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Abstract. In the Baltic States region, anthropogenic disturbances at different temporal and spatial scales
mostly determine dynamics and development phases of forest ecosystems. We reviewed the state and con-
dition of hemiboreal forests of the Baltic States region and analyzed species composition of recently estab-
lished and permanent forest (PF). Agricultural deforestation and spontaneous or artificial conversion back
to forest is a scenario leading to ecosystems designated as recent forest (RF, age up to two hundred years).
Permanent forest (PF) was defined as areas with no records of agricultural activity during the last 200 yr,
including mostly forests managed by traditional even-aged (clear-cut) silviculture and salvage after natural
disturbances. We hypothesized that RF would have distinctive composition, with higher dominance by
hardwoods (e.g., aspen and birch), compared to PF. Ordination revealed divergence in the RF stands;
about half had the hypothesized composition distinct from PF, with a tight cluster of stands in the part of
the ordination space with high hardwood dominance, while the remaining RF stands were scattered
throughout the ordination space occupied by PF with highly variable species composition. Planting of con-
ifers, variability in site quality, and variability in spatial proximity to PF with relatively natural ecosystem
legacies likely explained the variable compositions of this latter group of RF. We positioned the observa-
tions of RF in a classic quantification of site type conditions (based on Estonian forest vegetation survey
previously carried out by Lohmus), which indicated that RF was more likely to occur on areas of higher
soil fertility (in ordination space). Climatic and anthropogenic changes to RF create complex dynamic
trends that are difficult to project into the future. Further research in tracing land use changes (using pollen
analysis and documented evidence) should be utilized to refine the conceptual framework of ecosystem
legacy and memory. Occurrence and frequency of deforestation and its characteristics as a novel distur-
bance regime are of particular interest.

Key words: disturbances; ecosystem legacy; hemiboreal forest zone; land use change; managed forest; manipulated
legacy.

ECOSPHERE *%* www.esajournals.org 1 November 2018 ** Volume 9(11) %* Article e02503


info:doi/10.1002/ecs2.2503
info:doi/10.1002/ecs2.2503

JOGISTE ET AL.

Received 4 October 2018; accepted 10 October 2018. Corresponding Editor: Debra P. C. Peters.
Copyright: © 2018 The Authors. This is an open access article under the terms of the Creative Commons Attribution

License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

+ E-mail: kalevjogiste@emu.ee
INTRODUCTION

Forest ecosystems constitute a globally complex
web of interactions and humans are directly or
indirectly part of this system. In some areas, for-
ests are directly linked to human livelihoods.
Globalization and efforts to come up with ways to
alleviate effects and mitigate climate change lead
to discussion about ecosystem legacies of natural
processes and contemporary management of nat-
ural resources, particularly forest vegetation. The
concept of ecosystem legacies covers a wide array
of relationships among components of the living
world and has been proposed as one possible
cornerstone of forest management systems (John-
stone et al. 2016, Jogiste et al. 2017). Ecosystem
legacies are biotic or abiotic material or informa-
tion entities coming from the past. Forest ecosys-
tems are dynamic in time, with temporal trends
that integrate the effects of several types of natural
and anthropogenic disturbances, which are in
turn linked to highly variable editing and condi-
tioning of legacies. Models have attempted to cap-
ture the basic and universal components of forest
ecosystem regulation (Shugart 1984, Hari et al.
2017). However, modeling is challenged by two
main issues: First, the functioning of human-
dominated ecosystems that have not been shaped
and structured by natural processes is incom-
pletely understood, and second, changing climatic
conditions create varied effects on altered and
indigenous ecosystems. Therefore, a conceptual-
ization of ecosystem dynamics that highlights
changes in ecosystem legacy conditioning by
legacy syndromes that result from natural or
anthropogenic disturbance regimes could offer a
solid basis for further quantification of structural
dynamics. Conceptual tools derived from studies
of natural and managed forests are needed to
fathom the complex pattern of post-disturbance
vegetation dynamics, especially from compound
disturbances and cascading effects (White and
Jentsch 2001, Seidl et al. 2011, Thom et al. 2018).

Ecosystems are affected by multiple, often dif-
ferent disturbances over time. Disturbances vary
in their type, intensity, extent, and intervals
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between disturbances. Anthropogenic influence
creates additional interacting patterns with natu-
ral disturbances (Frelich et al. 2018). Disturbances
interact with the traits of individual species (e.g.,
shade tolerance, life span, drought tolerance,
browse tolerance), so that a post-disturbance
ecosystem is reset (to some degree), leading to a
new dynamic interplay of different organism
types. Ecosystem legacies that remain after a dis-
turbance can affect the direction (trajectory) of the
reset through interactions with species traits.
Natural vs. anthropogenic disturbances create
different legacies with different longevity and/or
strength, where longevity refers to the time that a
legacy has an effect and strength to the level of an
effect (Jogiste et al. 2017). Natural disturbances
work in sync with species traits; that is, material
and information legacies that survive disturbance
may lead to rapid recovery (high resilience), and
material legacies created by disturbance such as
deadwood are integrated into ecosystem function
and resilience. In contrast, agricultural land use
erases forest legacies, and the material and infor-
mation legacies created by agriculture are hard to
erase, leading to long recovery times. Therefore,
changes from agricultural to forestry land use
(and the reverse) reveal complex features of
ecosystem dynamics in the context of management
practice (Foster et al. 1998, Thompson et al. 2016).
A previous analysis of Baltic hemiboreal
forests showed the existence of three legacy
syndromes—patterns of legacy abundance and
spatial patterns at multiple scales that are distinc-
tively edited by disturbances that fall along a
naturalness gradient. These are natural distur-
bance, traditional silviculture (including clear-
cuts and salvage after natural disturbance), and
afforestation of abandoned agricultural land
(Jogiste et al. 2017). In the current analysis, we
refine these to fit a recent forest (RF; with agricul-
tural land use history) vs. PF cover scheme (silvi-
cultural history), both rendering artificial
legacies. Recent forest is defined as areas of agri-
cultural deforestation followed by spontaneous
or intentional conversion back to forest. Ecosys-
tem dynamics of RF demonstrate strong artificial
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legacy effects of post-disturbance management
on vegetation patterns and dynamics of carbon
(C) sequestration. For example, the ground vege-
tation in forests growing on abandoned agricul-
tural fields suggests more rapid C turnover
compared to natural forest (Hari et al. 2017). In
the frame of this study, PF is defined as the areas
where no written records of agricultural activity
exist (Verheyen et al. 2003 refer to PF as ancient
forest), including mostly traditional even-aged
silviculture using clear-cuts and also a small
amount remaining of natural forest with mar-
ginal human impacts, at least within the short
historical perspective of the last two centuries.

Although most PF has been affected by forest
management, we nevertheless expect that artifi-
cial legacy effects on forest composition will be
relatively small (low strength) and that differ-
ences will exist in tree species stand composition
when comparing them to RF. We assume that
forest sites that have been in agricultural use
were situated on more fertile soils in the first
place, and they demonstrate a continued higher
nutrient turnover and biomass production,
which should be reflected in forest inventory and
permanent plot observations. Furthermore, RFs
fall into certain ecological categories, including
dominance by hardwood species rather than con-
ifers (Lohmus 1973). This scheme applies to the
hemiboreal forests of Estonia, Latvia, and the
northern part of Lithuania as these forests share
common species and recent land use history.

The objective was to verify the existence of an
artificial legacy signal in the forest inventory
database: both post-agriculture afforestation in
the case of RF and silvicultural legacy in PF
(pre-commercial thinning, timber harvesting and
salvage). Therefore, we hypothesized that artifi-
cial legacies of past human impacts (of relatively
short length or time span, up to 200 yr) are of
sufficient strength that they can be detected and
distinguished in recent and PF using ordination
techniques. More specifically, we hypothesized
that areas of former agricultural lands will show
hardwood dominance.

MATERIALS AND METHODS
Ecological conditions of Baltic forests

Forests of the Baltic States belong to the hemi-
boreal forest zone (Ahti et al. 1968, Hytteborn
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et al. 2005). The climate is predominantly influ-
enced by continental air masses except for a strip
with maritime influence near the Baltic Sea. The
regional average temperatures range from 20°C
in July to —6°C in February, and mean annual
precipitation varies from 500 to 930 mm. The
Baltic States are part of the East-European Plain,
an area characterized by low relief with small
absolute and relative elevations. The highest
point is the hill Suur Munamagi (318 m) in
southeastern Estonia (Raukas 2009).

The Baltic States are unique in Europe, having
had large areas of their landscapes remaining
under forest cover for a long time. Nearly half of
Estonia and Latvia are covered by forest, while
approximately one-third of Lithuania is forested
(Jogiste et al. 2016, Fig. 1). The main tree species
in the Baltic region are Scots pine (Pinus sylvestris
L.), Norway spruce (Picea abies [L.] Karst), birches
(Betula pendula Roth and B. pubescens Ehrh. and
hybrids), alders (Alnus incana [L.] Moench and
Alnus glutinosa [L.] Gaertn.), common aspen
(Populus tremula L.), pedunculate oak (Quercus
robur L.), European ash (Fraxinus excelsior L.),
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Fig. 1. Forest vegetation cover of the Baltic States as
of 2006 (Estonia, Latvia, Lithuania, from north to south).
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and small-leaved linden (Tilia cordata Mill.). Oak
is more frequent in Lithuania. Mixtures of coni-
fers and broad-leaved tree species are frequent.
The Baltic States were covered with a continen-
tal ice sheet during the last glaciation 21,000—
18,000 calibrated '*C years before present (YBP).
The ice retreated from the region between 18,000
(southern Lithuania) and 13,000 (northern Esto-
nia) YBP (Rinterknecht et al. 2006). Quaternary
glacial deposits (moraines, glaciolacustrine, and
glaciofluvial sediments) with varying thickness
cover the bedrock (Raukas 2009). However, the
presence of bedrock and its basic properties
determine soil characteristics in many cases
(Fig. 2). The first tree species migrated to the area
shortly after retreat of the ice. Pollen and macro-
fossils record the presence of typical boreal trees
(Betula, Pinus, and Picea) in the Baltic States dat-
ing back to 14,000-13,500 YBP (Heikkila et al.
2009, Veski et al. 2012). During the next millen-
nia, boreal woodlands (dominated by Betula and
Pinus) were gradually replaced by a temperate
broad-leaved forest (dominated by Quercus, Tilia,
and Ulmus), due to further warming of the cli-
mate. While relatively high fire frequencies have
been recorded for post-glacial pine-dominated
forests, the amount of natural disturbances was
low in temperate forests. The general climatic
cooling during the last 6000 yr has increased the
importance of boreal components (mainly Picea)
and diminished the role of temperate broad-
leaved taxa, especially in the northern part of the
region. As is typical for a hemiboreal forest
(sometimes referred as boreo-nemoral forest), the

Latvia

NE Estonia
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potential natural woodland cover of the region is
over 90%, and the open areas are commonly
associated with hydrologically challenging con-
ditions (too wet or dry). Anthropogenic defor-
estation, mainly small-scale episodes in the
surroundings of hunter-gatherer settlement sites,
has been recorded since 11,000 YBP (Poska and
Veski 1999, Stancikaite et al. 2004). Cereal farm-
ing was introduced to the area ca 6000 YBP, but
the transition to an agrarian production-based
society took place about two millennia later, dur-
ing the Bronze Age (3800—2500 YBP; Poska et al.
2004). The widespread usage of extensive agrar-
ian techniques (e.g., slash-and-burn agriculture)
led to a considerable increase in the proportion
of open land and a rise in deforestation fre-
quency. In sandy areas, such long-term land use
caused soil impoverishment and acidification,
and led to heathland development (Savukyniene
et al. 2003). An abrupt intensification of farming
and associated deforestation is observable in pol-
len records since ca 1000 YBP, and soon reached
values similar to the contemporary landscape.
The maximal anthropogenic deforestation of the
region was reached 200-100 YBP, when the forest
area was half that of today, and this happened
somewhat later compared to the rest of Europe
(Poska et al. 2014).

As with many forested areas in Europe, natu-
ral and anthropogenic disturbances in this region
are mixed over time and space. Successional pat-
terns include processes after first deforestation
and later abandonment of arable land. This
makes it difficult to describe natural forest

Lithuania
. 7 8 9
N

Fig. 2. Stratigraphic cross section of Baltic States from North to South: simplified geological profile. Abbrevia-
tions are Q, Quaternary; 1, Ediacaran; 2, Cambrian; 3, Ordovician; 4, Silurian; 5, Devonian; 6, Permian; 7, Triassic;

8, Jurassic; 9, Cretaceous.
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development (Laarmann et al. 2009). Natural
disturbance regimes in forest ecosystems can be
distinguished based on severity (Kuuluvainen
2009): Stand-replacing and gap-forming regimes
create the extremes of the gradient, with interme-
diate (partial) disturbances constituting the
varying conditions in between. Despite anthro-
pogenic influences on disturbance regimes in the
Baltic States, these two extremes in natural dis-
turbance regimes can be found. High severity
disturbance is linked mostly to fire on poor soils
close to the Baltic Sea (Parro et al. 2015, Koster
et al. 2016). The spatial pattern of fires (historical
incidence, frequency, intensity) can be complex,
and good evidence can be found only from the
sedimentary record in larger lakes (Koff et al.
2000). For example, during the Holocene the
average fire return interval in the Baltic region
was ~280 yr and there have been shifts in fire
regime due to climate-induced changes in vege-
tation (Feurdean et al. 2017). Lowland forests
and forests on fertile moraine or rendzina soils
have a gap phase disturbance regime, driven by
dynamics of wind, pathogens, and insects
(Koster et al. 2009, Adamson et al. 2015, Vodde
et al. 2015).

The intensity of land management (both agri-
cultural and forestry use) has varied greatly in
recent history; more intensive periods of defor-
estation for agriculture from ~1700 to 1900 AD
(Brumelis et al. 2005, Terauds et al. 2011) and a
reversed course with a return of forest cover dur-
ing the 20th century (Fig. 3; Lazdinis et al. 2009,
Jogiste et al. 2016, Poska et al. 2018). Historically,
Baltic forestry is juxtaposed between two
contrasting approaches to forest management:
German influence that favored artificial regener-
ation and Russian reliance on natural regenera-
tion after timber harvest (Angelstam et al. 1995,
Carlsson and Lazdinis 2004, Liira and Kohv
2010). The impact manifests itself as an ecotone
of management gradient: the transition from
intensive management in the west to a natural
regeneration pattern in taiga forest in the east. In
commercial forestry of the Baltics during the
twentieth century, most attention was given to
controlling stand composition in favor of coni-
fers, primarily Scots pine on sandy soils and Nor-
way spruce on more fertile soils. In artificial
regeneration, seedlings of these species have
mostly been planted, but direct seeding (mainly
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for Scots pine) has been used as well. Non-native
tree species (e.g., Larix sp.) have been used occa-
sionally (Sander and Meikar 2004). Areas of
changed land use (former farmland and mining
areas) with the first generation of woody vegeta-
tion represent novel ecosystems where the
dynamics depend on management decisions
(Laarmann et al. 2015, Jogiste et al. 2016).

Remnants of forest with minimal signs of man-
agement or with natural conditions are scarce.
Most areas have been logged and silvicultural
techniques were applied to improve stand pro-
ductivity and vitality. In the Baltic States, clear-
cuts are usually <5 ha in size and regeneration
has often been natural. Harvest rotation periods
are shorter (e.g., Picea abies 80-100 yr, Betula sp.
70-80 yr in Estonia) than return intervals for nat-
ural disturbances as well as the average lifespan
of the main tree species. Nevertheless, conven-
tionally managed forests in many aspects resem-
ble a natural ecosystem, although structural
features such as deadwood presence can be dras-
tically lower (Koster et al. 2005). In Estonia,
55,000 ha (2.3% of the total forest cover) is esti-
mated to be near-natural forest where no land
use change is assumed to have taken place and
ecosystems are shaped by natural disturbances
and occasional forest management interventions
(Anonymous 2014). Changed vegetation is typi-
cal for coastal areas (pastures covered with
Juniperus communis L.) and inland woody mead-
ows (Poska et al. 2004). Over time, many of these
communities will become woodlands (Laasimer
1981, Partel et al. 1999).

Forest cover development in the Baltic States
60
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Fig. 3. Forest cover change over 100 yr in the Baltic
States (Anonymous 2017).
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Database of growth and yield studies: Ordination
of forest site type

Data from the Estonian Network of Forest
Research Plots (ENFRP; Kiviste et al. 2015) were
used to compare sites of different land use his-
tory: RF with records of land use change vs. PF.
We assume that the plots also represent Latvian
and Lithuanian hemiboreal forest because of
their shared forest management history. We used
534 plots from the most recent survey as the
dataset for analysis (planted forests are also
included). The plots marked as RF (54 plots) had
records of change in land use in the dataset. The
tree species proportion (relative basal area, RBA)
of the stand, the generalized share of deciduous
trees (DEC), stand age (A), site index, and total
number of tree species in the canopy were calcu-
lated. If single taxa represented <2%, we pooled
these taxa into a single category of others.

We used nonmetric multidimensional scaling
(NMDS) to depict similarities and differences in
species composition and generalized share of
deciduous trees. We used power transformation
to standardize the plot-level RBA within all plots.
We used the Serensen (Bray-Curtis) distance
measure. Nonmetric multidimensional scaling
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ordination revealed two axes, the first axis
described 85% of the data variation and the sec-
ond 11%. The stress plot revealed a good fit (final
stress factor was 9.9) of the species component in
the analysis. All analyses were conducted in
PC-ORD version 7.02. The significance of group-
ing factors (recent or PF) was tested using Multiple
Response Permutation Procedure (MRPP). Multi-
ple Response Permutation Procedure is a nonpara-
metric procedure that tests the hypothesis of no
difference in compositional similarity among two
or more groups (McCune and Mefford 1999).

Plots of the RF from the ENFRP database were
screened against the Estonian Forest Site Type
classification that is based on an ordination of
site conditions (Lohmus 1973, 2004). For ENFRP
plots, the ground vegetation data were not avail-
able. However, for each plot the database con-
tains a record of site type as was determined by
the surveyor at the time of plot establishment
(Table 1). We used the ordination scheme of
ground vegetation created by Lohmus (1973,
1974, 2004) as an approximation of Baltic forest
conditions. The typology of forest site type classi-
fications of Latvia (Buss 1997) and Lithuania
(Karazija 2008) resembles that presented in

Table 1. The distribution of forest site types in the dataset of Estonian Network of Forest Research Plots (ENFRP;

number of plots) and total forest land of Estonia (%).

Number of plots in ENFRP
Forest site type Permanent forest Recent forest Sum  Representation of forest site type in Estonian forest areat %
Filipendula 15 1 16 9.4
Oxalis 65 35 100 18.0
Oxalis-Myrtillus 42 4 46 9.7
Oxalis-Rhodococcum 42 2 44 2.1
Galamagrostis-alvar 21 1 22 22
Polytrichum-Myrtillus 6 6 15
Calluna 10 — 10 0.1
Polytrichum 1 — 1 0.2
Arctostaphylos-alvar 1 — 1 0.1
Muyrtillus 56 — 56 6.1
Aegopodium 24 6 30 10.0
Rhodococcum 109 — 109 3.8
Hepatica 43 3 46 9.7
Cladonia 33 1 34 0.1
Vaccinium 1 — 1 0.2
Transitional bog 1 1 2.3
Carex-Filipendula 4 — 4 5.1
Carex 6 1 7 0.7
Other — — — 18.7
Total 480 54 534 100.0
+ Anonymous (2017). Yearbook Forest 2016.
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Lohmus (2004). The data on forest site types from
Lohmus’ (1973) original work were also used for
an ordination by Kusmin and Jogiste (2006).
According to Lohmus (1973), the x-axis and z-
axis can be interpreted as soil water table and soil
acidity, respectively (Fig. 4). The y-axis did not
clearly correspond to any soil characteristic. The
humus composition (C/N ratio) and root nutri-
tion were suggested as possible explanations of
the y-axis (Lohmus 1973).

REsuLTs

Recent forest plots had two distribution pat-
terns in the NMDS ordination. About 50% of the
plots were scattered throughout the ordination
space, mirroring the distribution of PF plots.
However, the remaining 50% had unique species
composition and were tightly clustered at the

T T T T T

L
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left side of the ordination and clearly dominated
by hardwoods as indicated by the ordination
vectors (Fig. 5). Vectors for tree species in the
genera Salix, Alnus, and Betula, which are pio-
neer species known to spontaneously regenerate
on abandoned farmland, pointed toward this
cluster. An additional hardwood species not
usually associated with recolonization of aban-
doned farmland, Tilia cordata, was also repre-
sented within the natural afforestation vectors.
A MRPP test revealed significant differences
between PF and RF groups. The factor stand age
(A) was slightly negatively correlated to this
cluster.

Part of the afforested agricultural lands con-
tains sites where coniferous tree species were
planted. This reflects a situation where artificial
regeneration was directed toward restoration of
natural conditions (Jogiste et al. 2017).

— 1.0
I ——1 0.9
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Fig. 4. Three-dimensional ordination of forest vegetation in Estonia by Lohmus (1973). Abbreviations are Aa,
Arcostaphylos-alvar; Ae, Aegopodium; Ab, Alder-birch (eutrophic-mesotrophic) swamp; Af, Alder (eutrophic) fen;
Ca, Calamagrostis-alvar; C, Cladonia; Cr, Carex; Cu, Calluna; Dr, Dryopteris; Eq, Equisetum; Fi, Filipendula; He, Hepat-
ica; My, Myrtillus; Ox, Oxalis; Po, Polytrichum; Rb, Raised (oligotrophic) bog; Rh, Rhodococcum; Tb, Transitional
(mesotrophic) bog; Vu, Vaccinium uliginosum. The red circle indicates the site types with higher representation of

recent forest plots.
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Fig. 5. Nonmetric multidimensional scaling (NMDS) ordination of overstory tree species on 534 Estonian For-
est Research Network plots in the categories permanent forest (PF, crosses) and recent forest (RF, triangles), the
central points of each cloud represented by a plus (+) sign. Vectors represent tree species proportions (abbrevia-
tions listed below), site index, deciduous proportion (DEC), stand age (A), and number of species (Species) with
NDMS analysis. Abbreviations are ACERpla, Acer platanoides; ALNUglu, Alnus glutinosa; ALNUinc, Alnus incana;
CORYave, Corylus avellane; FRAXexc, Fraxinus excelsior; JUNIcom, Juniperus communis; PICEabi, Picea abies; PINU-
syl, Pinus sylvestris; POPUtrem, Populus tremula; QURErob, Quercus robur; SORBauc, Sorbus aucuparia; TILIcor,
Tilia cordata; BETUsp, Betula sp.; LARIsp, Larix sp.; SALIsp., Salix sp.

The RF plots appear to have a higher density in
the most fertile site types in the ordination space
based on ground-layer vegetation (Lohmus 1973):
the Aegopodium, Oxalis, Filipendula, and Hepatica
site types (Fig. 6). Note, however, that no conclu-
sions can be drawn about the fertile Dryopteris site
type, since no plots were located in that type, as it
is relatively rare in Estonia. For comparison, the
area of Lohmus’ original 1973 ordination where
the recent plots occur is circled in red (Fig. 4). The
highly represented Aegopodium site type (most
productive) in the database provides evidence of
agricultural use in the past (Tomson et al. 2018).
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DiscussioN

The hypothesis that artificial legacies of RFs
are of sufficient strength to be apparent in forest
inventory data analyzed via ordination is sup-
ported by the distinct composition of a cluster of
RF sites (Fig. 5). Ordination of species composi-
tion can reveal human impacts (Paulson et al.
2016). The management influence (or natural-
ness) is one possible ordination factor mentioned
by several authors (Curtis 1959, Frey 1973,
Lohmus 1973, Cottam et al. 1978, Paal 1997,
Saudyté et al. 2005, Leito 2008). The distinct
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Fig. 6. Polar ordination of forest site types according to two dominant axes of floristic divergence: soil water
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(Fig. 6. Continued)

JOGISTE ET AL.

table (vertical axis arrow) and acidity (horizontal axis arrow). (A) Forest vegetation arrangement as a result of polar
ordination transformed onto two axes of floristic divergence (Lohmus 1973, 2004). The highest quality site types
occur on the middle right side with high pH and mesic hydric conditions. (B) Recent forest proportion: green = 0%,
light-brown = 0-5%, medium brown = 5-25%, dark-brown >25%. Abbreviations of forest site types as in Figure 4.

cluster of RF plots was associated with the
expected early-successional pioneer tree species
with long-distance seed dispersal and ability to
grow rapidly in full sunlight, including Populus,
Betula, and Alnus species. The negative correla-
tion with stand age (A) also corresponds with
this result. Surprisingly, Tilia cordata was also
associated with spontaneous regeneration in
farmlands. Although this species is not com-
monly thought to be early successional, it does
have moderately long-distance seed dispersal via
wind, and ability to germinate and establish in
full sunlight; although it can tolerate poor sites, it
grows most rapidly on relatively rich, high pH
sites like those in the RF cluster (Fig. 5).

Equally as striking as the cluster of RF with
distinctive broad-leaved composition was the
divergence in composition of RFs—about half of
the RF plots exhibit the same distribution of spe-
cies compositions as the PF matrix within which
they are embedded. This indicated that factors
other than pioneer species status and seed char-
acteristics were responsible for composition of
some RF plots. For example, the appearance of
conifer-dominated stands was evident in the
ordination space between vectors of coniferous
species (Pinus sylvestris and Picea abies) on Fig. 5,
possibly due to management (planting Picea
abies) after cessation of agricultural land use.
Because the Baltic States have influences from
both the central European (planted regeneration)
and Russian (natural regeneration) silvicultural
practices, it is not surprising that some locations
were planted with shade-tolerant, late-succes-
sional conifers. This type of human-made boreal-
ization has also occurred in other parts of the
European hemiboreal zone (Lindbladh et al.
2013). In these circumstances, the artificial legacy
(Jogiste et al. 2017) is comprised of forest struc-
tural features shaped by silviculture (pre-com-
mercial thinning, planting). In addition, some
sites cleared for agriculture probably were small
in area and close to the surrounding PF. Alterna-
tively, some of these locations were on poor sites
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that were abandoned after a short time in agri-
culture (shifting cultivation), allowing rapid
return to conditions similar to the PF.

Stands under PF cover in the Baltic States have
widely varying composition (Figs. 4-6), which
arises from variability in site quality, but also
from a hybrid disturbance regime comprising
natural and human disturbances. These forests
were influenced by management, including
planting and other legacy manipulations (e.g.,
Kangur et al. 2005, Dzerina et al. 2016). Both
anthropogenic and natural disturbances create
temporal changes in forest vegetation composi-
tion (Ilisson et al. 2006, Vodde et al. 2011).
Advance regeneration provides a component
cohort of shade-tolerant species (Metslaid et al.
20054, b, Szwagrzyk et al. 2018), which has also
been mentioned in other boreal or hemiboreal
regions (Valkonen et al. 1998, Girard et al. 2014).
The range of disturbance severities for these
hybrid disturbance regimes also determines the
recovery and resilience mechanisms of the forest
ecosystem (Nagel and Diaci 2006, Kuuluvainen
2009, Swanson et al. 2011, Sass et al. 2018).

Partial damage has been regarded as a succes-
sional mechanism creating a precocious stand
structure (Donato et al. 2012), which is also com-
mon in the Baltic States and helps to create and
maintain the widely varying stand composition
seen in Fig. 5. Furthermore, salvage logging after
natural disturbance (although not part of this
study) is a removal of material legacy that occurs
in the managed forest matrix (Jogiste et al. 2017).
In the context of recent and PFs, salvage of dis-
turbed areas serves as an equalizing factor
because it is applicable and allowed in most
areas: Salvage creates very similar post-distur-
bance forests in either recent or PFs. Still, the dif-
ference between salvage and clearfelling at forest
management rotations creates a variety of lega-
cies on the naturalness continuum for distur-
bances in the Baltic States. Further, partial
salvage is also possible and may mimic interme-
diate disturbance intensity or selective cutting
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methods. Salvage or clearfelling create complex
overlaps in natural and human disturbance: Har-
vest at any time before a natural disturbance
occurs can have a pre-emptive effect and save
commercial timber, whereas salvage is an action
feasible only after disturbance (Frelich et al.
2018). The overall effect of the hybrid human and
natural disturbance regime is that it maintains a
mosaic of diverse stand development and succes-
sional stages across the landscape for PF and
some RFs. The cluster of RF plots with distinct
composition is an exception and, due to its
unique artificial legacy, does not seem to fit
within this dynamic.

A crucial question is: What is the length of this
artificial legacy, or at least how long can it be
detected? Masing (1979) defines forest site types
according to their permanent nature. Different
schools of forest site type ordination have tried
to include dynamic aspects (shorter or longer his-
torical influences) in defining the PF (Karazija
1989, Mahatadze 1989, Manko 1989). Laasimer
(1981) suggested that convergence back to a situ-
ation similar to our PF occurred in a time span of
two forest generations (ca 100 yr), but it depends
on the tree species involved, duration of the pre-
vious artificial legacy and other factors. Distur-
bance return cycles in nearby Russian forests
similar to Baltic forests are about 150 yr (Manko
1989). Tomson et al. (2018) report only minor dif-
ferences of ancient (>200 yr) slash-and-burn sites
in Estonia, when compared to the natural distur-
bance cycle: They are mostly similar to PF.

The antecedent conditions transmitted via
legacies (species and structures preserved from
before previous events) define the concept of eco-
logical memory (Ogle et al. 2015, Johnstone et al.
2016) that we have broadened in the concept of
ecosystem memory to include land use and man-
agement legacies (Jogiste et al. 2017). Although
pre-disturbance stand conditions can determine
ecosystem reactions to disturbances (Kosugi
et al. 2016), RF and PF may differ in their
response to disturbance (Lindbladh et al. 2013,
Gardiner et al. 2016, Thom et al. 2018). Some
studies have found that artificial legacies such as
those found here can last several centuries (Fos-
ter et al. 2003), essentially becoming novel
ecosystems that cannot go back to their original
condition (Stanturf 2015). The idiosyncratic nat-
ure of forests generated and magnified by
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human intervention sets the scene for non-equili-
brium conditions (Mori 2011) and novel ecosys-
tems. Multiple changes in the environment,
including climate change, fluctuating numbers of
invasive species and large, browsing ungulates
add to the contingency of ecosystem develop-
ment, resulting in difficulties for projecting
future forest conditions, or they could also lead
to maintenance of a novel ecosystem (Frelich and
Reich 2010, Frelich et al. 2012, Hall 2018, Stan-
turf et al. 2018). The range of physical and chem-
ical variables of soils indicating high fertility
attracted the types of land use that led to the RFs
with artificial legacies, which may also allow
multiple alternative states and the possible emer-
gence of novel ecosystems.

CONCLUSIONS

The present vegetation carries some distinct
influences from the past (Rackham 1980, Ver-
heyen et al. 2003). Our aim was to gain deeper
understanding of the effects of disturbances by
investigating basic stand variables. We found
evidence of a highly manipulated artificial legacy
of hardwood forests on former agricultural sites
—the distinct cluster of RF points in the ordina-
tion space—which could develop back to typical
hemiboreal mixtures with conifers, or possibly
lead to novel ecosystems.

The forest can be managed without loss of for-
est vegetation, even when human disturbance is
of a stand-replacing nature, such as clear-cutting.
However, disruption of forest cover by land use
change introduces several structural and func-
tional legacy components causing uncertainty
when projecting further changes. The tendency of
hardwood dominance in RF has different causes;
life history traits of pioneer species are seemingly
most important, but initial absence of competing
conifers (possibly entering at later successional
phases) can also be regarded as an artificial legacy.

Legacy manipulation causes ecosystems to
follow trajectories that may be hard to predict
without knowledge of site history, resulting in non-
equilibrium dynamics and possible emergence of
novel ecosystems. Management of legacies drives
the process if we practice silviculture, or carry out
conservation planning or restoration measures (De
Grandpre et al. 2018). Natural resource planning
can be substantially guided by ecosystem legacy
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management unless disturbances become so severe
that legacy strength is overridden.

A warming climate may create such conditions
whereby existing legacies are largely irrelevant.
Increasing dominance by temperate hardwoods
in the hemiboreal zone may be occurring in the
Baltic States. This change may require a shift in
forestry management doctrines toward more
artificial regeneration in order to maintain the
dominant hemiboreal species. Alternatively, the
changed nature of the managed forest may be
accepted, requiring new management strategies.
Under either future scenario, ecosystem legacies
will continue to affect the trajectory of post-dis-
turbance recovery and legacy management will
be an option for managers to direct the recovery.
Therefore, we recommend continued efforts
using potential techniques (pollen analysis, '*C-
dating, historical documentation) to reveal the
links between past land use and current forest
ecosystem structures and function.
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