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Abstract
Introduction  Blackcurrant (Ribes nigrum L.) is an excellent example of a “super fruit” with potential health benefits. Both 
genotype and cultivation environment are known to affect the chemical composition of blackcurrant, especially ascorbic 
acid and various phenolic compounds. Environmental conditions, like temperature, solar radiation and precipitation can also 
have significant impact on fruit chemical composition. The relevance of the study is further accentuated by the predicted 
and ongoing changes in global climate.
Objectives  The aim of the present study was to provide new knowledge and a deeper understanding of the effects of post 
flowering environmental conditions, namely temperature and day length, on fruit quality and chemical composition of 
blackcurrant using an untargeted high performance liquid chromatography–photo diode array–mass spectrometry (HPLC–
PDA–MS) metabolomics approach.
Methods  A phytotron experiment with cultivation of single-stemmed potted plants of blackcurrant cv. Narve Viking was 
conducted using constant temperatures of 12, 18 or 24 °C and three different photoperiods (short day, short day with night 
interruption, and natural summer daylight conditions). Plants were also grown under ambient outdoor conditions. Ripe ber-
ries were analysed using an untargeted HPLC–PDA–MS metabolomics approach to detect the presence and concentration 
of molecules as affected by controlled climatic factors.
Results  The untargeted metabolomics dataset contained a total of 7274 deconvolved retention time-m/z pairs across both 
electrospray ionisation (ESI) positive and negative polarities, from which 549 metabolites were identified or minimally anno-
tated based upon accurate mass MS. Conventional principal component analysis (PCA) in combination with the Friedman 
significance test were applied to first identify which metabolites responded to temperature in a linear fashion. Multi-block 
hierarchical PCA in combination with the Friedman significance test was secondly applied to identify metabolites that were 
responsive to different day length conditions. Temperature had significant effect on a total of 365 metabolites representing 
a diverse range of chemical classes. It was observed that ripening of the blackcurrant berries under ambient conditions, 
compared to controlled conditions, resulted in an increased accumulation of 34 annotated metabolites, mainly anthocyanins 
and flavonoids. 18 metabolites were found to be regulated differentially under the different daylength conditions. Moreo-
ver, based upon the most abundant anthocyanins, a comparison between targeted and untargeted analyses, revealed a close 
convergence of the two analytical methods. Therefore, the study not just illustrates the value of non-targeted metabolomics 
approaches with respect to the huge diversity and numbers of significantly changed metabolites detected (and which would 
be missed by conventional targeted analyses), but also shows the validity of the non-targeted approach with respect to its 
precision compared to targeted analyses.
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Conclusions  Blackcurrant maturation under controlled ambient conditions revealed a number of insightful relationships 
between environment and chemical composition of the fruit. A prominent reduction of the most abundant anthocyanins under 
the highest temperature treatments indicated that blackcurrant berries in general may accumulate lower total anthocyanins 
in years with extreme hot summer conditions. HPLC–PDA–MS metabolomics is an excellent method for broad analysis of 
chemical composition of berries rich in phenolic compounds. Moreover, the experiment in controlled phytotron conditions 
provided additional knowledge concerning plant interactions with the environment.

Keywords  Metabolomics · HPLC–PDA–MS · Flavonoids · Anthocyanins · Flavanols · Blackcurrant · Climate · 
Temperature · Day length

1  Introduction

Blackcurrant (Ribes nigrum L.) is a perennial shrub native 
to central and northern Europe and the Russian Federation. 
It is an important berry crop across the temperate zones of 
Europe, Asia, New Zealand and to a lesser extent in North 
America (Hummer and Dale 2010). The chemical compo-
sition and quality of blackcurrant berries are known to be 
influenced by both cultivar properties and environmental 
conditions (Zheng et al. 2012; Walker et al. 2010; Krüger 
et al. 2011; Vagiri et al. 2013). During the beginning of fruit 
growth, the compounds serving as precursors for second-
ary metabolites are being synthesised. Further, the colour 
appears, softening begins, ascorbic acid accumulates, and 
seed fatty acids are produced. At the ripening stage, sugars 
and phenolic compounds are accumulated, fruits are softer, 
darker, sweeter and more attractive for seed dispersers. Rip-
ening of the fruit is a complex process, where many physi-
ological and functional changes are precisely controlled by 
hormonal and signalling pathways under the given envi-
ronmental conditions (Jarret et  al. 2018). According to 
The Intergovernmental Panel on Climate Change (IPCC) 
the events of extreme weather or climatic conditions will 
be more frequent under the future climate scenarios (IPCC 
2014). Fruits and berries are important components of the 
human diet with potential health benefits, it is assumed that 
climatic disturbances may considerably affect both fruit 
availability and quality (Moretti et al. 2010).

The effects of environmental conditions on berry quality 
in field trials may be studied using distinct growth loca-
tions (Vagiri et al. 2013) or long-term data series (Zheng 
et al. 2012), with both experimental approaches potentially 
leading to similar findings. Accumulation of delphinidin-
3-glucoside in blackcurrants grown in Finland showed a pos-
itive correlation with summer temperature across the years 
(Zheng et al. 2012). These results are in agreement with 
the Swedish study on blackcurrants grown at two latitudinal 
locations: cool temperatures (northern part of Sweden) vs. 
a warmer location (southern part of Sweden) (Vagiri et al. 
2013), and thereby confirm the role of temperature as a fac-
tor influencing the accumulation of individual phenolic com-
pounds in berries. Despite the fact that the environmental 

impact on chemical composition of blackcurrant has been 
studied extensively, the specific effects of individual envi-
ronmental factors on fruit quality are extremely difficult to 
differentiate because of the interrelation of external stimuli 
in field experiments (Krüger et al. 2011; Woznicki et al. 
2015a). Results of experiments focused upon the environ-
mental effects on various fruit quality attributes are often 
contrasting, showing distinct responses not only between 
species, but also among the cultivars and growing sites 
(Zheng et al. 2018). For example, a negative correlation 
between ascorbic acid accumulation in blackcurrant and 
ripening temperature was reported from a field trial con-
ducted in Estonia (Kaldmäe et al. 2013). However, in con-
trast to these results, temperature (April to July) in the years 
1972–2007 was positively correlated with ascorbic acid con-
centration in blackcurrants grown in Scotland (Walker et al. 
2010). In addition, it was observed that significant variations 
in the accumulation of ascorbic acid took place in blackcur-
rants grown during the same season in different locations 
in the UK. Such findings emphasize the high sensitivity of 
blackcurrants to external conditions.

Therefore, our goal was to perform an experiment in con-
trolled phytotron conditions (Figure S1), which allow the 
researcher to differentiate the plant responses to individual 
environmental stimuli, from the uncontrolled environmen-
tal factors that classically limit field experiments. The main 
difficulty in fully controlled experiments with shrubs is to 
obtain unified plant material. Blackcurrant is a suitable spe-
cies for such an approach mainly because of the ability to 
produce single-stemmed plants, which are compact and very 
similar in size (Sønsteby and Heide 2011). The aim of the 
present study was thus to investigate in depth the effects of 
controlled post-flowering temperature and daylength condi-
tions on the accumulation of secondary metabolites using 
an untargeted approach. Untargeted metabolomics is truly 
intended for discovery and is not limited to a pre-determined 
list of metabolites or class of compounds, with the aim to 
expand the breadth of the metabolome (Allwood and Gooda-
cre 2010; Allwood et al. 2011). Data analysis presented here 
is focused mainly on molecules significantly affected by the 
environmental conditions; however, an overview across 
all annotated compounds may shed additional light on the 
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complexity of the blackcurrant metabolome. In addition, 
a brief comparison of two analytical approaches (targeted 
and untargeted) is also presented. A better understanding 
of the impact of environmental factors on the accumulation 
of secondary metabolites may facilitate the improvement of 
production practices and help to enhance future breeding 
strategies for development of new cultivars better suited to 
the future climate.

2 � Materials and methods

2.1 � Plant growth and sample collection

Raising and cultivation of blackcurrant plants (cultivar 
Narve Viking from the Norwegian breeding program) and 
the physical conditions during the experiment are explained 
in detail in Woznicki et al. (2015b). In brief, during the last 
3 weeks of berry maturation, the plants were exposed to con-
stant temperatures of 12, 18, and 24 °C (± 1 °C) combined 
with the following photoperiodic conditions: (1) natural long 
summer day (LD), ca. 18 h (natural LD), (2) 10 h artificial 
short day (SD), and (3) 10 h SD + 3 h night interruption 
(SD + NI). Both treatments 1 and 3 were perceived as long 
day conditions by the plants, but the former also provided 
a 9% larger daily light integral (total daily photosynthetic 
active radiation). On the other hand, by using low intensity 
incandescent lamps for the night interruption (approximately 
7 μmol quanta m−2 s−1), the daily light integral varied by 
less than 0.5% between treatments 2 and 3, which represent 
the true photoperiodic test. Plants were also grown outdoors 
in pots (as a control) under ambient summer conditions 
(59°40′N). Berries were harvested when fully ripe as judged 
by berry softness and visual assessment of colour. Berries 
from one cluster were harvested from the mid-part of two 
plants into a 50 mL tube and immediately frozen in liquid 
nitrogen and stored at − 80 °C. The experiment design was 
fully factorial with a split-plot design, with temperatures as 
main plots and photoperiod as a subplot. The experiment 
was replicated with four randomised blocks, each compris-
ing two blackcurrant plants on a separate trolley, giving eight 
plants per treatment.

2.2 � Chemicals

Unless otherwise stated all solvents were of HPLC grade 
and JT Baker brand (Scientific Chemical Supplies, UK), for-
mic acid was of mass spectrometry grade (Fisher Scientific, 
UK), morin-hydrate (99% purity) was obtained from Sigma-
Aldrich UK, all other reference standards, unless otherwise 
stated, were obtained from LGC (UK) or extrasynthese (FR). 
For targeted analysis: Cyanidin-3-glucoside was obtained 
from polyphenols AS (Sandnes, Norway). Acetonitrile was 

obtained from VWR International (Fontenay-sous-Bois, 
France), and water was of Milli-Q quality (Millipore Corp., 
Bedford, MA, USA).

2.3 � Untargeted HPLC–PDA–MS extraction

Freeze dried blackcurrant fruits were homogenised by pes-
tle and mortar. 9 mL of extraction solvent (75% methanol: 
24.8% HPLC grade water: 0.2% MS grade formic acid) 
was added to 300 mg (297–303 mg) of fruit and the sam-
ple vortex mixed for 15 s. The samples were next agitated 
for 30 min with a Heidolph multireax shaker set to speed 
10 and centrifuged at 3220×g for 10 min with an Eppen-
dorf 5810R at 4000 rpm and 3 °C (rotor A-4-62). 500 µL 
of supernatant was transferred to each of two 2 mL micro-
centrifuge tubes (Eppendorf Safe-Lock) per sample extract 
and dried by speed vacuum concentration at 30 °C for 6 h 
using the MiVac Duo concentrator system (S.P. Scientific, 
UK). Preparatory blank extracts were prepared identically, 
as were 12 extracts of quality assurance (QA) samples that 
contained an equal mix of all blackcurrant sample materials. 
Prior to HPLC–PDA–MS analysis, the first set of samples 
were reconstituted in 250 µL of 20% methanol: 80% water 
containing 0.5 mM morin to serve as an internal stand-
ard, the samples were shaken for 30 min at 2000 rpm on 
an Ika Vibrax VXR shaker platform, and centrifuged for 
10 min at 3 °C and at 18,407×g with an Eppendorf 5424R 
at 14,000 rpm (rotor FA-45-24-11). The extract supernatants 
were next filtered with 0.45 µm PTFE filter vials (Thomson 
single step) and transferred to 2 mL HPLC vials with pre-slit 
caps (Thermo-Fisher, Chromacol 2SVW and 9-SCK(B)-ST1 
X, respectively). The samples were stored in the autosampler 
at 10 °C and analysed within 48 h of reconstitution in posi-
tive electrospray ionisation (ESI) mode, after which the ESI 
source spray cone and ion tube were cleaned, the second 
set of samples were reconstituted and again analysed within 
48 h of reconstitution in ESI negative mode.

2.4 � Untargeted HPLC–PDA–MS analysis

HPLC separations were performed with a Thermo Accela 
600 HPLC system coupled with an Accela PDA detector 
(Thermo-Fisher Ltd. UK). The HPLC was operated at a 
flow rate of 300 µL min−1, the column and guard column 
(Synergi C18 Hydro-RP 80 Ä, 150 × 2.0 mm, 4 µm particle 
size; Phenomenex Ltd.) were maintained at a temperature 
of 30 °C. The solvent A, HPLC grade water, and solvent 
B, HPLC grade acetonitrile, were acidified with 0.1% [v/v] 
MS grade formic acid. A sample injection volume of 10 µL 
was employed in full-loop mode. The gradient programme 
was as follows: hold 2% B 0–2 min, 2–5% B 2–5 min, 
5–45% B 5–25 min, 45–100% B 25–26 min, hold 100% B 
26–29 min, 100–2% B 26–30 min, hold 2% B 30–35 min. 
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Autosampler syringe and line washes were performed 
with 8:2 acetonitrile:water. The HPLC column eluent was 
first monitored by the Accela PDA detector where spectra 
were collected in wavelength/absorbance mode from 200 
to 600 nm with a filter bandwidth and wavelength step of 
1 nm, the filter rise time was 1 s, the sample rate was 5 Hz. 
Additionally three channel set points were employed, Chan-
nel A 280 nm, Channel B 365 nm, Channel C 520 nm, with 
a bandwidth of 9 nm and a sample rate of 10 Hz.

The PDA detector eluent was next transfered to a Thermo 
LTQ-Orbitrap XL mass spectrometry system operated under 
Xcalibur software (Thermo-Fisher Ltd. UK). Mass spectra 
were primarily collected in full scan mode (m/z 100–2000) 
at a mass resolution of 30,000 (FWHM defined at m/z 400) 
within the FT detector for all samples. Two further methods 
were applied to obtain ion trees by performing data-depend-
ent analysis (DDA) at MS2 and MS3 levels for the mixed 
QA samples (Mullard et al. 2015). The first method applied 
a primary full scan event within the FT, followed by a sec-
ondary scan event within the LTQ-IT to collect MS2 CID 
fragmentation spectra for the top three most intense ions 
as defined within the preliminary full MS scan. The second 
method was identical, but applied a further tertiary MS scan 
event where the top three most intense ions detected in each 
MS2 spectrum, were taken forward for further CID fragmen-
tation and MS3 collection within the LTQ-IT. Helium was 
applied as a collision gas for CID at a normalised collision 
energy of 45%, a trapping window width of 2 (± 1) m/z was 
applied, an activation time of 30 ms and activation Q of 
0.25 were applied, only singly charged ions were selected 
for DDA, isotopic ions were also excluded. The prelimi-
nary full scan event within the FT generated ‘profile’ mode 
spectral data, whereas the LTQ-IT MS2 and MS3 data were 
collected in ‘centroid’ mode. To obtain MS2 and MS3 data 
for as broad range of ions as possible, the DDA MS2 and 
MS3 methods can be applied several times over restricted 
mass ranges (e.g. 100–400 m/z; 400–500 m/z; 500–600 m/z; 
600–700 m/z; 700–800 m/z; 800–1000 m/z; 1000–2000 m/z).

A scan speed of 0.1 s and 0.4 s were applied in the LTQ-
IT and FT-MS respectively. The Automatic Gain Control 
was set to 1 × 105 and 1 × 106 for the LTQ-IT and FT-MS 
respectively. Prior to the analytical run the LTQ-IT and 
FT-MS were calibrated with the manufacturers recom-
mended calibration mixture and procedures. The following 
settings were applied to ESI: spray voltage − 3.5 kV (ESI−) 
and + 4.5 kV (ESI+); sheath gas 60; aux gas 30; capillary 
voltage − 35 V (ESI−) + 35 V (ESI+); tube lens voltage 
− 100 V (ESI−) and + 100 V (ESI+); capillary temperature 
280 °C; ESI probe temperature 100 °C. For the first 2 min 
of analysis the eluent flow was directed to waste, whereas 
from 2 to 29 min the eluent was directed to the MS detector, 
before being directed back to waste between 29 and 35 min. 
The samples were analysed in a completely randomised 

order as two independent analytical blocks respective of 
ESI positive and ESI negative polarities. For each analyti-
cal block, initially eight injections of QA sample were per-
formed for LC–MS system conditioning, after which three 
further injections of QA sample were performed, followed 
by six injections of experimental samples and a further QA 
injection. This was repeated until all samples were analysed, 
finally the analytical block was concluded with a further 
two QA injections. A control blank sample was analysed at 
the start and end of the analytical block, which was finally 
concluded by collection of the DDA MS2 and MS3 profiles.

2.5 � Untargeted HPLC–PDA–MS data processing 
and peak annotation

The HPLC–PDA–MS raw data profiles were first converted 
into an MZML centroid format within the Proteowizard 
(http://prote​owiza​rd.sourc​eforg​e.net/) MSConvert software 
package. Each MZML based three-dimensional data matrix 
(intensity × m/z × time − one per sample) was converted (or 
deconvolved) into a vector of peak responses, where a peak 
response is defined as the sum of intensities over a window 
of specified mass and time range (e.g. m/z = 102.1 ± 0.01 and 
time = 130 ± 10 s). In this experiment the deconvolution was 
performed using the freely available XCMS online package 
(https​://xcmso​nline​.scrip​ps.edu/). XCMS online was oper-
ated with the following parameter set points: feature detec-
tion; method—CentWave; mass error 5 ppm, minimum and 
maximum peak width 10 and 60 s respectively, mzdiff 0.01, 
S/N threshold 6, integration method 1, prefilter peaks 3, pre-
filter intensity 50,000, noise filter 100,000: RT correction; 
method—Obiwarp, profstep 1: Alignment; minfrac 0.5, mz 
width 0.015, bw 5, min samp 1, max samp 100: Annotation; 
Search for isotopes + adducts, mz absolute error 0.015, ppm 
error 5.

The XCMS deconvolution results in the production of 
a Microsoft Excel based XY matrix containing the paired 
RT and m/z of each feature, along with the peak intensity in 
each profiled sample, and where provided adduct and iso-
tope annotations for each m/z. Applying a set of workflows 
known as PutMedID (Brown et al. 2009; Allwood et al. 
2013), metabolite identifications were made based upon the 
accurate mass full MS data applying a library of known plant 
metabolites obtained from the Plant Metabolic Network 
PlantCyc database (http://www.plant​cyc.org) in addition to 
the Manchester Metabolomics Database (MMD: http://dbkgr​
oup.org/MMD/). Further to performing accurate mass based 
annotation, the molecular formulae presented for each fea-
ture were additionally validated based upon an isotopic peak 
ratio check performed manually within Xcalibur. The PDA 
absorbance was also checked against available literature and 
an inhouse database of soft fruit phenolic compounds, the 
MS2 and MS3 fragmentation spectra were also matched 

http://proteowizard.sourceforge.net/
https://xcmsonline.scripps.edu/
http://www.plantcyc.org
http://dbkgroup.org/MMD/
http://dbkgroup.org/MMD/
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to the inhouse database of soft fruit phenolic compounds. 
Where reference standards were available, HPLC RT, high 
resolution (HR)MS accurate mass, MS2 and MS3 spectra, 
were all matched to those of the sample extracts, thus pro-
viding an MSI level 1 identification (Sumner et al. 2007). 
Where MS2 and MS3 data were not captured for a given 
blackcurrant metabolite within this studies sample set, MS2 
and MS3 data acquired with previous blackcurrant sample 
populations were alternatively considered.

2.6 � Statistical analysis of untargeted HPLC–PDA–
MS datasets

Principal components analysis (PCA) was performed with 
the SIMCA-P + 12.01 64 bit statistics package. Two PCA-X 
models were generated based upon the peak ratio (normal-
ised to morin) dataset, the first for the dataset inclusive 
of QA samples, the second for the dataset after exclusion 
of blank and QA samples. Prior to PCA, missing values 
were automatically replaced with a value representative of 
one-third of the minimum peak ratio across the entire data 
matrix. PCA scores plots were generated for all possible 
combinations of PC1-PC5. Complementary PCA loadings 
plots were also generated for the same PC combinations. The 
variable identifiers applied within the PCA loadings plots 
match those given in Table S1 and Table S2. In addition to 
PCA, univariate statistical analyses were also performed. 
A non-parametric significance test based upon two-way 
ANOVA (i.e. the Friedman test) was performed within the 
MatLab 9.3 2017b software package, a false discovery rate 
(FDR) correction of 5% was applied based upon the Ben-
jamini–Hochberg procedure. Univariate comparisons were 
made between blackcurrant fruits grown at 12 °C, 18 °C, 
24 °C and ambient temperature, as well as between the 
variants in daylength (LD, SD, and SD + NI). In addition 
to conventional PCA, a multiblock hierarchical (H)PCA 
model was generated according to the methods of Biais 
et al. (2009), the blocking design investigated the effect of 
day length (LD, SD, and SD + NI) without regard to cultiva-
tion temperature. Metabolite features that were prominent 
within the conventional PCA loadings as well as showing 
univariate significance between the temperatures were con-
sidered as metabolites significantly changed under the dif-
ferent cultivation temperatures. Metabolite features that were 
prominent within the multiblock HPCA loadings for the day 
length block design, as well as showing univariate signifi-
cance between the different day lengths, were considered as 
metabolites significantly changed by the day length regime.

2.7 � Targeted HPLC–PDA–MS analysis

The targeted HPLC–PDA–MS analysis is previ-
ously described within Woznicki et  al. (2016). Briefly, 

blackcurrants (30 g) were homogenized with a blender 
(Braun MR400, DE), and an aliquot of the homogenate (3 g) 
was extracted with 1 mM HCl (37%) in methanol (30 mL), 
followed by sonication for 15 min (Bandelin SONOREX 
RK 100, Bandelin Electronic GmbH & Co., DE). After cen-
trifugation, the liquid samples were stored at − 20 °C until 
analysed. The extract of phenolic compounds was filtered 
through a Millex HA 0.45 µm filter (Millipore Corp., US) 
before analysis on an Agilent 1100 series HPLC system 
(Agilent Technologies, DE) equipped with an autosampler 
cooled to 4 °C, a photo diode array detector, and an MSD 
XCT ion trap mass spectrometer fitted with an ESI inter-
face. Chromatographic separation was performed on a Syn-
ergi 4 μm MAX RP C12 column (250 mm × 2.0 mm i.d.) 
equipped with a 5 μm C12 guard column (4.0 mm × 2.0 mm 
i.d.; Phenomenex, US), with mobile phases consisting of 
A, formic acid/water (2/98, v/v), and B, acetonitrile. The 
phenolic compounds were identified based on their UV–vis 
spectra (220 − 600 nm), mass spectra and RT relative to 
external standards, and comparison with previous reports 
on phenolic compounds in blackcurrants. The phenolic com-
pounds were classified based on their characteristic UV–vis 
spectra and quantified by external standards. Anthocyanins 
were quantified as cyanidin-3-glucoside at 520 nm. All 
results were expressed as µg per g DW.

3 � Results and discussion

3.1 � HPLC–PDA–MS blackcurrant fruit profiles, 
metabolite annotation, data complexity 
and reproducibility

HPLC–PDA–MS profiling of blackcurrant fruit produces 
extremely rich metabolite profiles, when the HPLC polar 
front and the non-polar wash are diverted to waste, as in this 
study, the profiles are dominated in ESI positive mode by 
flavonoids such as anthocyanins (Fig. 1a) and in ESI nega-
tive mode by flavonoids such as kaempferols and quercetins 
(Fig. 1b). The deconvolution of these HPLC–PDA–MS pro-
files within XCMS online, results in the generation of highly 
information rich datasets. After the removal of features elut-
ing within the first 2 min and final 6 min of the chromato-
gram, as well as removal of peaks that were dominant within 
blank sample extracts (more than 2× more intense than the 
peaks highest intensity within a biological sample) (Di 
Guida et al. 2016), the ESI positive mode dataset contained 
a total of 3203 deconvolved RT-m/z pairs, and the ESI nega-
tive mode dataset a total of 4071. The datasets were next 
subjected to automated peak annotation workflows within 
PutMedID (Brown et al. 2009). Pearson correlations were 
first calculated within a ± 10 s moving RT window, peaks 
that showed a high level of Pearson correlation (greater than 
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0.8) were grouped as m/z features that were likely associ-
ated with the same compound (i.e. an m/z group). Accurate 
mass differences between m/z within each peak group were 
next calculated to allow the annotation of the parent m/z, 
isotope and adduct ions, as well as common in-source frag-
ments. The neutral accurate mass is next calculated for each 
RT-m/z pair and in turn matched to a library of possible 

molecular formula(s) and associated metabolite name(s). 
Where the same neutral accurate mass is calculated across 
multiple adducts in both the positive and negative ion modes 
for a given metabolite, much higher levels of confidence are 
instilled that the adduct ions have been accurately annotated 
and that the correct neutral accurate mass has been attained.

Fig. 1   Metabolite annotation in blackcurrant fruit. a An example of an MSI level 1 identified compound, delphinidin-3-O-rutinoside, in ESI 
positive mode. b An example of an MSI level 1 identified compound, Rutin, in ESI negative mode. BPC base peak chromatogram



Application of HPLC–PDA–MS metabolite profiling to investigate the effect of growth temperature…

1 3

Page 7 of 17     12 

Annotation of metabolites based upon high resolution 
(HR)MS accurate mass data provides an initial indication of 
potential identification(s) and a match to potential molecu-
lar formula(s), as defined by the metabolomics standards 
initiative (MSI) as being a level 2 based identification, or 
in the case of m/z matched to multiple molecular formulas 
and identifications but within a single class of metabolites 
as a level 3 identification, with unknown features classed 
as level 4 (Sumner et al. 2007). Identification of m/z fea-
tures based upon accurate mass alone, does not account for 
the HPLC RT of the compound, the UV–vis absorbance, 
or the MS2 and MS3 spectral data. Blackcurrant being a 
sample matrix that is particularly rich in anthocyanins and 
flavanols, can be extremely challenging when it comes to 
metabolite identification, especially when applying accurate 
mass based annotation alone. This is due to the blackcur-
rant matrix containing very high numbers of isomeric com-
pounds that are annotated with the same molecular formula 
and matched to the same metabolite identifications through 
such an approach. Only by taking other orthogonal data such 
as the RT, UV–vis absorbance, MS2 and MS3 ion trees, 
in both positive and negative ion modes, into account, is it 
possible to characterise such compounds with higher confi-
dence. Limitations in the availability of phenolic reference 
standards is a further restriction to successful metabolite 
identification in blackcurrant and other berry fruits.

In this study, once the accurate mass based annotation 
and molecular formula were proposed for each detected 
RT-m/z pair, the molecular formulae were further validated 
based upon an isotopic peak ratio check performed manu-
ally within Xcalibur, the UV–vis absorbance information as 
well as the MS2 and MS3 fragmentation spectra were also 
matched to an inhouse database of soft fruit phenolic com-
pounds. Where reference standards were available, HPLC 
RT (within ± 0.2 min), HRMS accurate mass (to four deci-
mal places), MS2 and MS3 spectra (unit mass and peak ratio 
match), were all matched to those of the sample extracts 
(run under identical HPLC conditions), thus providing an 
MSI level 1 identification (Fig. 1a, b). Where MS2 and MS3 
data were not captured for a given blackcurrant metabolite 
within this study, data acquired with previous blackcurrant 
sample populations analysed under identical conditions were 
alternatively considered. Where a given compound ionised 
in both negative and positive ion modes and different adduct 
species were observed for each, the MS2 and MS3 spec-
tral data for each ion species were manually assessed and 
compared. Where data for multiple ion modes and adducts 
complimented and corroborated each other, much greater 
confidence was gained that the identification was precise. 
One example where comparing the MS2 and MS3 ion trees 
between ionisation modes aided annotation was in the case 
of the anthocyanin, petunidin-3-O-rutinoside, the ion trees 
and neutral losses were in this case different between ion 

modes, but still each corroborated the overall compound 
structure and co-aided in making the final identification. 
Collection of spectral trees, or at least data to a greater MS 
level than MS2, is essential to identify complex flavanoid 
structures, in most cases MS2 provides little information 
beyond the mass of the compounds sugar moiety, with MS3 
being required to fragment the compounds core structure 
and reveal sub-structural information. However, even ion 
trees and high levels of MS analysis are not always enough 
to make an MSI level 1 identification, for example, multi-
ple flavonoids of identical core structure, but with different 
C6 sugar moieties, or the same sugar moiety but in differ-
ent bond positions exist in nature. To be able to differenti-
ate such isomers successfully, either extremely high levels 
of MS analysis (MS4–10) are demanded, or a more likely 
requirement is the isolation of the target compound through 
fractionation followed by 2D-NMR analyses, especially 
in the case of defining bond position. Post annotation, all 
grouped RT-m/z pairs, whether a compound identification 
had been achieved or not, were taken forward, non-grouped 
low intensity RT-m/z pairs which could not even be cor-
related to a single isotopic peak, were not taken forward. 
Finally, within each dataset, the highly correlated grouped 
m/z were further filtered to remove redundant isotope and 
adduct features, thus further assisting in reducing data com-
plexity and aiding downstream interpretation. The filtered 
ESI positive and negative mode datasets contained 199 and 
350 RT-m/z pairs, respectively.

The positive and negative ESI datasets were then com-
bined into a single XY matrix, the raw integrated peak areas 
were normalised to the M+H or M−H signal of the morin 
internal standard, thus providing a peak response ratio for 
each feature. Since morin is non-endogenous to blackcurrant 
but is representative of the flavanoid classes of compounds 
detected within soft-fruit species, it is routinely applied as an 
internal standard within our studies. The 549 annotated RT-
m/z pairs were next quality assured, RT-m/z pairs showing 
a greater than 20% relative standard deviation (RSD) across 
the 11 injections of QA sample within the ESI positive and 
negative mode analytical blocks, were filtered. In addition 
to QA, the RT-m/z pair annotations were finally manually 
checked and any features deemed to be in-source fragments 
were further filtered out. The QA procedure filtered a total 
of 48 RT-m/z pairs, with a further 32 RT-m/z pairs deemed 
as being in-source fragments also being filtered. Following 
these procedures, a total of 469 endogenous blackcurrant 
compound features were taken forward to statistical analysis 
(Table S1; Table S2): 53 had been identified to MSI level 
1 based upon RT, HRMS accurate mass, MS2 and MS3 
matching to authentic reference standards either within this 
study or previous inhouse blackcurrant studies; 87 had been 
identified to MSI level 2 by matching of HRMS accurate 
mass data; 15 were classed as level 2+ where in addition 
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to an HRMS accurate mass match, the MS2 and MS3 data 
fitted the proposed compounds structure or matched refer-
ence MS2 spectra within the MassBank database (https​://
massb​ank.eu/MassB​ank/), but where reference standards 
were unavailable for confirmation; finally, 221 RT-m/z pairs 
were classed as MSI level 3 identifications where a feature 
could only be broadly identified within a class of metabo-
lites or matched to multiple isomers and 93 were MSI level 
4 unknowns.

3.2 � Statistical analysis of HPLC–PDA–MS 
blackcurrant fruit profiles

As a first step to uncovering which of the metabolites (RT-
m/z pairs) were significantly different under the various 
growth temperature and day length regimes, a conventional 
PCA model was generated based upon the quality assured 
dataset containing 469 endogenous blackcurrant metabo-
lites. The first PCA model was inclusive of all samples 
including the quality assurance profiles, but not the blank 
profiles to prevent skewing of the model (Fig. 2a). The 
centralised and co-clustered QA sample profiles within the 
PC1 × PC2 scores plot at (0,0) (Fig. 2a) is indicative of a 
very high-quality dataset. A second PCA model was gen-
erated where the quality assurance samples were excluded 
(Fig. 2b). Within the second model, PC1 accounted for 
33.5% total explained variance (TEV) and PC2 accounted 
for 17.4% TEV. The major factor influencing the model is 
that of growth temperature, with the fruits matured at 12, 18 
and 24 °C under controlled conditions being linearly sepa-
rated from the positive to the negative axis of PC1, the fruits 
grown in ambient conditions were distinguished from those 
cultivated under controlled conditions along the PC2 axis 
(Fig. 2b). The PC1 loadings associated with blackcurrant 
metabolite changes with increasing cultivation temperature, 
as well as the PC2 loadings distinguishing ambiently cul-
tivated fruit from control cultivated, were extracted from 
the PCA loadings plot for the second PCA model (Fig. 2c; 
refer to Table S1 and Table S2 for metabolite identifica-
tions associated with the unique identifiers applied within 
the PCA loadings plot). The extracted PCA loadings were 
only considered as statistically significant if they also passed 
a univariate significance test (Friedman test) following a 5% 
FDR correction (Table S1 and Table S2). A total of 365 
metabolites were deemed to be significant with respect to 
cultivation temperature based upon the Friedman test, 354 
of which were also selected within the PCA loadings and 
were further investigated. In addition to conventional PCA, 
a multiblock HPCA model was generated according to the 
methods of Biais et al. (2009), with a single blocking state-
ment investigating the effect of day length [natural long 
summer day (LD), 10 h artificial short day (SD), and 10 h 
SD + 3 h night interruption (SD + NI)], without regard to 

cultivation temperature. The super scores and individual 
block scores plots for PC1 × PC2 are presented in Fig. 2d, e, 
respectively. Based upon the HPCA loadings, a total of 18 
metabolites were found to be regulated differentially under 
the different day lengths, all 18 metabolites also passed the 
univariate significance test (Friedman test) following 5% 
FDR correction (Table S1 and Table S2).

3.3 � Metabolites up‑regulated under high 
cultivation temperature

Based upon the 354 metabolites that were statistically sig-
nificant within the conventional PCA loadings (Fig. 2b, c; 
Table S1; Table S2) and which also passed the Friedman 
significance test, upon further inspection, 100 annotated 
metabolites showed linear step-wise increases in-line with 
increasing cultivation temperature. The 100 metabolites that 
increased in concentration with increasing cultivation tem-
perature represented a diverse range of chemical classes, 
inclusive of a number of amino acids, organic acids and fatty 
acids, as well as a large number and diversity of polyphe-
nolic compounds largely representing flavanols, anthocya-
nins, catechins, terpene derivatives and low MW phenolic 
acids and derivatives (Fig. 3; Figure S2).

Among all the metabolites upregulated by cultivation 
temperature, the response of phenylalanine seems to be 
especially interesting with regard to the secondary metab-
olism of blackcurrant. This α-amino acid is the primary 
precursor in the synthesis of flavonoids. Phenylalanine is 
converted to cinnamic acid by the enzyme phenylalanine 
ammonia-lyase (Jaakola and Hohtola 2010). Whilst many 
anthocyanins showed significant differences between culti-
vation temperatures, only a few anthocyanins showed strong 
linear responses across the temperature gradient during the 
phytotron experiment. This indicates that the availability of 
phenylalanine as the precursor compound is not the limit-
ing factor on the efficiency of the flavonoid biosynthesis 
pathway. In addition, it is well documented, that antho-
cyanin accumulation is highly correlated with sugar con-
centration in fruits (Agasse et al. 2009). Dai et al. (2014) 
tried to disentangle the physiological relationship between 
sugars and anthocyanin accumulation, and, surprisingly, 
observed that the concentration of phenylalanine decreased 
together with the increasing concentration both of sugars and 
anthocyanins during in vitro experiments on grapes. This 
result agrees with our study on blackcurrant, where berries 
grown in higher temperatures had lower sugar concentration 
(Woznicki et al. 2017), and as discussed above, had a higher 
concentration of phenylalanine (Fig. 3).

Tryptophan is another amino acid that was upregulated 
under higher ripening temperatures (Fig. 3). The two-step 
conversion of tryptophan to indole-3-acetic acid (IAA, the 

https://massbank.eu/MassBank/
https://massbank.eu/MassBank/
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main naturally occurring auxin) is a key step within the 
auxin biosynthesis pathway that plays an essential role 
in many developmental processes. Exogenous application 
of tryptophan increases the auxin level in plant tissues 
(Mustafa et al. 2018). In addition, auxins are known to 
be repressors of ripening as observed in grapes (Ziliotto 
et al. 2012). Interestingly, Woznicki et al. (2015b) showed 

an inhibited process of ripening (colouring) of blackcur-
rants with increasing growth temperature. It can be specu-
lated, that there is a relationship between increased tryp-
tophan accumulation under increased growth temperature, 
auxin production and ripening of the berries during the 
experiment.
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Fig. 2   Multivariate statistical analysis of HPLC–PDA–MS non-
targeted profiles. a Conventional PCA scores plot inclusive of qual-
ity assurance samples. b Conventional PCA scores plot with quality 
assurance samples excluded. c Conventional PCA loadings plot with 
quality assurance samples excluded (please refer to Table S1 and S2 
for metabolites associated with unique reference numbers). d Multi-

block hierarchical (H)PCA super-scores plot. e Multiblock hierar-
chical (H)PCA block-scores plots based upon daylength condition. 
Natural, 10 h, 10 h + 3 h, refer to the following daylength condition 
descriptions, (1) natural long summer day (LD), ca. 18  h (natural 
LD), (2) 10 h artificial short day (SD), and (3) 10 h SD + 3 h night 
interruption (SD + NI), respectively
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Fig. 3   Bar charts of select metabolites that were elevated under increased growth temperatures. Error bars represent the standard error
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3.4 � Metabolites up‑regulated under low cultivation 
temperature

Taking into consideration the 354 metabolites that were 
statistically significant within the conventional PCA load-
ings (Fig. 2b, c; Table S1; Table S2) and which also passed 
the Friedman significance test, upon further inspection, 42 
annotated metabolites showed linear step-wise decreases in 
concentration in-line with increasing cultivation tempera-
ture. The 42 metabolites that decreased in concentration with 
increasing cultivation temperature (Fig. 4, Figure S3), as for 
those that increased in concentration with increasing cultiva-
tion temperature (Fig. 3, Figure S2), represented a diverse 
range of chemical classes. Interestingly, the accumulation of 
the two most abundant anthocyanins in blackcurrant (delphi-
nidin-3-O-rutinoside and cyanidin-3-O-rutinoside), which 
are representative of more than 60% of the total anthocya-
nins, are first slightly elevated between 12 and 18 °C, before 
being strongly reduced at the highest ripening temperature 
of 24 °C (Fig. 4).

Similarly, a strong reduction of anthocyanin accumu-
lation under 35 °C heat stress was observed in grapes, as 
a result of inhibition of mRNA transcription (Mori et al. 
2007). It is known that high ripening temperature can be a 
suppressing factor for the expression of key genes control-
ling anthocyanin biosynthesis, such as CHS (chalcone syn-
thase), ANS (anthocyanidin synthase), and UFGluT (UDP-
glucose:flavonoid 3-O-glucosyltransferase) (Ubi et al. 2006). 
Another reason for lower accumulation of those metabolites 
under the highest temperature regime might be the degrada-
tion of anthocyanins, which was observed previously in the 
grape cultivars Malbec and Bonarda when cultivated under 
high temperature conditions (de Rosas et al. 2017).

Many quercetin derivatives showed lower accumulation 
under increased ripening temperature (Fig. 4). The relation-
ship between temperature during ripening of the berries and 
flavanols profiles has been less extensively studied. How-
ever, Cohen et al. (2008) observed, in agreement with our 
results, a higher proportion of flavanols with di-hydroxy-
lation, as quercetin, in the cv. Merlot grape under cooler 
ripening conditions when compared with a higher control 
temperature.

3.5 � The effect of ambient versus controlled growth 
conditions

For further comparisons of growth temperature and day-
length, the experimental design also took into consideration 
the effect of growing blackcurrant fruits in ambient con-
ditions compared to the controlled growth system. In our 
recent paper (Woznicki et al. 2015b), comparison between 
average daily mean outdoor (ambient) temperatures during 
the entire experimental period and constant temperatures 

in the phytotron compartments during fruit ripening is pre-
sented. Interestingly, it was discovered that cultivating the 
blackcurrant fruits in ambient as opposed to controlled con-
ditions resulted in a further 34 annotated metabolites, which 
again represented a diverse range of chemical classes, being 
of far higher concentration under ambient than controlled 
cultivation conditions (Fig. 5a, Figure S4). The anthocyanins 
were the most represented chemical class and in some cases 
could double or more in concentration when the blackcurrant 
fruits were cultivated ambiently. It is known that accumu-
lation of anthocyanins is mediated by UV-B radiation by 
affecting the phenylalanine ammonia-lyase enzyme activity, 
a key enzyme in the flavonoid biosynthesis pathway (Jaakola 
and Hohtola 2010). In addition, epidermal accumulation of 
flavonoids, which act as protecting agents against the harm-
ful effects of UV-B radiation, is promoted by the radiation 
itself (Treutter 2006). Therefore, one of the reasons for 
higher concentration of the anthocyanins in berries matured 
under the outdoor conditions compared to the phytotron, 
might be the significant UV-B radiation blocking properties 
of the phytotron glass cover. Anthocyanin biosynthesis and 
accumulation in fruits is also sensitive to day–night tempera-
ture fluctuations. It was shown that a single night of chilling 
temperature enhanced the transcription of MYB10 factor 
and the biosynthesis of anthocyanins in apples (Lin-Wang 
et al. 2011). Together with the UV–filtering effect of the 
phytotron glass cover, this mechanism might have played 
an important role in generating the higher accumulation of 
anthocyanins under outdoor conditions.

3.6 � The effect of daylength

To investigate the effect of day length (natural LD, 10 h SD, 
10 h SD + NI), a multiblock HPCA model was developed 
(Biais et al. 2009) where the blocking statement separated 
each cultivation temperature group (12, 18, 24 °C) with the 
aim of identifying similar patterns between the day length 
variants. Based upon the HPCA loadings, a total of 18 
metabolites were found to be regulated differentially under 
the different day lengths, all 18 metabolites also passed the 
univariate significance test (Friedman test) following 5% 
FDR correction (Fig. 5b, Figure S5). Due to the design of 
the experiment, where the largest effects are observed for 
temperature treatments, it is challenging to differentiate 
the clear effects of daylength treatments. However, some 
compounds were affected similarly by daylength treatment 
regardless of temperature conditions. For example, accu-
mulation of naringen glucoside, a flavonoid with potential 
health benefits commonly found in citrus fruits (Gorinstein 
et al. 2005; Yáñez et al. 2007), is suppressed in blackcurrant 
by natural long day Nordic summer conditions at all tem-
peratures (Fig. 5b). In general, it is known that high levels 
of solar radiation tend to increase flavonoid concentration 
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in fruits, although high variation in response of flavonoids 
to light has been observed between different fruit species 
and even between cultivars within species (Zoratti et al. 
2014). Interaction of light conditions with other environmen-
tal factors can also change the response markedly (Zoratti 
et al. 2014). An intriguing accumulation pattern was also 
observed for pantothenic acid. This important vitamin (B5) 
seems to be relatively stable across the treatments except 
for in fruit housed within the artificial daylength conditions 
provided by night interruption using incandescent lamps 
(Fig. 5b). It can be hypothesised that the high proportion of 
far-red radiation of this light source might affect the biosyn-
thesis of pantothenic acid, resulting in higher accumulation 
of this vitamin in the berries.

3.7 � A comparison of non‑targeted HPLC–PDA–MS 
profiling and targeted HPLC–PDA–MS

After extraction of detailed results obtained from the cultivar 
Narve Viking (Woznicki et al. 2016; data presented here is 
previously unpublished), it is possible to perform a compara-
tive analysis of the two analytical approaches, targeted and 
untargeted metabolomics analysis. Comparison of the three 
most abundant anthocyanins in blackcurrant (cyanidin-3-O-
rutinoside, delphinidin-3-O-glucoside and delphinidin-3-O-
rutinoside) shows an almost linear relation between the two 
analytical approaches (Fig. 6). Overall correlation between 
peak response ratios (non-targeted analysis) and exact con-
centration (targeted analysis) of those compounds in fruits 
is high (r = 0.968, p < 0.001), indicating that non-targeted 
metabolomics analysis is suitable for the accurate measure-
ment of relatively low levels of variability in the most abun-
dant anthocyanins of berries rich in phenolic compounds. 
However, further comparative work examining relations 
between the two analytical approaches, as well as calibra-
tion development, are needed for unambiguous conclusions. 
Blackcurrant is known to be an excellent source of ascorbic 
acid (vitamin C) (Hummer and Dale 2010). The concen-
tration of vitamin C varies greatly between cultivars, from 
130 mg/100 mL juice to over 350 mg/100 mL juice in some 
breading lines (Brennan and Graham 2009). Results from the 
targeted analysis of ascorbate accumulation in blackcurrant 
cv. Narve Viking from the present study, revealed higher 
accumulation of both l-ascorbic acid and dehydroascor-
bic acid at 12 °C compared to 18 and 24 °C (Woznicki 
et al. 2017). Interestingly, analysis based on the untargeted 

approach also revealed the same pattern in accumulation 
of ascorbic acid with relative peak ratios of 0.0062, 0.0048 
and 0.0046, for 12, 18 and 24 °C, respectively (Table S1 and 
Table S2). Despite of the low signal intensity for ascorbic 
acid in the given method, increased accumulation of this 
vitamin under low temperature treatment is in agreement 
with the targeted HPLC–DAD (Woznicki et al. 2017) analy-
sis and confirms the suitability of the untargeted approach.

4 � Concluding remarks

Blackcurrant maturation under controlled ambient condi-
tions revealed a number of insightful relationships between 
environment and chemical composition of the fruit. A prom-
inent reduction of the most abundant anthocyanins under the 
highest temperature treatments indicated that blackcurrant 
berries in general may accumulate lower total anthocyanins 
in years with extreme hot summer conditions. A similar 
trend was observed for vitamin C accumulation. Addition-
ally, repressed accumulation of flavonoids, mainly antho-
cyanins, under the glass cover in the phytotron should be 
further investigated, especially in light of the current trend of 
increased production of fruits and berries in plastic tunnels 
and greenhouses (Mann 2015). The advantage of applying 
untargeted metabolomics is the possibility for broad metabo-
lome screening, which can be used for the discovery of novel 
compounds. For example, the annotated compounds within 
this study reported a number of chemicals described for the 
first time in blackcurrant fruit, albeit at a putative level of 
annotation and which require further comparative analytical 
work (both multi-stage MS and 2D NMR) with certified ref-
erence standards to validate. In conclusion, HPLC–PDA–MS 
metabolomics is an excellent method for broad analysis 
of chemical composition of berries rich in phenolic com-
pounds. Moreover, the experiment in controlled phytotron 
conditions provided additional knowledge concerning plant 
interactions with the environment. The combination of such 
controlled experimental conditions and untargeted metabo-
lomics provided results which deepen our understanding of 
plant phenotypic plasticity and may help to improve produc-
tion practices and enhance the future breeding strategies for 
development of better blackcurrant cultivars suited to future 
climate scenarios.
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