 101.9 0.4–1001.5

Figure 1. Flowchart for developing and applying the forest clas-
sification scheme (Sects. 2.2.1 and 2.2.2). Abbreviations: Na-
tional Forest Inventory (NFI), lookup table (LUT), total stem vol-
ume (m3 ha−1) (V ), Lorey’s height (H ), crown length (CL), max-
imum growing season leaf area index (LAImax), multisource NFI
(MS-NFI; i.e., products provided by forest authorities), European
Space Agency Land Cover (ESA LC) product.

plotting the curve between the total within-cluster sum of
squares (wcss) and the number of clusters (k) and then ob-
serving around which k the relationship resembles a “bent
knee” (i.e., the “elbow method”; Ketchen Jr. and Shook,
1996). Analysis was run using the R package “factoextra”
(Kassambara and Mundt, 2017). In each species group the
bent knee was located between k = 3 and k = 5, and thus the
optimal k was set to 4 (i.e., the number of structural sub-
groups was set to four). Then, using the predefined number
of structural subgroups (k = 4) within each species group
(n= 3), a k-medoids clustering analysis was used to define
the cluster “centroids” (i.e., medians) within the V –H–CL–
LAImax space to form a LUT of the key forest structural
attributes (n× k = 12 forest classes). The k-medoids algo-
rithm is a data partitioning method in which each cluster is
represented by one of the cluster objects (i.e., all subgroup

LUT values (V ,H , CL, and LAImax) are from the same plot;
Kaufman and Rousseeuw, 1990). The k-medoids algorithm
assigns all plots to the nearest cluster centers and calculates
the wcss. New cluster centers are updated and the plots are
reassigned. Cluster centers are adjusted iteratively until they
do not change. The k-medoids algorithm was chosen because
only the number of clusters is required as an input and also
because it is robust against outliers. The analysis was run us-
ing the “cluster” package in R (Maechler, 2017).

A method to assess cluster boundaries was needed because
many plots were located near the edges of the 4-D clusters.
We chose to determine cluster boundaries using V and H
since these are often available for large geographical areas
from MS-NFIs. Mahalanobis (1936) distance (MD) was used
to quantify the within-cluster variation in the V and H space
(i.e., V –H space) because it corresponds to the Euclidean
distance after V and H have been normalized. MD is a mul-
tidimensional method to determine how many standard de-
viations a data point is away from the class mean. For MD
calculation the cluster mean values were obtained based on
the 4-D (i.e., V , H , CL, and LAImax) and not in 2-D (i.e., V
and H ) clusters, and thus the cluster boundaries are not cir-
cular. MD values were calculated for each species group and
the respective subgroups. The binning (i.e., grid of 14× 14)
interval of the V –H space was set subjectively to add reso-
lution on younger forest structures. For each grid cell and for
each subgroup, a median MD value was calculated. To rep-
resent results using a grid surface, the cell was assigned to a
subgroup with the smallest median MD.

2.2.2 Compiling the enhanced LC product

In order to apply the newly developed LUT, the most re-
cent MS-NFI maps from Norway, Sweden, and Finland were
used to classify the Fennoscandian forests into the 12 forest
classes (i.e., the forest LC product was developed). MS-NFI
data were classified as spruce, pine, or deciduous dominated
based on species with the largest share of pixel total stem vol-
ume (m3 ha−1). The share of tree species other than pine or
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spruce was assigned to the deciduous group. After the species
group was assigned, a gridded V –H space was used to deter-
mine pixel subgroup. Possible V –H combinations without
MD value (i.e., falling outside the V –H space) were assigned
to the closest subgroup based on V . After classifying all data,
the forest classes were recoded as integers between 1 and 12
(i.e., three species groups× four structural subgroups).

The classified MS-NFI maps were reprojected, aggre-
gated, and resampled to complement the ESA LC product
(v.2.0.7; ESA LC, 2017) to form the complete surface repre-
sentation required by land models. Two types of aggregation
routines were used for upscaling: forest class was assigned
based on mode (among the 12 forest classes) and within-
pixel forest cover fraction based on mean (for this purpose,
forested pixels in MS-NFI data were recoded as 100 and
other pixels as 0). In other words, for each forested ESA
LC pixel (∼ 90 000 m2), forest class and within-pixel forest
cover fraction (%) were obtained based on classified MS-
NFI maps (∼ 260 or ∼ 630 m2). Two exceptions occurred:
(1) if the ESA LC pixel was not classified as forest but the
MS-NFI maps indicated the presence of forest, and (2) if the
ESA LC pixel was classified as a forest but MS-NFI maps
indicated non-forest. For pixels that were classified as forest
by the ESA LC product but the forest cover fraction within
that pixel in the enhanced LC product did not exceed the
15 % threshold (i.e., definition used by the ESA LC prod-
uct) according to the MS-NFI data, forest class was assigned
based on moving average interpolation (referred to as “gap-
filling”). Gapfilling was necessary because land (climate)
models require completeness in LC to resolve computations
of mass, energy, and momentum fluxes (note: gapfilled pix-
els are coded separately, which allows them to be either in-
cluded in or excluded from analysis). Non-forest LC classes
were imported from the ESA LC product to supplement our
forest pixels.

To allow for more flexible cross-walking or aggregation
to a lower spatial resolution in the preparation of surface
datasets in land models, for each forest LC pixel, coverage
fractions (referred to as “percentage layers”) for each of the
12 forest classes were calculated (i.e., 12 layers with values
ranging between 0 and 100 based on subgroup abundance
within the ESA LC pixel). In addition, gapfilled pixels and
non-forest LC classes are provided as own layers. These lay-
ers also allow more flexibility for modelers in choosing the
number of desired input land cover classes (i.e., modelers
may use, for example, the three most abundant forest classes
instead of keeping to the most abundant one). Raster analyses
were performed using the “rgdal” (Bivand et al., 2017) and
“raster” (Hijmans, 2017) packages in R. The enhanced LC
product for Fennoscandia, including the percentage layers,
can be downloaded from Majasalmi et al. (2017).

2.2.3 Comparison of the LC products

To highlight areas where the forest extent differed the most, a
difference map between the enhanced “back-classified” (i.e.,
into ESA LC classes) map and ESA LC product was calcu-
lated using ∼ 0.3◦ resolution. This resolution was chosen as
it represents a good compromise between higher-resolution
regional modeling (0.05–0.1◦) and coarser-resolution re-
gional and global modeling (0.5–1◦). In addition, LC-class
changes (e.g., from cropland to conifer forest) were quanti-
fied using a confusion matrix between the ESA LC classes
and enhanced back-classified map classes in the original
product resolution (∼ 0.003◦). The back-classification was
done using the percentage layers of different forest sub-
groups: if >= 70 % of the MS-NFI pixels within the ESA
LC pixel were classified into the conifer or deciduous group,
the pixel was classified as “needleleaved” (class 70) or
“broadleaved” (class 60), but otherwise it was classified as
“mixed” (class 90). The difference map was calculated after
both products (i.e., the enhanced back-classified map and the
ESA LC product) were aggregated to ∼ 0.3◦ resolution us-
ing pixel modes. The LC class changes are presented with
a confusion matrix between the ESA LC product and the
enhanced back-classified map; each row of the matrix rep-
resents an occurrence in the enhanced back-classified map,
while each column represents the respective occurrence in
the ESA LC product. The percentage of pixels belonging to
the same LC class in both products is shown in diagonal,
whereas percentage values outside the diagonal quantify the
change (“confusion”) between the different LC classes. The
confusion matrix was calculated using the “caret” package
(Kuhn, 2008) in R.

2.2.4 Comparison of LAImax maps

To demonstrate the potential of our LC product to provide
more realistic LC-dependent values of key forest structural
attributes for forested areas in Fennoscandia, we compared
our LAImax map (i.e., produced using enhanced LC product
and related LUT) with reference LAImax maps produced us-
ing the ESA LC product, a model-generic cross-walking ta-
ble (Poulter et al., 2015), and PFT-dependent LAImax values
used in ORCHIDEE, JULES, and JSBACH. Only forested
pixels were used for demonstration.

According to an ESA LC cross-walking table (Poulter et
al., 2015), a pixel classified as broadleaved deciduous trees
(BDTs) is assumed to contain 70 % BDTs, 15 % broadleaf
deciduous shrub (BDS), and 15 % natural grass. A pixel
with needleleaved evergreen trees (NETs) is defined to com-
prise 70 % NET, 5 % broadleaf evergreen shrub (BES), 5 %
broadleaf deciduous shrub (BDS), 5 % needleleaf evergreen
shrub (NES), and 15 % natural grass. As all the required
shrub LUT values were not available, the percentage of BDS
was set to 15 % for NET (i.e., equivalent to BDT weights).
For a mixed-leaf-type forest (ESA LC class 90), the estimates
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Figure 2. Gridded representation of vegetation subgroups, i.e., (a) spruce, (b) pine, and (c) deciduous, within the total stem volume (V ) and
Lorey’s height (H ) space (referred to as V –H space) based on NFI data. Visualization is required to map subgroup distribution in V –H
space and is used to apply the classification to the MS-NFI maps.

Table 2. A forest classification scheme lookup table (LUT). Abbreviations: V is total stem volume (m3 ha−1), H is Lorey’s height (m), CL
is crown length (m), and LAImax is maximum growing season leaf area index (m2 m−2). The “Recoded label” column is a key to be used
with the enhanced CL product. Interquartile range (i.e., first quartile subtracted from the third quartile) is given inside parentheses.

Species group Subgroup Recoded label V H CL LAImax

Spruce 1 301 22 (28.9) 7.5 (3.1) 6.3 (2.8) 1.4 (1.6)
2 302 92.2 (51.7) 12.3 (2.5) 10.1 (2.2) 4.3 (2.2)
3 303 201.3 (70.1) 16.8 (3.1) 13.2 (2.6) 6.7 (2.5)
4 304 373.9 (138.9) 22 (4.5) 15.8 (3.5) 9.1 (3.4)

Pine 1 305 20.8 (23.1) 7.5 (2.8) 4.6 (1.7) 0.9 (1)
2 306 80 (49.2) 11.6 (2.4) 6.7 (1.4) 2.4 (1.4)
3 307 129.5 (67.9) 17 (3.9) 9.4 (2) 2.3 (1.2)
4 308 236.4 (107.1) 17.2 (5) 8.4 (1.6) 4.4 (1.5)

Deciduous 1 309 7.2 (10.8) 4.9 (1.6) 3.2 (1.1) 0.5 (0.7)
2 310 36.1 (28.9) 8.4 (2.1) 5.5 (1.3) 1.8 (1.6)
3 311 97.6 (50.8) 12.2 (3.7) 7.9 (2.5) 3.9 (2.1)
4 312 227 (111.2) 18.3 (5.5) 10.3 (3.2) 7 (3.2)

were obtained as an average of BDT and NET values because
all the required input data (e.g., values for needleleaf decid-
uous tree (NDT) and BES) were not available to follow the
ESA LC-product cross-walking scheme.

JULES, JSBACH, and ORCHIDEE LUTs employ PFT-
dependent LAImax values. In JULES according to Clark et
al. (2011), the PFT-dependent LAImax values are 9 for a
broadleaf tree (BDT), 5 for a needleleaf tree (NET), 4 for
a C3 grass (natural grass), and 3 for a shrub (BDS; acronyms
used by the ESA LC cross-walking table in parenthesis). In
ORCHIDEE as reported by Lathière et al. (2006), the respec-
tive PFT-dependent LAImax values are 4.5 for both boreal
BDT and NET, and 2.5 for a C3 grass (same LAImax also
used for BDS). In JSBACH according to Schürmann et al.
(2016), the PFT-dependent LAImax value was 5 for extrat-
ropical deciduous trees (BDTs), 1.7 for coniferous evergreen

trees (NETs), and 3 for C3 grass (same LAImax also used for
BDS).

3 Results

3.1 Forest classification scheme

As a result of our classification scheme, a LUT of the key
structural variables (i.e., V ,H , CL, and LAImax) was created
(Table 2.). The boundaries of the subgroups were determined
based on MD, which can be visualized using a gridded rep-
resentation of vegetation subgroups within the V –H space
(Fig. 2) to select the right values from the LUT. The clas-
sified grid area and subgroup membership patterns reflect
the variability of V and H in NFI data, which was used to
define the classes. For example, the spruce-dominated plots
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Table 3. The percentage (%) of forest pixels (i.e., excluding gapfilled pixels) belonging to different species groups in the enhanced LC
product (referred to as Fennoscandia) and separately for each country (the spatial distribution of different forest subgroups and their frequency
distributions are shown in Fig. 3). Values are based on MS-NFI data.

Fennoscandia (%) Norway (%) Sweden (%) Finland (%)

Spruce 22.9 28.9 29.0 13.7

Pine 58.1 28.9 58.3 71.7

Deciduous 19.0 42.3 12.6 14.6

may have V up to 1500 m3 ha−1. In pine-dominated plots the
V did not exceed 900 m3 ha−1, and in deciduous plots the
highest V was 1100 m3 ha−1. In spruce-dominated plots, the
H exceeded 30 m with many different V s, whereas for pine
the 30 m was exceeded either when the respective V was less
than 50 m3 ha−1 (i.e., the tree is left for seed production dur-
ing harvesting, which is a common forest regeneration strat-
egy in Fennoscandia) or large (more than 500 m3 ha−1). In
plots dominated by deciduous species the 30 m is exceeded
after V was more than 150 m3 ha−1. The location and size
(i.e., patterns) of different subgroups in V –H space cannot
be directly compared between different species groups, as
Euclidean distances were used for their classification.

3.2 Enhanced LC product

The majority (58 %) of the forest pixels in Fennoscan-
dia were classified as pine dominated, which was also the
largest species group in Sweden (58 %) and in Finland
(72 %; Table 3). However, in Norway the largest species
group was deciduous broadleaf (42 %). Finland had a slightly
higher percentage of deciduous forests than Sweden. Spruce-
dominated forest was the smallest species group in Finland
(14 %). Visual assessment of the spatial distribution of dif-
ferent species groups and their subgroups showed that low-
land areas in Finland and in Sweden were mainly dominated
by pines and spruces, whereas deciduous species were most
abundant in the northernmost, mountainous, and coastal ar-
eas (Fig. 3). In Fennoscandia the most abundant subgroup
within spruce-dominated forest was “Spruce 3” (i.e., species
group “spruce” and subgroup number “3”) with class me-
dian values of V = 201 m3 ha−1 and H = 17 m (see Ta-
ble 2). Within the pine-dominated forest the most abundant
subgroup was “Pine 2” with class median V = 80 m3 ha−1

and H = 12 m. For the deciduous species group the me-
dian values of the largest subgroup “Deciduous 1” were
V = 7 m3 ha−1 and H = 5 m.

3.3 Forest extent comparison

In order to assess agreement between the two LC prod-
ucts, the enhanced LC product was back-classified into ESA
LC classes using the percentage layers of different forest
subgroups. The kappa coefficient (measure of agreement

Figure 3. Spatial distribution of MS-NFI forest classes (i.e., with-
out gapfilled forest pixels) in Fennoscandia. The first part of the x
label is the species group and the number refers to the respective
subgroup number (see Fig. 2.). The forest subgroup was assigned
based on the most abundant forest class within the ESA LC pixel.
For colors, see the online version of the article.

that takes into account possible agreement occurring by
chance) for classification was 0.55, and the classification ac-
curacy was 0.64 (calculated based on Table 4). The confu-
sion matrix between the ESA LC product and the enhanced
back-classified LC map showed that the highest agreement
(30.3 %) between the two classification schemes occurred
for forest class 70 (i.e., NET; Table 4). The largest fraction
of forested pixels in the enhanced back-classified LC map
was classified as conifer dominated (36.3 %; Fig. 4). Results
showed that 1.5 % of class 70 was classified into class 60
(i.e., BDT), and 14.4 % of ESA LC class 70 was classified as
90 (i.e., “mixed” BDT and NET). The share of mixed for-
est class (i.e., class 90) was also high (30.2 %). However,
the portion of pixels classified as BDT was relatively low
(5.5 %). Overall, the enhanced LC product contained 16.4 %
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Figure 4. Enhanced back-classified map for Fennoscandia. The per-
centage layers of forest subgroups were used to back-classify the
data into ESA LC product classes (see Sect. 2.2.2.). Histograms
show LC-class percentages for the enhanced back-classified map
(lower bars with colors) and for the ESA LC product (black upper
bars). For colors, see the online version of the article.

more forest classified pixels than the ESA LC product (note:
the fraction of gapfilled forest pixels was 4.5 %). Forest area
increased by 4.8 % at the expense of the ESA LC class shrub
or herbaceous cover (class 180), 4.1 % at the expense of the
LC class mosaic tree and shrub (> 50 %; class 100), 2.3 % at
the expense of the LC class croplands (class 10), and 1.9 %
at the expense of the LC class water bodies (class 210). The
classified land area increased by 0.5 % as areas classified as
“no data” in the ESA LC product were classified as forest in
the enhanced LC product.

The spatial distribution of different LC classes and the
class frequencies of the enhanced back-classified map are
shown in Fig. 4, which shows both ESA LC-class labels
and descriptions (note: ESA LC-product class frequencies
are also shown for reference). The difference map of forest
cover between the enhanced back-classified LC product and
the ESA LC product pointed out that the areal representation
of forests differs the most in mountainous areas in Norway

Figure 5. Difference in forest extent between the enhanced back-
classified map and the ESA LC product. Both types of data were
aggregated to ∼ 0.3◦ resolution using mode to display the main
differences in the two classifications spatially. The label “Gapfilled
forest” is used to indicate areas that were mainly classified as forest
by the ESA LC product, but the MS-NFI data indicated non-forest.
Other labels (see Fig. 4.) show which main ESA LC classes were
classified as forest in the enhanced back-classified map. Note that
the confusion matrix between the ESA LC product and enhanced
back-classified map was prepared using ∼ 0.003◦ resolution (Ta-
ble 4), whereas the map resolution shown here is∼ 0.3◦. For colors,
see the online version of the article.

and Sweden, south and north Finland, and in middle to south
Sweden in the area between Stockholm and lakes Vättern and
Vänern (lakes visible in Fig. 4.; Fig. 5.). The areas classified
as forest by the ESA LC product but not by MS-NFI data
(“gapfilled forest” in Fig. 5.) were mainly located in moun-
tainous areas in Norway and Sweden.

3.4 LAImax map comparison

The enhanced LC product and related LUT produced a
Fennoscandic mean LAImax of 3.2. Spatial variations in
LAImax appeared more natural when compared to the ref-
erence maps (Fig. 6). The standard deviation (SD), a mea-
sure of the variability, of LAImax was substantially larger
(SD= 2.3) for the enhanced LC product that for the three
reference LAImax maps. The smallest mean LAImax values
(mean LAImax = 2.4, SD= 0.7) were produced by LAImax
values applied in JSBACH. The LAImax map produced us-
ing ORCHIDEE had a mean of 3.9 (SD= 0.0 due to applied
cross-walking scheme and equal LAImax values for NET and
BDT). The largest mean LAImax was produced by LAImax
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values applied in JULES (mean LAImax = 4.9, SD= 0.9).
It is noteworthy that the use of JSBACH and JULES PFT-
dependent LAImax values produced unnaturally high LAImax
values for the northernmost areas dominated by deciduous
species.

4 Discussion

This paper is a response to the “call to action” raised in the
review by Ellison et al. (2017), which highlighted an urgent
need to integrate forest effects on energy balances, hydrol-
ogy, and climate into policy actions regarding climate change
adaptation and mitigation. One of goals of this paper is to
foster interdisciplinary discussions on alternative informa-
tion sources, such as the existing NFI data, to enhance the
representation of forest structures in different land modeling
frameworks. Although NFIs from different countries have
been shaped by local information needs, the work done by
the Food and Agriculture Organization (FAO) in conducting
global FRAs since 1948 has aided in developing national
forest reporting standards. Currently, new assessments are
carried out every 5 years and the 2015 assessment covered
93.5 % of the global forest area (Köhl et al., 2015). Thus, as
the aim of an FRA is to describe the state and change of the
world’s forests and keep policy makers informed, the same
data could potentially be used to describe the current state
of forests in land models. In this study, we developed a sim-
ple clustering and classification scheme to allow for the re-
iteration of our approach to NFI data from other countries.
Classifying forests based on the structural properties they
share at various successional stages under similar manage-
ment conditions may be one way to link models of forestry
with the land models employed in climate research. Impor-
tant transient effects could then be included, for example
through changes in area under a given successional stage,
with forestry models providing the link to the time dimen-
sion. Alternatively, distinct rule sets for successional dynam-
ics following management disturbances could be developed
analogous to those used to govern growth and competition in
dynamic vegetation models (or land models run in dynamic
vegetation mode).

Recently, other approaches have been developed for incor-
porating forest management into existing land surface (cli-
mate) models. For example, the radiative-transfer-based land
surface model ORCHIDEE was parameterized to simulate
the effects of forest management for biogeochemical and bio-
physical variables (Naudts et al., 2015). The model was pa-
rameterized using diameter-at-breast-height (dbh) data from
different European NFIs (French, Spanish, Swedish, and
German; i.e., the key input values were modeled based on
dbh using allometric models), and 12 parameter sets for spe-
cific tree species (instead of presenting groups of species
such as PFTs) were presented. However, a major drawback
of individual tree-based approaches is that existing global LC

Figure 6. Demonstration of how the enhanced LC product and the
related LUT may be used to map local variations in important struc-
tural attributes in forests, such as maximum growing season LAI
(max LAI or LAImax). Maps of LAImax in Fennoscandic forests
using (a) our enhanced LC product and the related LUT, (b) ESA
LC product and PFT-dependent LAImax values used in JSBACH,
(c) ESA LC product and PFT-dependent LAImax values used in
ORCHIDEE, and (d) ESA LC product and PFT-dependent LAImax
values used in JULES. For colors, see the online version of the arti-
cle.

products are not designated to distinguish between individ-
ual species, which limits the spatial domain in which such
approaches can be applied. In addition, the need for residual
groups remains because individual tree-based approaches are
not suited for areas where the forests are essentially mixtures
of different tree species. The benefit of defining “broader”
PFT classes, such as those developed in this study, is that the
broad functional types may be separated from optical satel-
lite data based on differences in optical and structural char-
acteristics of the forests. In the future, as the spectral, spatial,
and temporal resolution of optical satellite data improve, the
definition of narrower forest classes may be justified. Alter-
natively, functional traits (FTs) may be used for modeling
vegetation–climate interactions (Wullschleger et al., 2014;
Verheijen et al., 2013). Commonly, the community-weighted
mean trait value (i.e., based on relative abundances of species
and their trait values) is used in models that apply the FT
concept. While FTs are highly scalable (i.e., from organism
to ecosystem scale), well assembled (i.e., leaf, stem, and root
traits), and measurable (at least in theory), the downside of
FTs is that their applicability is in its infancy, and the lack of
standards hinders its practical application. In addition, many
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traits such as root traits cannot be measured using remote
sensing.

At present, some countries, such as Finland and Sweden,
have national airborne laser scanning (ALS) campaigns pro-
ducing high-resolution forest structural data that could be
used to obtain more accurate forest height estimates or to
develop forest classification schemes for different land mod-
els. However, the drawback of these ALS datasets is that they
cannot be used to separate different tree species, which is one
of the most important forest structural attributes. In addition,
as few countries have national ALS datasets, the geographi-
cal extent that could be covered using ALS-based forest clas-
sification schemes remains limited. At present, the use of op-
tical satellite data to classify forests is unquestionable due to
their superior spatial and temporal resolution and will thus
probably sustain their role as the most valuable tool for en-
vironmental monitoring and mapping. While synthetic aper-
ture radar (SAR) allows for more robust and temporally con-
tinuous data collection compared to optical instruments (i.e.,
SAR is not limited to cloudless conditions unlike optical in-
struments), the relatively low spatial resolution (km2) cannot
be used to separate different aged forests in landscapes that
are fragmented (into 0.01 km2 units) by active forest manage-
ment. Data from SAR could be used to harmonize MS-NFI
data from different countries and to provide other land model
inputs, such as soil moisture maps. In the future, approaches
combining both optical and ALS–SAR data may be expected
to become more common and thus allow for the develop-
ment of more sophisticated forest classification schemes to
increase the accuracy of climate predictions.

The forest extent differs significantly between the en-
hanced LC product and the ESA LC product because they
employ different forest definitions. The ESA LC product is
based on series of satellite surface reflectance data (i.e., be-
tween years 1992 and 2015) and the LC class is deduced
based on pixel reflectance properties. However, processing
the MS-NFI data employs a forest mask that delineates po-
tential forest areas prior to the kNN estimation (i.e., clear-
cuts and harvest are seen as a natural part of forest develop-
ment, and thus pixels inside the forest mask may have V = 0
or H = 0; Supplement S4). For example, it is not clear if a
sapling stand with V = 3 (m3 ha−1) and H = 3 (m) would
classify as forest based only on its reflectance. Thus, the en-
hanced LC product cannot be directly used to validate the
ESA LC product. In addition, differences in forest extent are
propagated by the different spatial resolutions of the input
reflectance data (i.e., the probability of having “mixed” class
pixels is higher using lower-resolution data) and data aggre-
gation using the mode (i.e., the most abundant classes will
become more common). The influence of spatial resolution
of the input data and the applied data aggregation method
may be observed, for example, around water bodies in Fin-
land and in Sweden (e.g., Figs. 4 and 5). For example, a
single ESA LC pixel (∼ 90 000 m2) classified as water (lo-
cated next to a larger water body) may contain more pixels

classified as forest than water in high-resolution (< 900 m2)

MS-NFI data (e.g., Huang et al., 2002) and thus be classified
as forest if data are aggregated using mode. The forest area
of the enhanced LC product is also larger than in the ESA
LC product because MS-NFI data were complemented with
the ESA LC-product data, and pixels that were classified as
forest by the ESA LC product but did not contain forest ac-
cording to the MS-NFI data were gapfilled.

The presented forest classification scheme has many lev-
els to serve the needs of different users (Supplement S5).
For example, for climate and hydrological modeling requir-
ing full spatial coverage, the gapfilled pixels and non-forest
LC classes are provided. Researchers that are able to run their
models with no data may select to remove the gapfilled pixels
prior to analysis. Remote sensing scientists may wish to use
only “true” forest pixels and extract areas belonging to dif-
ferent species groups or subgroups or select areas where the
fraction of forests is lower or higher (i.e., “open” or “closed”
following ESA LC-product legend definitions). In addition,
the percentage layers – or the relative abundance of different
forest subgroups within each LC pixel in MS-NFI data – pro-
vide land modelers with more control and flexibility in terms
of the number of input LC classes in different land models.
The percentage layers for different forest subgroups may be
used to obtain complete LC distributions for Fennoscandia,
or alternatively, a modeler may choose, for example, to use
three of the most abundant forest classes instead of holding
onto the most abundant forest class. The percentage layers
also provide more flexibility for cross-walking (Poulter et al.,
2015) across different spatial resolutions. Our forest classifi-
cation scheme and the related map products (i.e., enhanced
LC product and the percentage layers) allow for customized
model “inputs” to fit the needs (or requirements) of various
land models.

The development of cross-walking tables has previously
been complicated by the fact that the number and defini-
tion of PFTs used in today’s land models vary along with
the limited availability of spatially and temporally repre-
sentative input LC datasets (Poulter et al., 2015). The pre-
sented forest classification scheme (Majasalmi et al., 2017)
has many levels to serve the needs of different users (Sup-
plement S5). The new ESA LC-product series was the first
to overcome the aforementioned challenges and demonstrate
how to compile an LC-product series that optimally serves
the needs of various users. Our work in this paper does not
imply that the ESA LC product and cross-walking scheme
(or the model- and PFT-dependent parameter values) are nec-
essarily wrong per se, but simply presents an alternative ap-
proach to classification that explicitly accounts for the struc-
tural variation in managed forests in different successional
stages. The flexibility in the spatial resampling of the ESA
LC product is preserved by our approach (i.e., the idea of
our “percentage layers” correspond with the “fractional area”
contribution employed by the ESA LC product; Poulter et
al., 2015), thus respecting the efforts of ESA LC-product de-
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velopers. Our LUT demonstration showed that by using the
enhanced LC product with its related LUT, the description
of LAImax appeared more natural compared to the LAImax
maps of JULES, ORCHIDEE, and JSBACH compiled using
the ESA LC-product classification, PFT cross-walking table
(Poulter et al., 2015), and model- and PFT-dependent LAImax
values. While the accuracy of our product cannot generally
be determined, it presents a new approach to quantify the
present state of the key forest structural attributes of managed
forests in Fennoscandia. In regional modeling studies, based
on our results, it appears worth the effort to use the enhanced
LC product instead of the original ESA LC product when
cross-walking from LC classes to PFTs to obtain more truth-
ful initial values of the key structural variables (i.e., LAImax,
zbottom, ztop). The enhanced LC product may be used for fore-
casting and back-casting the impacts of forest management
on energy, water, and carbon cycling; whether our enhanced
forest classification leads to improved regional climate pre-
dictions linked to transient changes occurring in forests over
time remains the subject of future research activity.

To our knowledge, this is the first study to use NFI data to-
gether with MS-NFI maps to enhance the characterization of
forest structure in a format that is compatible with many land
surface (climate) models (i.e., in modeling frameworks) in
which changes in vegetation structure are captured by area-
based changes in LC (or PFT). The methods used for creating
the LUT were carefully explained to allow other researchers
to replicate the same procedures using NFI data from other
countries. The benefit of the classification scheme described
in this study is that the required data (i.e., NFI data and MS-
NFI maps of species, V , and H ) are readily available for
many countries. Future research is needed to develop recom-
mendations and guidelines for prescribing future forest tran-
sitions under changing climate and management regimes in
different land models and modeling frameworks.

Data availability. The MS-NFI forest resource maps for Fin-
land are available through the Natural Resources Institute
Finland (LUKE) portal: http://kartta.luke.fi/opendata/valinta.html.
For Sweden the forest maps may be obtained through the
Swedish University of Agricultural Sciences (SLU) por-
tal: http://www.slu.se/en/Collaborative-Centres-and-Projects/
the-swedish-national-forest-inventory/forest-statistics/
slu-forest-map/. For Norway the MS-NFI data are available
by request from the Norwegian Institute of Bioeconomy Re-
search (NIBIO). The enhanced LC product for Fennoscandia,
including the percentage layers, can be downloaded from
https://doi.org/10.21350/7zZEy5w3T (Majasalmi et al., 2017).
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