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Abstract 

Dengue fever is a mosquito (Aedes aegypti) -transmitted viral disease that is endemic in more 

than 125 countries around the world. There are four serotypes of the dengue virus (DENV 1-

4) and a safe and effective dengue vaccine must provide protection against all four serotypes. 

To date, the first vaccine, Dengvaxia (CYD-TDV), is available after many decades’ efforts, 

but only has moderate efficacy. More effective and affordable vaccines are hence required. 

Plants offer promising vaccine production platforms and food crops offer additional 

advantages for the production of edible human and animal vaccines, thus eliminating the need 

for expensive fermentation, purification, cold storage and sterile delivery. Oral vaccines can 

elicit humoral and cellular immunity via both the mucosal and humoral immune systems.  

Here, we report the production of tetravalent EDIII antigen (EDIII-1-4) in stably 

transformed lettuce chloroplasts. Transplastomic EDIII-1-4-expressing lettuce lines were 

obtained and homoplasmy was verified by Southern blot analysis. Expression of EDIII-1-4 

antigens was demonstrated by immunoblotting, with the EDIII-1-4 antigen accumulating to 

3.45 % of the total protein content. Immunological assays in rabbits showed immunogenicity 

of EDIII-1-4. Our in vitro gastrointestinal digestion analysis revealed that EDIII-1-4 antigens 

are well protected when passing through the oral and gastric digestion phases but underwent 

degradation during the intestinal phase. Our results demonstrate that lettuce chloroplast 

engineering is a promising approach for future production of an affordable oral dengue 

vaccine.   
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Introduction 

Dengue fever is caused by four antigenically distinct dengue virus serotypes (DENV-1, 

DENV-2, DENV-3 and DENV-4). Dengue viruses belong to the family Flaviviridae and 

mainly occur in the tropical and sub-tropical parts of the world (Calisher et al., 1989; Weaver 

and Vasilakis, 2009). It is estimated that about 3.9 billion people in more than 125 countries 

are at risk of dengue infection with an annual dengue infection scale of approximately 390 

million (Bhatt et al., 2013). Of these 390 million infected people, approximately 500000 need 

hospital treatment (WHO position report September 2018, Vannice et al. 2015; 2016; 

Wichmann et al 2017). Primary infection with one of the mosquito-transmitted serotypes 

usually causes mild dengue fever and provides life-long immunity to that serotype (Kurane 

and Ennis, 1992; Simmons et al., 2012). Secondary infections with a heterologous serotype 

result in more life-threatening and potentially deadly forms of the disease (WHO, 2009) due 

to antibody dependent enhancement. This phenomenon is associated with cross-reactive but 

non-neutralizing antibodies produced during the first infection (Halstead, 1988), which 

enhance the uptake of viruses into Fc-receptor bearing cells during secondary infection 

(Dejnirattisai et al., 2010; Halstead, 2003). This increases the initial virus load in the cells, 

promotes virus replication and ultimately leads to overwhelming of the immune system, 

causing symptoms like fluid accumulation, plasma leaking, respiratory distress, severe 

bleeding and organ impairment (WHO, 2015). Recent outbreaks of dengue fever in the 

southern provinces of China (Xiong and Chen, 2014; Zhang et al., 2014) with over 40,000 

reported cases and the occurrence of autochthonous transmissions in the non-endemic regions 

of eastern China (Wang et al., 2015; Xu et al., 2007) show how serious this disease is. A safe, 

effective and affordable dengue vaccine against the four strains is urgently needed to control 

the disease and meet the WHO goal of reducing dengue morbidity by at least 25% and 

mortality by at least 50% by 2020 (www.who.int). 
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As complete eradication of the mosquito vector is impossible, vaccination seems to be 

the most promising protection strategy against dengue fever. The co-circulation of the four 

dengue virus serotypes in most areas together with the complex pathogenesis have 

considerably hampered vaccine development (Ghosh and Dar, 2015; WHO, 2015). One 

dengue vaccine has been licensed, Dengvaxia® (CYD-TDV, developed by Sanofi Pasteur), 

and approximately five additional vaccine candidates are in clinical development, with two 

(developed by NIH/Butantan and Takeda) now in phase III trials (Vannice et al. 2016; 

Wichmann et al. 2017). The CYD-TDV vaccine is a live recombinant tetravalent dengue 

vaccine that is currently recommended in three doses at 0, 6, and 12 months, but it only has 

moderate efficacy. The other five vaccine candidates currently under evaluation in clinical 

trials include other live-attenuated vaccines, as well as subunit, DNA and purified inactivated 

vaccine candidates (www.who.int). Development of dengue vaccine that is effective for 

infants and children is needed to reduce the dengue burden.  

A promising alternative approach is the development of a recombinant protein-based 

vaccine able to stimulate the protective immune system in a balanced way. The domain III of 

the dengue virus envelop protein (EDIII) protrudes from the virus surface to facilitate binding 

to the host cell surface receptor (Crill and Roehrig, 2001) and mediates membrane fusion 

(Allison et al., 2001). This approximately 100 amino acid long domain has become the focus 

of subunit vaccine development (Guzman et al., 2010), because it contains a number of 

epitopes that elicit serotype specific neutralizing antibodies (Chin et al., 2007; Megret et al., 

1992). Different expression systems have been used so far to express recombinant dengue 

antigens based on the whole envelope protein or the EDIII domain (Batra et al., 2010a; 

Cardoso et al., 2013; Clements et al., 2010; Ivy et al., 2000; Martínez et al., 2010; McDonald 

et al., 2009; Saejung et al., 2007; Simmons et al., 1999; Srivastava et al., 2000). Combination 

of the EDIIIs of the four dengue virus serotypes resulted in a tetravalent fusion protein 
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capable of stimulating the production of virus-neutralizing antibodies against all four 

serotypes in mice (Batra et al., 2010b; Etemad et al., 2008). Since a simultaneous and 

balanced immune response against all four serotypes is essential (Hombach et al., 2005), a 

vaccine candidate based on the recombinant tetravalent fusion protein appears the best 

solution. 

Genetic engineering of the plastid genome of crops has evolved over the past decades 

into a promising approach for the production of high-value products such as 

biopharmaceuticals, industrial enzymes and diagnostic reagents (Bock, 2015; Clarke and 

Daniell, 2011; Maliga and Bock, 2011). The distinct characteristics of chloroplast 

transformation such as site-specific transgene integration (Daniell, 2006), the absence of 

epigenetic gene silencing and position effects (Daniell et al., 2001; Rigano et al., 2009; Verma 

et al., 2010), stacking of transgenes into operons (Bock, 2013) and the excellent biosafety 

profile of transplastomic plants offer great potential in plant biotechnology. Significant 

interest in producing recombinant proteins in plastids of crop species with edible parts has 

resulted in transplastomic carrots (Kumar et al., 2004), tomato (Ruf et al., 2001; Zhou et al., 

2008), potato (Sidorov et al., 1999), soybean (Dufourmantel et al., 2004; Moravec et al., 

2007), cauliflower (Nugent et al., 2006), eggplant (Singh et al., 2010), cabbage (Liu et al., 

2007) and sugar beet (De Marchis et al., 2009). Edible crops offer the potential of oral 

delivery of therapeutical proteins, resulting in much reduced downstream protein processing 

costs (Kwon et al., 2013).  

Since the first report of transplastomic lettuce plants, the evaluation of different 

integration sites and transformation strategies has led to the successful expression of several 

recombinant proteins in lettuce plastids (Boyhan and Daniell, 2011; Davoodi-Semiromi et al., 

2010; Ichikawa et al., 2010; Kanagaraj et al., 2011; Kanamoto et al., 2006; Maldaner et al., 

2013; Ruhlman et al., 2007). Most importantly, lettuce is the only system so far that has been 
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shown to be feasible for commercial scale production of clinical grade biopharmaceuticals 

(Su et al., 2015). In large animal and toxicology studies (Herzog et al., 2017) 

biopharmaceuticals were shown to be stable for up to 30 months in lyophilized lettuce cells 

when stored at ambient temperature, without loss of activity. Furthermore, protection of 

biopharmaceuticals upon passage of the stomach by bioencapsulation within plant cells has 

been repeatedly demonstrated. When reaching the gut, commensal bacteria degrade plant cell 

walls, thereby releasing the protein drugs and facilitating delivery to the immune and/or 

circulatory systems (Kwon and Daniell, 2016; Xiao et al., 2016). Orally administered plant-

produced antigens can stimulate mucosal IgA and serum IgG production (Lee et al., 2015), 

and antigen fusion to a transmucosal carrier like the cholera toxin B subunit (CTB) improves 

efficiency of antigen delivery to the immune system (Davoodi-Semiromi et al., 2010; Chan 

and Daniell, 2015). A further recent example is provided by the production of a plant-based 

oral booster vaccine against polio virus, for use in a routine vaccination strategy with a 

booster dose applied after at least six months. The efficacy of the vaccine in eliciting mucosal 

and humoral immune responses could be demonstrated (Xiao and Daniell, 2017; Xiao et al., 

2016; Zhang et al., 2017). 

In the current study, we have expressed a tetravalent fusion protein EDIII-1-4 in 

lettuce chloroplasts, performed an in vitro gastrointestinal digestion study and tested the 

stability of the bioencapsulated recombinant protein throughout the human upper digestive 

system. Our results showed (1) the successful production of tetravalent EDIII antigen 

(EDIII1-4) in lettuce chloroplasts; (2) molecular analyses of transplastomic EDIII-1-4 -

expressing lettuce lines; (3) immunoblotting analysis of EDIII-1-4 accumulation in lettuce; (4) 

immunological assays in rabbits with tetravalent EDIII-1-4 antigens; and (5) the results from 

the in vitro gastrointestinal digestion analysis including oral phase, gastric phase and intestinal 

phase. Our results indicate that lettuce chloroplast engineering represents a promising 
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approach for the production of a safe and affordable oral dengue vaccine and have generated 

new information for the dengue vaccine research community.  

 

Results 

Generation and characterization of dengue virus EDIII-1-4 producing transplastomic 

lettuce 

In order to produce a dengue antigen that covers all four dengue virus serotypes, 

transplastomic plants expressing the tetravalent antigen EDIII-1-4 (Gottschamel et al., 2016) 

in the chloroplast were generated. To compare expression levels and help ascertain the 

stability of the linker regions in the tetravalent antigen, a transplastomic line expressing only 

the EDIII from DENV-1 was also generated. First, a lettuce plastid transformation vector 

pDEST-PN-L was constructed by insertion of the aadA expression cassette and the Gateway® 

RfA between lettuce-specific flanking regions for integration into the plastid genome by 

homologous recombination. The vectors pEXP-PN-ediii- 1-L and pEXP-PN-ediii-1-4-L 

(Figure 1a) for lettuce plastid transformation were then obtained by Gateway® cloning of the 

sequences for ediii-1 and ediii-1-4 into the lettuce-specific pDEST-PN-L. Integration by 

homologous recombination into the intergenic spacer region between the trnI and trnA genes 

results in transplastomic plants carrying the transgene expression cassettes within the IR 

region of the lettuce plastid genome (Figure 1b,c). 

The two transformation constructs were introduced into plastids by particle 

bombardment. Antibiotic-resistant shoots developing from callus tissue on RMOP plant 

regeneration medium containing spectinomycin were tested for transgene integration by PCR. 

Presence of the transgenic sequences in the plastid genome was shown by PCR products 

corresponding to ediii-1-4 (1841 bp) and ediii-1 (836 bp) (Figure 2a). The transplastomic 
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plant lines (S12-PN-EDIII-1-4 and S16-PN-EDIII-1, respectively) were further characterized 

by Southern blot analysis. The homoplastomic state of both plant lines was verified by the 

presence of only the 5545 bp fragment (in S16-PN-EDIII-1) or the 6533 bp fragment (in 

S12-PN-EDIII-1-4) in transformed plants, compared to the 3130 bp fragment diagnostic of the 

wild-type plastid genome (Figure 2b) after digestion of total plant DNA with SmaI.  

No phenotypic alterations were visible on transplastomic plants growing to maturity in 

the greenhouse (Figure 3a) and flower set and seed development was normal. Plants were 

grown to full maturity (Figure 3b) and seeds harvested from transgenic plants were geminated 

on spectinomycin-containing medium. The homogenous green phenotype of the seedlings 

proved the absence of segregation of the antibiotic resistance gene in the F1 generation 

(Figure 3c) provided additional proof of transgene integration into the plastid genome and 

complete elimination of wild-type copies of the (polyploid) plastid genome.  

 

Expression of EDIII-1-4 and EDIII-1 antigens 

In order to assess whether the antigens were produced and accumulated stably in lettuce 

chloroplasts, total protein (TP) and total soluble protein (TSP) were isolated from plant lines 

growing in the greenhouse and quantified by BCA and Bradford assays, respectively. 

Immunoblot analysis performed with an anti-dengue antibody detected both the 47 kDa 

EDIII-1-4 and the 13 kDa EDIII-1 in the respective transplastomic lettuce lines, in both the 

TP and TSP samples (Figure 4). The single-domain antigen EDIII-1 accumulated to lower 

levels (Figure 4b) and this line was not studied further. The tetravalent antigen EDIII-1-4 was 

onlydetected as a single band corresponding to the full-length antigen, indicating that the 

linker regions are stable in the chloroplast and no significant proteolytic cleavage occurs. The 

EDIII-1-4 accumulation was quantified in TP extracts by using purified E. coli-produced 

tetravalent antigen (Gottschamel et al., 2016) as a standard. These assays (Figure S1) 
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established that the EDIII-1-4 fusion protein was present at 3.45 % ± 0.05 of the TP content in 

the transplastomic lettuce plants. 

 

Immunogenicity of lettuce-produced EDIII-1-4 in rabbits 

Next, we wanted to test the immunogenicity of the lettuce-produced EDIII-1-4 antigens. To 

this end, the fusion protein was isolated from the transplastomic lettuce line S12-PN-EDIII-1-

4 under native conditions and used for immunization of one rabbit. Rabbit serum was 

analyzed by an enzyme-linked immunosorbent assay (ELISA), where binding to lettuce-

produced and E. coli-produced EDIII-1-4 was assayed. Injection of lettuce-produced dengue 

antigen EDIII-1-4 elicited antibodies detectable by ELISA at nine weeks post vaccination 

(Figure 5). It is interesting to note that the rabbit serum recognized the lettuce-produced 

antigen (mean antibody titre 1.0235 OD490, SD=0.4305) and the E. coli-produced EDIII-1-4 

antigen (mean antibody titre 0.9598 OD490, SD=0.2565) equally well, confirming that the 

antigens are specifically recognized by the serum. The results of our immunological analyses 

show that rabbit vaccination with lettuce-produced EDIII-1-4 antigen elicits a specific 

immune response. 

 

Stability of lettuce-encapsulated EDIII-1-4 in a gastro-intestinal tract model 

Simulated gastro-intestinal digestion is widely employed in food science, nutritional studies 

and pharmaceutical research, as conducting human trials is costly, resource intensive, and 

ethically disputable. The methodology is based on mimicking physiological conditions in 

vitro, taking into account the presence and physiological concentrations of digestive enzymes 

as well as the pH, ionic milieu and digestion time, among other factors (Minekus et al., 2014). 

Simulated digestion of lettuce chloroplast-derived EDIII-1-4 tetravalent antigen through the 

oral, gastric and small intestinal phases (Figure 6) showed that EDIII-1-4 tetravalent antigen 
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was well protected when passing through the oral phase and the gastric phase, but showed 

degradation after passing through the intestinal phase. The latter is consistent with the 

(desired) release of the antigen from the chloroplasts in the intestine, where it is intended to 

stimulate mucosal immunity. 

 

Discussion  

Despite over 70 years of efforts to combat the disease, dengue fever is still a major health 

threat in significant parts of the world. In view of the expected further spread of mosquito-

borne diseases with climate change, the need for dengue vaccine development becomes 

even more pressing (Pang and Loh, 2017). Efficacy and safety remain the main challenges 

(Wichmann et al., 2017; www.who.int). Clinical studies with the licensed Dengvaxia® 

(CYD-TDV, a live attenuated, recombinant tetravalent vaccine employing the attenuated 

YF virus 17D vaccine strain as the replication backbone) has been further investigated 

clinically since 2015. The new analyses from the long-term safety follow-up indicated that 

overall the population level benefit of vaccination remains favourable, but the vaccine 

performs differently in seropositive versus seronegative individuals. Vaccine efficacy (VE) 

confirmed symptomatic dengue was high among inferred baseline seropositive participants 

≥9 years of age: 76% (95%CI: 63.9, to 84.0), but much lower among baseline seronegative 

participants: 38.8% (95%CI: –0.9 to 62.9%) in the first 25 months after the first dose of 

vaccine (www.who.int, Wichmann et al., 2017). These data demonstrated long-term 

protection in seropositive individuals. However, at the same time, the studies also revealed 

an excess of hospitalized and severe dengue cases in seronegative vaccine recipients 

compared to seronegative non-vaccinated individuals, and there was an increase in the 

number of young vaccinated children hospitalized within three years after the start of 

vaccination (Wichmann et al., 2017). These data provide a strong incentive to look for 
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improved vaccination strategies. A safe, effective and affordable vaccination strategy shall 

include careful screening pre-vaccination, the affordability of both CYD-TDV and 

screening tests, and assessing the need and feasibility of oral booster dengue vaccine 

(Wichmann et al., 2017). Vaccination as part of an integrated dengue prevention and 

control strategy remains a high priority (Wichmann et al., 2017). More efforts must be 

invested into the development of safe, effective, and affordable dengue vaccines that, 

ideally, should be independent of the serostatus (Wichmann et al., 2017) and employ an 

oral vaccine and/or an oral booster vaccine produced in an edible plant such as lettuce. 

We have previously reported synthesis of an EDIII-1-4 tetravalent antigen-based 

subunit dengue vaccine in tobacco chloroplasts (Gottschamel et al., 2016). In the present 

study, we have successfully expressed the tetravalent antigen in chloroplasts of the edible 

crop lettuce, assayed its stability upon passage through the gastrointestinal tract and 

determined its antigenicity in experimental animals. Further efforts in producing other dengue 

antigens in plants have also been reported (Kanagaraj et al., 2011; Maldaner et al., 2013). Our 

work adds to a growing number of studies in plant molecular farming that have demonstrated 

that production of vaccines and antibodies in plants is a very attractive alternative to 

traditional production systems. Plants offer a number of unique advantages over more 

traditional systems (Bock, 2015; Clarke and Daniell, 2011; Peyret and Lomonossoff, 2015), 

including cost-effective production of recombinant proteins at large scale (due to the very low 

production costs of plant biomass and the easily scalable production levels), the low risk of 

contamination with human pathogens and the possibility of oral delivery. The latter eliminates 

the need for expensive downstream processing (usually about 80% of the production cost of 

pharmaceuticals and vaccines), makes vaccine administration simple and safe (Chan and 

Daniell, 2015; Clarke et al., 2017), and provides stability of antigens at room temperature, a 

highly desired property of vaccines. 
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Protein drugs expressed within plant cells can be protected from acids and enzymes in 

the stomach (Chan and Daniell 2015). To assess the stability of the tetravalent EDIII-1-4 

antigens produced in chloroplasts after oral delivery, we have conducted in vitro gastro-

intestinal tract assays. The simulated digestion of lettuce chloroplast-derived EDIII-1-4 

tetravalent antigen through the oral, gastric and small intestinal phases has shown that the 

antigen was well-protected when passing through the oral and gastric phases, and showed 

degradation upon passing through the intestinal phase (Figure 6). The latter is not only 

consistent with the expected release of the protein from the plant cells in the intestine, but also 

desirable to expose the antigen to the mucosal immune system. 

The prime-and-boost based vaccination strategy has been exploited with plant-made 

boost vaccines against HIV and polio virus (Chan et al., 2016; Lindh et al., 2014). The same 

strategy could be applied to dengue fever, given that, with the current vaccine, the immune 

response varies greatly among different people, age groups and regions. Moreover, the 

incidence of children developing dengue infection within three years after vaccination in one 

of the CYD-TDV dengue vaccine clinical trials (Wichmann et al. 2017) suggests the potential 

benefit of a booster vaccine for young children. Together with a previous report (Chan and 

Daniell 2015), our study suggests that the edible crop lettuce is ideal for the production of oral 

boost vaccines. This is not only because lettuce can be eaten raw, but also because the edible 

parts of the plants are the leaves. A number of studies have shown that expression of plastid 

genes and transgenes in non-green tissues (including fruits and tubers) is much lower than in 

photosynthetically active leaf tissue (Kahlau and Bock, 2008, Valkov et al., 2009). A plant-

made dengue boost vaccine could contribute to affordable dengue treatment and reduce the 

burden on the health sector in developing countries. Lettuce chloroplast genome engineering 

could contribute to an oral boost dengue vaccine in the future.  
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 In conclusion, we have demonstrated in the present study the successful production of 

the tetravalent EDIII dengue virus antigen (EDIII-1-4) in lettuce chloroplasts. Homoplastic 

transplastomic lettuce lines expressing EDIII-1-4 tetravalent dengue vaccine antigen were 

obtained, and homoplasmy was verified by Southern blot analysis. The expressed tetravalent 

EDIII-1-4 antigen was detected in immunoblotting and quantified. Immunological assays 

showed immunogenicity in rabbits. Our in vitro gastrointestinal digestion analysis with EDIII-

1-4-producing lettuce has shown that EDIII-1-4 antigens were well protected when passing 

through the oral and gastric phases. Our results suggest that lettuce chloroplast engineering is 

a promising approach for the future production of a safe, affordable and effective oral dengue 

boost vaccine that can contribute to the control and management of dengue infection 

globally.  

 

Methods 

Vector construction 

The lettuce-specific plastid transformation vector was obtained by Gateway® cloning 

(Gottschamel and Lössl, 2016;). For the intermediary vector pMA-lettuce, the sequences 

corresponding to the trnI and trnA region of the Lactuca sativum plastid genome (Ruhlman et 

al., 2007) flanked by KpnI and SacII restriction sites were custom synthesized and introduced 

into the company’s standard backbone vector (GeneArt, Germany). In order to create pDEST-

PN-L, the complete Gateway® cloning cassette together with the aadA expression cassette 

was excised from pDEST-PN-T (Gottschamel et al., 2013) and inserted into pMA-lettuce 

using the restriction enzymes KpnI and SacII. The sequence of the synthetic fusion gene 

(ediii-1-4) consists of all four DENV-EDIII sequences (order: ediii-1, ediii-3, ediii-4, ediii-2) 

linked by penta-glycine linkers (Etemad et al., 2008; Gottschamel et al., 2016). The ediii-1-4 

and ediii-1 sequences were codon optimized for lettuce plastids and synthesized by GeneArt 
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(Germany). The synthesized sequences have a T7g10 leader sequence and a 15 nucleotide 

downstream box (Herz et al., 2005), a C-terminal 6xHis-tag and are flanked with attB1/attB2 

Gateway® recombination sites. The transgene encoding sequences were first introduced into 

pDONRTM221 by a BP reaction yielding the intermediary vectors pEntry-ediii-1-4 and 

pEntry-ediii-1 and then transferred by an LR reaction into pDEST-PN-L resulting in the final 

lettuce specific plastid transformation vectors pEXP-PN-ediii-1-4- L and pEXP-PN-ediii-1-L, 

respectively. The PCR Cloning Kit with Gateway® Technology, pDONR™221 and the 

Gateway® LR Clonase® Enzyme mix were purchased from Life Technologies (USA) and the 

Gateway® BP and LR reactions (Karimi et al., 2002) were carried out as described in the 

manufacturer’s protocol. 

 

Plant growth, transformation and regeneration 

Lactuca sativa cv. Barkley plants were grown in vitro from surface sterilized seeds on solid 

MS medium (Murashige and Skoog, 1962) containing 20 g/L sucrose. Leaves from 

aseptically grown lettuce plants were bombarded with 0.6 µm gold-microcarriers coated with 

plasmid DNA using a Bio-Rad Biolistic PDS-1000/He gun (Daniell, 1997; Svab and Maliga, 

1993) Several independently transformed plant lines were subjected to three additional 

regeneration rounds on RMOP medium (Svab and Maliga, 1993; Verma et al., 2008) 

containing spectinomycin. Regenerated shoots were rooted on MS medium containing 

spectinomycin to maintain the selection pressure. Rooted, homoplastomic plants were 

transferred to soil and grown to maturity in the greenhouse under standard conditions. 

Inheritance assays on spectinomycin containing MS medium were performed with the 

harvested seeds. 
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Southern blot analysis 

Plant DNA was isolated by the CTAB procedure (Murray and Thompson, 1980) from 

wild-type plants and transplastomic plant lines after three rounds of regeneration on 

spectinomycin containing medium. 10 µg of plant DNA was digested with SmaI, separated by 

electrophoresis in a 1 % agarose gel and transferred onto a positively charged nylon 

membrane (Carl Roth GmbH, Germany) by capillary action using the semi-dry transfer 

method. The probe binding inside the trnA region was amplified from lettuce wild-type DNA 

by PCR (primers 5’-GGAGGTAGGATGGGCAGTTG-3’ and 5’- 

GGACTCGAACCGCTGACATC-3’). The probe was purified by agarose gel electrophoresis 

and extraction of fragment of interest from excised gel slices with the NucleoSpin gel and 

PCR Clean-up Kit (Machery-Nagel, Germany) and DIG labelled using the DIG-High Prime 

DNA Labeling and Detection Starter Kit II (Roche, USA), according to the manufacturer’s 

instructions. After immobilization of the DNA to the membrane, hybridization with the 

corresponding DIG labelled probe and incubation of the membrane with the HRP conjugated 

anti-DIG antibody, the chemiluminescence signal was detected by exposure to X-ray film. 

One homoplastomic plant line per construct (S12-PN-EDIII-1-4 and S16-PN-EDIII-1) was 

chosen for further analysis. 

 

Protein extraction, western blot analysis and protein quantification 

Protein extraction and western blot analysis was done as described previously (Gottschamel et 

al., 2016). Briefly, total soluble protein (TSP) was extracted by mixing frozen and grinded 

leaf samples in TSP extraction buffer (100 mM NaCl, 10 mM EDTA, 200 mM Tris-HCl pH 

8, 0.05 % Tween-20, 0.1 % SDS, 14 mM β-mercaptoethanol, 200 mM sucrose and 1x 

Complete protease inhibitor (Roche, Switzerland)) for 5 min on ice, followed by 

centrifugation at 13000 rpm for 10 minutes at 4 °C, and collecting the supernatant. The TSP 
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concentration was determined with the Bradford assay (BioRad, USA) using known 

concentrations of BSA as the standard. Total protein (TP) was isolated from leaf samples by 

the phenol extraction method (Cahoon et al., 1992). Frozen ground leaf samples were 

homogenized in TP extraction buffer (0.7 M sucrose, 0.5 M Tris-HCl pH 9.4, 50 mM EDTA, 

0.1 M KCl, 2 % β-mercaptoethanol, 1x cOmplete protease inhibitor (Roche, Switzerland)). 

After addition of 1 vol. phenol, short vortexing and centrifugation at 13000 rpm for 10 min at 

4 °C, the upper green phase was recovered and proteins were precipitated by addition of 0.1 

M NH4OAc in methanol and overnight incubation at -20 °C. After centrifugation, the protein 

pellet was washed, air-dried and dissolved in 1 % SDS. The protein concentration was 

determined with the BCA Protein Assay Kit (Thermo Scientific, USA) using known 

concentrations of BSA as the standard. Denatured protein samples were separated by 

electrophoresis in 12 % SDS-polyacrylamide gels and transferred to nitrocellulose membranes 

(Hybond-ECL, GE Healthcare, USA). The membranes were incubated with TBS-T (20 mM 

Tris-HCl pH 7.6, 137 mM NaCl, 0.1 % Tween-20,) containing 0.5 % BSA as blocking buffer 

and subsequently treated with the primary and the secondary antibody diluted in TBS-T. The 

recombinant proteins were detected with the 1:1000 diluted polyclonal anti-dengue antibody 

produced in rabbits against amino acid sequence: KFKVVKEIAETQHGT by (Davids 

Biotechnology, Germany), the 1:10,000 diluted anti-rabbit-IgG-AP secondary antibody 

(Promega, USA) and colorimetric reaction using the AP color development Kit (Bio-Rad, 

USA). Recombinant EDIII-1-4, expressed in E.coli (Gottschamel et al., 2016) and purified 

with the HisPur Cobalt resin (Life Technologies, USA) under denaturing conditions served as 

a positive control. 

Protein quantification was done by western blot analysis. Samples with known 

quantities of the purified E. coli-produced antigen were loaded together with TP extract 

samples. Blotting was done as described above, but as secondary antibody 1:10000 diluted 
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anti-rabbit-IgG-HRP secondary antibody (Promega, USA) was used. Blot development was 

done with ECL Prime western blotting detection reagent (GE Healthcare) and blots were 

imaged using an Azure C400 imaging system (Azure Biosystems) and analysed with ImageJ 

(NIH). Experiments were repeated four times. 

 

Immunological studies 
The study was performed at the Section for Experimental Biomedicine at The Norwegian 

University of Life Sciences, Norway. The unit is licensed by the Norwegian Animal Research 

Authority (NARA) (http://www.mattilsynet.no/dyr_og_dyrehold/dyrevelferd/forsoksdyr/) and 

accredited by Association for Assessment and Accreditation of Laboratory Animal Care 

(www.aaalac.org). The study was approved by the unit’s animal ethics committee 

(Institutional Animal Care and Use Committee/IACUC) and NARA.  

 

Animal model 

The rabbit used in this study was a female New Zeeland White SPF (Harlan Laboratories, 

Netherlands). It had 3 weeks of acclimation at the animal facility before starting the 

immunization. The rabbit was housed and taken care of according to the requirements in the 

European Union Directive 2010/63/EU and Norway’s own regulation based on the EU 

directive “The regulation on use of animals in research FOR-2015-06-18-761”  

 
Tetravalent dengue antigen EDIII-1-4 purification and immunization 

The EDIII-1-4 tetravalent antigen was purified from lettuce line S12-PN-EDIII-1-4. Frozen 

leaves were ground to powder, mixed with an equal volume of extraction buffer (0.05 M Tris 

pH 9.2, 0.5 M NaCl, 0.1 % (v/v) Tween 20, 15 mM β-mercaptoethanol) and incubated on ice 
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for 20 min. The mixture was filtered through four layers of Miracloth (Merck, Darmstadt, 

Germany) and the filtrate was centrifuged at 25000 g for 40 min at 4 °C. Imidazole pH 9 to a 

final concentration of 20 mM was added to the supernatant, which was then mixed with 

NiNTA agarose beads (Qiagen, Hilden, Germany) and incubated under mixing for 3 hours at 

22 °C. The beads were collected by low-speed centrifugation and washed with buffer (20 mM 

imidazole pH 8.6, 0.5 M NaCl, 0.1 % Tween 20), and subsequently eluted with elution buffer 

(0.3 M imidazole pH 8.6, 0.5 M NaCl, 0.1 % Tween 20). The buffer was exchanged to 20 mM 

Tris pH 9, 0.15 M NaCl, 0.1 % Tween 20 and the protein was concentrated to 0.2 mg/mL by 

ultracentrifugation using a 10 kDa MWCO Microsep device (Pall, Westborough, USA). 

Injections were done by a veterinarian with FELASA C certification. The rabbit was given 

one immunization injection and three booster injections. The first immunization was a 

mixture of 0.5 mL solution containing 0.1 mg antigen and 0.5 mL Freund`s Adjuvant 

Complete, whereas all three booster injections contained the same amount of antigen but were 

instead prepared with 0.5 mL Freund`s Adjuvant Incomplete (both from Sigma-Aldrich, Oslo, 

Norway). The first booster was given two months after the first immunization. All subsequent 

booster injections were given in two-week intervals. The solution was mixed right before 

injection in two coupled 2 mL Omnifix Luer Lock syringes and then injected with a 23 G 

Terumo needle (all from Jan F. Andersen, Jevnaker, Norway). All injections were given 

divided on 5-10 places. Blood samples were collected before the first and after the last 

injection, to analyze the antibodies. The blood was taken from the ear artery with a 4 mL 

Varcuette Serum container and a 0.7x25 mm needle (Jan F. Andersen, Jevnaker, Norway). 

Both the injections and the blood samples were done while the rabbits were sedated with 

Hypnorm (Fentanyl 0.315 mg/mL and Fluanison 10 mg/mL) 0.03 mL/kg iv. Two weeks after 

the last booster injection both rabbits were terminally bled under full anesthesia. They were 

premedicated with Domitor (Medetomidin 1 mg/mL) 0.1 mL/kg im and anesthetized with a 
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Zoletil Mix (Zoletil dry matter, 10 mL Rompun (Xylazin 20 mg/mL) and 0.75 mL Torbugesic 

(Butorphanol 10 mg/mL)) (all from VESO Pharmacy, Oslo, Norway) 0.1 mL/kg im. The 

blood was taken via heart puncture with a 10 mL Varcuette Serum container and a 0.7x25 mm 

needle (Jan F. Andersen, Jevnaker, Norway). After the bleeding, the rabbits were sacrificed 

with Penthobarbithal injection to the heart and opening of the thorax. 

 

Enzyme-linked immunosorbent assay (ELISA) 

ELISA was carried out by coating two plates with a commercial anti-dengue mouse 

monoclonal antibody (3H5 against dengue type 2, TEMECULA California, USA) at a 

dilution of 1:1000. The coated plates (NUNC, Denmark) were incubated at 4 0C overnight. 

After incubation, the plates were washed three times with phosphate buffered saline 

containing 1 % Tween 20 (PBST). This was followed by blocking each well with 5 % dry 

milk and incubation at room temperature (RT) for two h. After washing three times with 

PBST, the denatured EDIII-1-4 produced in Escherichia coli was added to plate 1, while 

lettuce-produced EDIII-1-4 was added to plate 2, and incubated at RT for two hours. After 

washing three times with PBST, the vaccinated rabbit serum was added to each plate. For the 

positive control, the polyclonal rabbit antiserum raised against EDIII peptide 

KFKVVKEIAETQHGT (Gottschamel et al., 2016) was used while for the negative control, 

serum obtained from an unvaccinated rabbit was used. All serum samples were applied as a 

dilution series, starting from a 1:50 dilution, then 1:100, 1:200, etc. The plates were incubated 

at RT for two h followed by washing three times with PBST. Thereafter, a goat anti-rabbit 

polyclonal antibody conjugated to horse radish peroxidase (HRP) (DAKO; Glostrup, 

Denmark) was added to each well at a dilution of 1:1000. The plates were incubated for 1 h 

followed by washing. This was followed by adding the substrate made of OPD tablets (O-

Phenylenediamine dihydrochloride, DAKO; Glostrup, Denmark) plus 5 % hydrogen peroxide 
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(H2O2). The plates were observed for 15 min for color change followed by adding 0.05 µL of 

the stop solution (1 mM H2SO4). The plates were read using a spectrophotometer (TECAN, 

Genios, Boston, USA) at an optical density of OD490. A Student’s t-test was used in statistical 

analysis. 

 

In vitro gastrointestinal digestion analysis  

The harmonized, static in vitro digestion model (Minekus et al., 2014) was performed with 

fresh leaves from the lettuce plant line S12-PN-EDIII-1-4. The plant material was cut into 

pieces of   ̴5 mm2 and a total amount of 2 g plant material per reaction was incubated under 

shaking in a water bath at 37 °C. The model consists of three stages: stage I - oral phase: 

buffer (simulated salivary fluid: 15.1 mM KCl, 3.7 mM KH2PO4, 13.6 mM NaHCO3, 0.15 

mM MgCl2(H2O)6, 0.06 mM (NH4)2CO3, 1.5 mM CaCl2(H2O)2, 1.1 mM HCl, pH 7), 0.44 U 

salivary α-amylase (Sigma-Aldrich, USA), 2 min reaction time; stage II - gastric phase: buffer 

(simulated gastric fluid: 6.9 mM KCl, 0.9 mM KH2PO4, 25 mM NaHCO3, 47.2 mM NaCl, 

0.12 mM MgCl2(H2O)6, 0.5 mM (NH4)2CO3, 0.15 mM CaCl2(H2O)2, 15.6 mM HCl, pH 3), 90 

U porcine pepsin (Sigma-Aldrich, USA), 2 h incubation time; and stage III - duodenal stage: 

buffer (simulated intestinal fluid (6.8 mM KCl, 0.8 mM KH2PO4, 85 mM NaHCO3, 38.4 mM 

NaCl, 0.33 mM MgCl2(H2O)6, 0.6 mM CaCl2(H2O)2, 8.4 mM HCl, pH 7), porcine pancreatin 

(4340 U protease, Sigma-Aldrich, USA) and 10 mM porcine bile extract (Sigma-Aldrich, 

USA), 2 h incubation time. Reactions in samples from all phases were stopped and 

neutralized by mixing with a TP extraction buffer containing protease inhibitors, as described 

above, and immediately snap frozen in liquid nitrogen. Total protein was extracted as 

described above and subjected to Western Blot analysis. 
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Supporting information legends 

Figure S1. Quantification of EDIII-1-4 accumulation in transplastomic lettuce plants. 
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Figure legends  

Figure 1. Schematic representation of the expression vectors for the generation of 

transplastomic lettuce plants: a) The final lettuce-specific plastid transformation vector pEXP-

PN-goi-L. b) wild-type lettuce plastid genome (CP). c) lettuce plastid genome with integrated 

transgene expression cassettes for ediii-1 and ediii-1-4, separately. The Southern blot probe 

(trnA) is shown as an arrow and the expected SmaI fragments are shown as arrows with their 

sizes indicated next to the respective goi. aadA: spectinomycin resistance gene; Amp(R): 

ampicillin resistance gene; attB1/attB2: Gateway® recombination sites; INSL*/INSR*: 

lettuce specific left/right flanking regions; trnI/trnA: sequences coding for tRNA-Ile/tRNA-

Ala;  EDIII 1/1-4: transgene coding sequence including a hexa-his-tag; PsbA:  tobacco psbA 

promoter (Staub and Maliga, 1993); Prrn16: tobacco rrn16 PEP+NEP promoter (Ye et al., 

2001); 3’(C): 3'UTR of Chlamydomonas rbcL gene; 5'psbA: 5'UTR of tobacco psbA gene; 

3'(T): 3'UTR of tobacco rbcL gene; ORI: bacterial origin of replication. p296/p297: primer 

used for PCR (the corresponding PCR products are shown as dotted lines and the sizes are 

given for both transgenes). 

 

Figure 2. Southern blot analysis of tetravalent EDIII-1-4 and monovalent EDIII-1 lines. DNA 

isolated from regenerated plant lines and the wild-type (wt) was probed using a 665 bp DIG-

labeled probe that binds inside the trnA region (INSR) of the plastid genome. The expected 

fragment sizes after SmaI digestion are 6533 bp (for S12-PN-EDIII-1-4), 5545 bp (for 

S16-PN-EDIII-1) and 3130 bp (for wild-type plants). The positions of restriction sites, probe 
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position and the sizes of expected Southern blot bands are indicated in Figure 1. M: 1kb DNA 

ladder, (NEB).  

 

Figure 3. Phenotype of transplastomic lettuce plants and inheritance assays. a) Plants growing 

in the greenhouse. b) Flowering plants. c) One week-old seedlings obtained from 

transplastomic plants and wild-type seeds germinated on spectinomycin (30 mg/L) containing 

medium. 

 

Figure 4. Western blot analysis of EDIII antigen accumulation in transplastomic lettuce 

plants. a) TP and TSP isolated from plant line S12-PN-EDIII-1-4. b) TP and TSP isolated 

from plant line S16-PN-EDIII-1. The amount of TSP/TP loaded is given above the respective 

lane in µg. 20 µg TP/TSP were loaded for the wild-type in a), while 50 µg TP/TSP were 

loaded for the wild-type in b). The arrows indicate the 47 kDa EDIII-1-4 and the 13 kDa 

EDIII-1. M: spectra multicolour broad range protein ladder (Thermo Scientific, molecular 

weight of the marker bands indicated in kDa). The band migrating at 70 kDa results from non-

specific binding of the antibody to a plant protein of unknown identity (Gottschamel et al., 

2016). 

 

Figure 5. Immunogenicity of lettuce-produced tetravalent EDIII 1-4. Sera of a rabbit 

immunized with lettuce-produced EDIII-1-4 antigen at 63 days post vaccination (EDIII-1-4) 

were tested for binding to E. coli-produced EDIII-1-4 antigen and lettuce-produced EDIII-1-4 

antigen. Rab neg ctrl is serum from non-vaccinated rabbit; Rab Pos Ctrl represents a rabbit 

polyclonal antibody against a synthetic EDIII peptide (Gottschamel et al., 2016) used as a 

positive control. All sera were used in a 1:50 dilution. 
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Figure 6. In vitro gastrointestinal digestion analysis of the lettuce chloroplast-derived EDIII 

1-4 tetravalent antigen. Western blot analysis of proteins isolated from samples taken for each 

phase of the gastrointestinal digestion analysis are shown. Start: untreated lettuce material; - 

samples treated with only buffer; + samples treated with the digestive enzymes. Each phase 

was analyzed in three replicates with enzymes and one blank sample without enzymes as 

control. 30 µg TP was loaded for each sample. The band migrating at 70 kDa results from 

non-specific binding of the antibody to a plant protein of unknown identity. 
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