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Abstract: Ruminant fodder production in agricultural lands in latitudes above the Arctic Circle
is constrained by short and hectic growing seasons with a 24-hour photoperiod and low growth
temperatures. The use of remote sensing to measure crop production at high latitudes is hindered
by intrinsic challenges, such as a low sun elevation angle and a coastal climate with high humidity,
which influences the spectral signatures of the sampled vegetation. We used a portable spectrometer
(ASD FieldSpec 3) to assess spectra of grass crops and found that when applying multivariate models
to the hyperspectral datasets, results show significant predictability of yields (R2 > 0.55, root mean
squared error (RMSE) < 180), even when captured under sub-optimal conditions. These results are
consistent both in the full spectral range of the spectrometer (350–2500 nm) and in the 350–900 nm
spectral range, which is a region more robust against air moisture. Sentinel-2A simulations resulted
in moderately robust models that could be used in qualitative assessments of field productivity.
In addition, simulation of the upcoming hyperspectral EnMap satellite bands showed its potential
applicability to measure yields in northern latitudes both in the full spectral range of the satellite
(420–2450 nm) with similar performance as the Sentinel-2A satellite and in the 420–900 nm range with
a comparable reliability to the portable spectrometer. The combination of EnMap and Sentinel-2A
to detect fields with low productivity and portable spectrometers to identify the fields or specific
regions of fields with the lowest production can help optimize the management of fodder production
in high latitudes.
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1. Introduction

Ruminant milk and meat production above the Arctic Circle (~66.34◦ N) takes place under unique
climatic conditions, with long winters and short intense growing seasons. Forage is produced on
agricultural grasslands at these latitudes with an average of a 132-day growing season, 689 growing
degree days (using 5 ◦C as a base in the May–September period, as an average between 1989–2017,
Agrimeteorology Norway, Holt station, Tromsø), resulting in a maximum of two harvests per year.
Economic profitability for milk and meat production in this region is highly dependent on efficient
forage production. Information on yields can help improve the management of the individual grass
fields by e.g., assisting in decisions on stocking rates, fertilising, timing of harvest according to yield,
identifying and intervening on low yielding areas and purchase of appropriate supplemental feed.
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Remote-sensing tools have been applied to measure crop production in agricultural lands since
the advent of satellite-based imagery [1] and are nowadays used to assess a range of crop properties
such as water stress [2], weed detection [3] and nutrient status [4]. Crop production is a parameter that
has received most attention in modeling, first by applying vegetation indices (VIs) such as the simple
ratio (SR) or the Normalized Difference Vegetation Index (NDVI), which have afterwards been replaced
by more advanced VIs, e.g., Enhanced Vegetation Index (EVI) or Soil Adjusted Vegetation Index (SAVI),
which are more resilient and offer more robustness [5,6]. More comprehensive models have been
developed based on multiple linear regression (MLR) [7], or more advanced multivariate methods
such as partial least squares (PLS) [8] or machine learning algorithms [9]; the last two are generally
preferred over MLR due to their robustness against collinearity [10]. Remote-sensed approaches have
shown high applicability and accuracy, and have been applied successfully to measure crop production
in low- and mid-latitudes (up to 60◦N) [11–13]. However, data from only a single date or location
can result in the limited applicability of models, while the use of satellite images from different fields
and dates increases the robustness of the models [14]. Using spatially and temporally diverse satellite
images can reveal spectral reflectance patterns that can result in non-linearities in the predictions that
are better resolved by modern statistical models such as artificial neural networks [15].

Although remote-sensed crop measurements in middle and low latitudes are well established,
such measurements in high latitudes are still a challenge due to several intrinsic factors that affect
the predictive ability of yield and other attributes. First, agricultural fields in northern latitudes
are generally small (about 1 ha in average), making it challenging or impossible to do field-level
analyses with medium- or low-resolution imagery, and high-resolution imagery is often prohibitively
expensive. Second, the maximum solar elevation angle is low in latitudes above the Arctic Circle, with
maximum solar elevation angles generally below 45◦, compared to typical solar elevation angles of
between 30◦ and 70◦ in mid-latitudes during Landsat acquisition times [16]. Low solar elevation angles
result in more shadows influencing the image and a lower incident irradiance in higher latitudes [17].
Finally, moisture often affects satellite image quality: cloud cover is the most apparent limiting
factor, directly obscuring most objects of interest in the imagery. In addition, air moisture (e.g., fog
or mist) also reduces image quality due to spectrum-dependent light scattering and absorption in
water-sensitive spectral regions [18]. In northern latitudes, agricultural fields are usually close to
the coastline, thus coastal spray is also an important factor affecting satellite spectral quality [19].
Although standardized toolboxes are available to mitigate the effects of sun angle or moisture [20],
and there is ongoing research on the development of robust tools to obtain high-quality correction
parameters [21], data will inherently have limitations in applicability: correction parameters are not
developed nor optimized for high latitudes and proximity to the coast [22]. Therefore, remote-sensed
measurements of grassland crop production in high latitudes need to be individually assessed, and
realistic performance expectations set for the difficult conditions in fields located at high latitudes.

Continually improved Earth observation satellites are used to assess grassland biomass, including
multispectral satellites such as Sentinel 2 [23] and hyperspectral satellites such as EnMap [24], to be
launched in 2020. While satellite images do not provide fine-resolution data on above-ground biomass
production, they can inform about the general biomass production at a field level. Sentinel-2 is a
multispectral satellite launched in 2015 [25] that has successfully been applied to measure agricultural
crop production [26,27] showing a better performance when compared to the Landsat 8 satellite [28].
The upcoming EnMap satellite, on the other hand, will bring cost-free hyperspectral data with
intermediate spatial resolution to these measurements. The major advantage that EnMap brings
is the improvement from multispectral data (13 bands) obtained from Sentinel 2 to hyperspectral data
(240 narrow bands), which is currently costly to obtain. This will open up new avenues to develop
more robust models to measure biomass [29], and improve the remote-sensed measurements of other
parameters such as plant nitrogen [30] or water stress [31] at regional scales due to its high spectral
resolution (a total of 240 bands in the 400–2450 nm range [24]). Satellite remote-sensed data with
reasonable temporal and spatial resolution can be used for monitoring grass growth and quality
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attributes of grassland, help detect regions, fields or parts of fields in need of different management
strategies, where the use of resources at a local scale can be optimized afterwards [32]. While the
applicability of satellites in crop management is very promising [33], the environmental conditions
present in high latitudes can limit the robustness of predictions derived from satellite data, thus
introducing latitude-specific biases. Combining satellite data with portable devices such as unmanned
aerial vehicles (UAVs) or portable spectrometers gives the advantage that data can be collected at
higher temporal and spatial resolution, with fewer restrictions on cloud conditions. Satellite derived
data can help find areas or fields in need of management actions, such as fertilization; afterwards,
portable spectrometers can be used to achieve an optimized fertilization process [34,35] and ensure a
more sustainable crop management [36].

Our study aims to provide stakeholders with better information systems on their agricultural
production and test the applicability of a portable spectrometer in high latitudes (northern Norway) to
estimate grass yield under varying weather conditions. The study investigates the use of multivariate
approaches using data collected over four growing seasons to find a solution for the complex
environmental variables present in the fields. In addition, we suggest a two-stage workflow to
use both Sentinel-2 and the upcoming EnMap satellite data as a screening tool to detect fields with
reduced productivity, which can subsequently be assessed in further detail with very high-resolution
hyperspectral tools (i.e., portable spectrometers or UAV-mounted sensors) to create detailed maps of
the variability in productivity within fields.

2. Materials and Methods

2.1. Site Description

We measured 254 reference squares (area = 0.25 m2) during four years of data acquisition at
different times of the growing season (Table 1). In 2014, 2015, and 2017, fields close to Tromsø (69◦39′

N 18◦57′ E) were used, while in 2016 we used fields located further south, close to Harstad (68◦48′ N
16◦32′ E), in northern Norway (Figure 1). The three fields used in 2014 and 2015 were measured at
three different dates from early in the growing season until days before the first harvest to ensure a
large variation in yields and plant phenological status. The fields used in 2016 and 2017 were measured
within a week before the first harvest. Grasses dominated the fields (Table 1), with a high presence of
the weed Ranunculus repens in some fields. The weather conditions during data acquisition differed
between years. Measurements in 2014, 2015 and 2016 were made with sunny weather or light overcast
(hereafter, the “good weather” dataset). However, in 2017, weather conditions were challenging since
it had been raining for several days, and the weather forecast indicated more rain in the coming days.
Weather was cold and cloudy with light rain during sampling, which was performed to estimate a
worst-case model predictive ability scenario (hereafter the “bad weather” dataset).
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Table 1. Locations and fields used for data acquisition each year.

Year Region Grass Field Latitude
Longitude m.a.s.l. Field Size,

ha Botanical Composition Years Since
Establish.

Date of Acquisition (D) and No. of Yield
and

ASD FieldSpec3 Measurements (n)

2014 Tromsø T1 69◦34′37”N
18◦39′11”E 29 1.51 Phleum pratense 56%, Agrostis capillaris 26%, Ranunculus repens 10%,

Alopecurus geniculatus 3%, Poa pratensis 3% 2 D = 7. Jun
n = 6

D = 23.
Jun n = 6

D = 8. Jul
n = 6

T2 69◦34′33”N
18◦39′09”E 27 0.97 P. pratense 45%, R. repens 33%, A. capillaris 8%, P. pratensis 2% 2 D = 7. Jun

n = 6
D = 23.

Jun n = 6
D = 8. Jul

n = 6

T3 69◦39′05”N
18◦54′13”E 10 1.42 A. capillaris 46%, A. geniculatus 18%, R. repens 13%, P. pratense 9%,

Trifolium repens 5% 10 D = 6. June
n = 6

D = 24.
Jun n = 6

D = 7. Jul
n = 6

2015 Tromsø T1 69◦34′37”N
18◦39′11”E 29 1.51 P. pratense 42%, R. repens 22%, A. capillaris 21%, A. geniculatus 7%,

Deschampsia cespitosa 6%, P. pratensis 2% 3 D = 18. Jun
n = 6

D = 30.
Jun n = 6

D = 13. Jul
n = 6

T2 69◦34′33”N
18◦39′09”E 27 0.97 R. repens 39%, P. pratense 36%, A. capillaris 12%, D. cespitosa 8%,

A. geniculatus 5% 3 D = 18. Jun
n = 6

D = 30.
Jun n = 6

D = 13. Jul
n = 6

T4 69◦34′12”N
18◦39′32”E 21 2.50 P. pratense 59%, P. pratensis 24%, Rumex crispus 5%, A. capillaris 5%,

Taraxum officinale 3%, R. repens 3% 2 D = 19. Jun
n = 6

D = 26.
Jun n = 6

D = 9. Jul
n = 6

2016 Harstad H1 68◦47′43”N
16◦27′46”E 105 2.18 P. pratense 70%, Festuca pratensis 11%, Trifolium pratense 7%, weeds 12% 2 D = 26. Jun

n = 12

H2 68◦49′44”N
16◦19′59”E 32 1.55 P. pratense 70%, F. pratensis 30% 2 D = 26. Jun

n = 12

H3 68◦50′12”N
16◦16′8”E 157 4.61 P. pratense 75%, F. pratensis 25% 2 D = 26. Jun

n = 7

H4 68◦44′53”N
16◦09′51”E 23 2.9 P. pratense 83%, F. pratensis 17% 5 D = 26. Jun

n = 12

2017 Tromsø MA1 69◦27′18”N
18◦54′11”E 20 1.05 P. pratensis 48%, P. pratense 32%, F. pratensis 8%, Elytrigia repens 8% Poa

annua 2%, R. repens 2% 4 D = 06. Jul
n = 27

MA2 69◦27′10”N
18◦54′2”E 37 0.95 A. capillaris 36%, P. pratense 25%, P. pratensis 18%, F. pratensis 9%,

D. cespitosa 6%, E. repens 4%, Rumex longifolius 1%, R. repens 1% 5 D = 06. Jul
n = 23

MA3 69◦26′48”N
18◦54′55”E 7 1.25 P. pratense 48%, F. pratensis 27%, E. repens 14%, P. pratensis 3%, P. annua

3%, D. cespitosa 2%, R. repens 2%, A. capillaris 1% 5 D = 06. Jul
n = 29

MA4 69◦26′51”N
18◦54′52”E 7 0.9 E. repens 44%, P. pratense 36%, P. pratensis 8%, P. annua 5%, Stellaria media

4%, F. pratensis 3%, 7 D = 06. Jul
n = 24
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Figure 1. Map of the location of the study plots in northern Norway.Figure 1. Map of the location of the study plots in northern Norway.

2.2. Spectra Acquisition

Reflectance spectra were recorded using a FieldSpec 3 portable spectrometer (ASD Inc., Boulder,
Colorado) in a spectral range of 350–2500 nm, with a 1 nm interpolated resolution. The recorded
spectra were internally interpolated by the spectrometer, with a resolution of 1.4 nm in the 350–1050 nm
range (named SWIR-1 sensor in the instrument specification) and 2 nm in the 1050–2500 nm range
(named SWIR-2 sensor in the instrument specification). Each spectrum utilized in the data analyses
was the average of five independent samples taken from a nadir orientation from a 1.20 m height
resulting in a 0.25 m2 area. We used the fiber optic probe attached to the pistol grip, which has a field
of view of 25◦. Sampling points were distributed to maximize the amount of points per plot in the
available fieldwork time. Cross-transects were laid out in each field in the years 2014–2016 to cover
the full extent of the field while constraining the time needed to perform the scans, thus ensuring a
maximum spatial spread of sampled points to maximize the spectral and yield variability between
sampled points. We performed grid transects in the year 2017 to ensure a high number of points during
the sampling time, which was characterized by challenging weather conditions and rain showers
shortly after the spectra acquisition was planned to be finalized. A white reference was taken before
capturing the spectra for each point for instrument optimization. In addition to the full spectrum
dataset (i.e., 350–2500 nm spectral range), we also developed models limiting the spectral range to
the 350–900 nm region, as this region of the electromagnetic spectrum is more robust against spectral
interferences produced by water vapor.

2.3. Reference Yield Measurements

Each 0.25 m2 area that was scanned with the spectrometer was immediately cut at a height of
5 cm from the ground to simulate yield, then transported in mesh bags to dry at 60 ◦C for 48 h, which
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is the standard practice for determining dry weight of fresh forage samples [37]. Dry weight of the
yield was measured as reference weight for the models. We use the term yield in this study instead of
above ground biomass as our measurements represent the yield a farmer would get from the field.

2.4. Hyperspectral Analyses and Modelling

Partial least squares regression (PLS) models were performed in R 3.4.2 [38] for all model
development. A total of six models were developed (three models with the full spectrum, and
three with the 350–900 nm spectrum) to study how removal of moisture-affected spectra affects the
predictive ability of yield models. First, we ran a model including only the “good weather” plots (i.e.,
direct sunlight and very low air moisture, plots from 2014 to 2016), second, we ran a model based on
the “bad weather” plots (samples from 2017), and third, we ran a model containing all the points (i.e.,
the “full model”).

In both the FieldSpec models and the satellite simulations, spectra were presented as raw spectra
or pre-treated with the standard normal variate (SNV) treatment [39], moving average filter or
Savitzky–Golay derivatives [40] and modeled with PLS [41], contained in the package pls in the
R Software [42]. The optimal model and number of latent variables (k) were selected based on
achieving a combination of a high R2 and a low root mean squared error of the prediction (RMSEP).

2.5. Satellite Simulation

We simulated the 13 Sentinel-2A bands from the FieldSpec dataset and created a predictive model
for yield to estimate how the present satellites can predict grassland productivity. The bands were
simulated by binning the original spectra following the specifications available on the Sentinel-2A
mission website [43] using the prospectr package [44] in R [38]. All the bands were used for modeling:
we did not create a limited range (i.e., 400–900 nm range) model due to the low number of bands
available for model development.

In addition, we simulated the 240 EnMap bands and modeled the yield using the full spectral
resolution of the simulated satellite sensor (i.e., 420–2450 nm) to estimate how accurate remote-sensed
yield models might be using EnMap data compared to the Sentinel-2A modeling results. For that
purpose, binning was performed on the original spectra following the specifications given on the official
EnMap website (https://eoportal.org), i.e., one data point every 6.5 nm in the very near infrared
VNIR region (420–1000 nm) and 10 nm in the SWIR short wave infrared regions (1000–2450 nm).
In addition, in the case of EnMap, we developed a model using only the region between 420 and
900 nm to avoid the regions most affected by water and compare with the results of the model with
the full spectral range.

2.6. Model Validation

The models assessing the effect of the environmental conditions (i.e., cloud cover and moisture)
were validated against each other, i.e., the “good weather” model was used to predict the “bad weather”
dataset and vice versa. The dataset for the “full model” and the satellite simulations were split into
calibration and validation datasets (75% of the samples for calibration and 25% for validation) by
first ordering the samples according to their yield and then sequentially assigning three samples for
calibration and one for validation. Y-outliers (extreme predicted values) were identified when the
fitted or predicted values showed abnormal values (i.e., outside the calibration range).

2.7. Two-Stage Workflow

We used a two-stage workflow (Figure 2) to simulate our suggested application of this method,
where farmers can first identify fields with reduced production at a large scale based on satellite data.
The fields with reduced production can afterwards be studied with a portable spectrometer to find the
areas in need of management strategies (e.g., fertilization or reestablish the grass sward in damaged
parts, or other actions), in order to allocate time and economic resources more efficiently.

https://eoportal.org
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3. Results

A total of 254 samples were registered with grass yields that varied between 0.55 g/m2 and
1212 g/m2: the quadrats scanned under optimal weather conditions (i.e., “good weather” datasets,
from 2014 to 2016) had a wider range (0.55 g/m2 to 1212 g/m2) than the quadrats scanned under
challenging weather conditions (i.e., “bad weather” dataset, of 2017), which had a narrow range of
crop productivity (44 g/m2 to 680 g/m2) (Figure 3).Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 16 
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productivity that is unusual in the studied fields.

3.1. Hyperspectral Analyses

In the full spectrum models (i.e., the 350–2500 nm spectral range), the “good weather” model
showed a good fit, with an R2 value of 0.82 and RMSE of the cross validation (RMSECV) of 135 g/m2

in the calibration dataset. When predicting the “bad weather” dataset using the “good weather”
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model, the R2 value was 0.4 and a RMSEP of 286 g/m2 (Table 2, Supplementary Figure S1). The
“bad weather” model showed a lower fit, with an R2 value of 0.37 and RMSECV of 86 g/m2 in the
calibration dataset. When predicting the “good weather” dataset, the R2 value was of 0.48 and RMSEP
of 105 g/m2 (Table 2, Supplementary Figure S1). The “full model” (i.e., the model including all fields
and years), on the other hand, showed a consistent predictive ability on both the calibration dataset
(R2 = 0.56, RMSECV = 166 g/m2) and validation dataset (R2 = 0.58, RMSEP = 178 g/m2) (Table 2,
Figure 4). Note that the “bad weather” points were evenly distributed along the calibration line.

In the “limited spectrum” models (i.e., limited to the 350–900 nm range), the “good weather”
model showed a good fit, with an R2 value of 0.82 and RMSECV of 135 g/m2 in the calibration
dataset. When predicting the “bad weather” dataset, the R2 value was 0.36 and RMSEP 338 g/m2

in the validation dataset, which is substantially worse than with the full spectrum model (Table 2,
Supplementary Figure S2). The “bad weather” model showed a similar performance to its full
spectrum counterpart, with an R2 value of 0.42 and RMSECV of 82 g/m2 in the calibration dataset.
When predicting the “good weather” dataset, the R2 value was 0.05 and RMSEP 192 g/m2, which is
also worse than the model with the full spectrum (Table 2, Supplementary Figure S2). The “full model”,
on the other hand, showed a consistent predictive ability on both the calibration dataset (R2 = 0.69,
RMSECV = 140 g/m2) and validation dataset (R2 = 0.72, RMSEP = 144 g/m2) (Table 2, Figure 4).
Again, the “bad weather” points were evenly distributed along the calibration line. This model
performed better than the model with the full spectrum, when judged against both the calibration and
validation datasets.

There are very strong limitations on using models developed under different environmental
conditions, where predicting one dataset (e.g., the “good weather” dataset) with a model developed
with contrasting environmental conditions (e.g., the “bad weather” dataset) will result in unreliable
predictions, due to large error rates and nonlinearities in the predictions that render the predictions
unusable (see Supplementary Figures S1 and S2). Thus, using models including all environmental
conditions yielded more robust results that provide more reliable predictions.

Table 2. Modeling parameters from the partial least squares (PLS) models developed for the full
spectral range (350–2500 nm) and the limited range (350–900 nm). SNV stands for the standard normal
variate treatment, k represents the number of latent variables used, m represents the differentiation
order, p represents the polynomial order and w represents the window size for the smoothing function.
RMSECV represents root mean squared error of the cross-validation and RMSEP represents root mean
squared error of the prediction.

k Data
Pre-Processing

R2

calibration

RMSECV
(g/m2)

R2

validation

RMSEP
(g/m2) Intercept Slope Outliers

Full range
Good weather

model 14 SNV 0.82 135 0.4 286 117 1.5 4

Bad weather
model 4 SNV 0.37 86 0.48 105 41 1.3 0

Full model 4 SNV 0.56 166 0.58 169 135 0.59 0
EnMap simulation 14 Smoothing, w = 13 0.39 198 0.54 178 11 0.93 0

Sentinel-2A
simulation 7 No pre-processing 0.57 163 0.46 192 34 0.94 3

Limited range
Good weather

model 16 SNV 0.82 135 0.36 338 127 0.3 0

Bad weather
model 7 SNV 0.42 82 0.05 192 278 0.19 0

Full model 12 Savitzky-Golay derivative,
m = 1, p = 2, w = 7 0.69 140 0.72 144 7 1.08 0

EnMap simulation 10 Savitzky-Golay derivative,
m = 1, p = 1, w = 7 0.63 155 0.62 162 6.65 1.03 0

* Note that the validation dataset for the “good weather” model is the “bad weather” data, and the validation for
the “bad weather” model is the “good weather” data.
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3.2. Satellite Simulations

The simulation of the Sentinel-2A satellite resulted in a similar model robustness compared to
the full spectrum (i.e., 350–2500 nm) model with an R2 of 0.57 and RMSECV of 163 in the calibration
dataset and an R2 of 0.46 and RMSEP of 192, showing that the band combination of this satellite results
in models comparable to high-resolution hyperspectral measurements, although the lack of spectral
resolution yields slightly less accuracy in the predictions (Table 2, Figure 5).

The model covering the full spectral range of EnMap (i.e., 420–2450 nm) showed slightly better
validation parameters than the Sentinel-2A model, with an R2 of 0.39 and RMSECV of 198 g/m2 in
the calibration dataset and an R2 of 0.54 and RMSEP of 178 g/m2 in the validation dataset. When
limited to the 420–900 nm spectral region, the EnMap model showed a better fit with an R2 of 0.63
and RMSECV of 155 g/m2 in the calibration dataset and an R2 of 0.62 and RMSEP of 162 g/m2 in
the validation dataset (Figure 5, Table 2), indicating that limiting the spectral range results in more
robust models.
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4. Discussion

The fieldwork and analyses in our study focused on overcoming challenges due to environmental
conditions at high latitudes. Hyperspectral measurements resulted in robust models (Table 2), using
both the full spectral range (350–2500 nm) and the limited spectral range (350–900 nm) (Figure 4).
Using PLS on hyperspectral data results in reliable models [45] and ensures higher quality estimates
of yield. Our results support the fact that optimal weather conditions to register hyperspectral data
are dry and sunny days [46], as seen in the “good weather” models, and that challenging weather
conditions result in less robust models (see the “bad weather” models) with lower predictive ability
and high error rates, as well as non-linear responses, in estimates of the yield measurements. Our
results show worse performance (R2 ~ 0.7) than previous work done in fields in lower latitudes,
where remotely sensed crop estimation was highly accurate (R2 ~ 0.8) for corn and soybean [47] or
wheat [48] under optimal weather conditions. Points with lowered production seem to either consist
of several grass species in combination with weeds or with nuisance species like R. repens (Table 1),
and these show increased error rates and reduced performance. Measures like weed detection and
discrimination in combination with different pre-treatment procedures might increase the performance
of PLS models [49]. Additionally, points with very low production (below approximately 50g/m2)
show high error rates. This could be due to bare soil affecting the spectra resulting from the early
phenological stages of the crops: these fields should be included into the second step of our workflow
(Figure 2) and assessed in a more detailed level to assess if the field as a whole is in need of management,
or if there are only small spots that need to be treated.

Our results show comparable results for PLS-models in Barmeier et al. [45] (R2 = 0.71–0.95
for grain yield) and Fu et al. [13] (R2 ~ 0.8 for winter wheat in the range 0–1300 g/m2) for winter
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wheat yield estimates at a 40◦N latitude. Other studies show a high variability on the performance
of hyperspectral models to measure above-ground biomass in agricultural fields under different
fertilizing regimes [50], with R2 ranging from 0.7 to 0.9, in the range 74 to 592 g/m2. Studies reporting
very high model performance (R2 > 0.9), such as Biewer et al [12], are based on more limited ranges
(dry weight range between 0 and 220 g/m2). Our study, on the other hand, represents a higher range
of yield (0–1212 g/m2) most likely due to the small areas (0.25m2) used as reference samples and the
varying phenological stages of the grasses scanned for the model development (i.e., the sampling
was performed through the whole growing season, including the early phenological stages). The
inclusion of moisture-affected spectra into the model along with a majority of spectra captured under
optimal weather conditions increases the resilience of the model against new variation: new plots will
most likely be included in the yield range of our model, and noise caused by e.g., coastal spray or
air moisture will not affect the model performance heavily. The apparent model performance may
be reduced when including the moisture-affected spectra, but the model will be more robust against
future variability given by weather variability. Yet, such resilience does not override the weather
constraints for hyperspectral sampling: we recommend all measurements be performed under the best
weather conditions possible at the sampling time: we recommend sampling on a clear day and after at
least 24h without precipitation.

When cloud-free images are available, satellite images can provide field-level yield measurements
that can be combined with in situ spectrometry with a hand-held spectrometer. The Sentinel-2A
simulation showed that a multispectral satellite approach may give an acceptable model performance
that can help detect fields with abnormal production (i.e., too low productivity), but the predictive
ability is limited (R2

validation=0.46, RMSEP=192). This results in biomass estimations that are mostly
limited to coarse ordinal or qualitative assessments of productivity (i.e., low, mid or high productivity),
rather than biomass measurements, in our studied fields. The EnMap simulation performed similarly
to the Sentinel-2A simulation (R2 > 0.39, RMSE < 198 g/m2) in the full spectrum models, and both
performed worse than the FieldSpec dataset (R2 > 0.56, RMSE < 169 g/m2). On the other hand,
the 420–900nm range EnMap model (R2 > 0.62, RMSE < 162 g/m2) had a performance closer to the
FieldSpec model (R2 > 0.69, RMSE < 144 g/m2), indicating a high potential on using that spectral range
for grassland yield estimations. Unfortunately, this comparison is not possible with the Sentinel-2A
satellite due to its limited number of bands. Such consistency in the 420-900 nm region opens
avenues to develop models in that spectral range with a minimal loss in yield predictability. Satellite
image processing techniques often rely on standardized toolboxes to convert digital numbers (DN) to
reflectance which account for sun angle, atmospheric corrections and other preprocessing steps [20],
which are necessary to successfully develop satellite-based predictive yield models. Using satellite
images to predict total grass biomass production based leaf area index (LAI) showed a variable fit,
with R2 values between 0.4 and 0.55 when using spectra from different dates [32]. The addition of
the ENMAP hyperspectral satellite will provide with new information at a high spectral but only a
medium spatial (30 m) resolution [24], which can be combined with the presently available satellites
(e.g., Sentinel-2, Landsat 8) to improve the monitoring of grasslands in high latitudes. Simulated
Sentinel-2 images (10 m) fused (pan-sharpened) with simulated EnMAP data showed encouraging
results (R2 = 0.68) concerning wheat leaf area index [51,52]. Airborne AISA Eagle images fused
with simulated EnMap images [51] showed even better results (R2 = 0.75) giving the opportunity to
pan-sharpen future EnMap with ordinary high spatial resolution UAV-imagery for assessment and
prediction of yield using both the full spectrum (420–2500 nm) and the limited spectrum (420–900 nm).
Although the satellite-based predictions in the full spectral range are mostly limited to qualitative
assessments, they can be used as a general estimate on the state of the fields, especially during periods
with high cloud cover: missing one or two EnMap satellite passes (with a re-visit time of 27 days at the
Equator, or better at high latitudes) due to cloud cover results in long temporal gaps that may happen
in critical periods (e.g., fertilization). However, an off-nadir pointing capability of up to 30◦ enables a
revisit time of better than four days at high latitudes [53], but this has to be programmed in advance.
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In cases without available hyperspectral satellite data, it is preferable to have a qualitative biomass
production estimate based on Sentinel-2 data (or other available multispectral satellites, if models are
available) than having no estimate at all: general information on the status of a field is preferable to
avoid unnecessary management actions e.g., fertilizing when unnecessary, which results in economic
losses and ecological effects [54].

These promising results show that the two-step workflow we suggest here could improve the
efficiency in managing agricultural lands in high latitudes by identifying fields with reduced fodder
productivity. This can allow stakeholders to allocate their efforts to improving the productivity in
fields that need special management and implement actions to increase productivity [36], or to prepare
in advance to order grass from other regions or countries. Once the low-yielding fields have been
identified, mapping the field with a portable spectrometer or a UAV-mounted hyperspectral system,
and then applying the needed actions (e.g., increased fertilizer) to specific parts of the field, economic
and environmental costs related to e.g., unnecessary fertilization [55,56] can be greatly reduced. Other
actions may involve removal of weeds [57,58] or improvement of soil properties [59]: these alternatives
require a careful assessment of costs and benefits derived from such invasive methods.

5. Conclusions

In conclusion, our study shows that models resulting from hyperspectral measurements can
estimate grass yields with reasonable accuracy in high latitudes, though challenges are greater than in
lower latitudes. The spectral region of 350–900 nm showed to be more robust than the full spectrum
(350–2500 nm) against influencing factors such as moisture, facilitating the development of reliable
models to measure yield of agricultural fields in high latitudes. The satellite measurements are
expected to can provide information about fields with abnormal production and facilitate management
actions, guided by in situ measurements taken by portable spectrometers.
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