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Abstract
Keyobservational indicators of climate change in theArctic,most spanning a 47 year period (1971–2017)
demonstrate fundamental changes amongnine key elements of theArctic system.Wefind that, coherent
with increasing air temperature, there is an intensificationof thehydrological cycle, evident from increases
inhumidity, precipitation, river discharge, glacier equilibrium line altitude and land icewastage.
Downward trends continue in sea ice thickness (and extent) and spring snowcover extent andduration,
while near-surface permafrost continues towarm. Several of the climate indicators exhibit a significant
statistical correlationwith air temperature or precipitation, reinforcing thenotion thatincreasing air
temperatures andprecipitation are drivers ofmajor changes in various components of theArctic system.
Toprogress beyond apresentationof theArctic physical climate changes,wefinda correspondence
between air temperature andbiophysical indicators such as tundra biomass and identify numerous
biophysical disruptionswith cascading effects throughout the trophic levels. These include: increased
delivery of organicmatter andnutrients toArctic near‐coastal zones; condensedflowering andpollination
plant species periods; timingmismatchbetweenplantflowering andpollinators; increasedplant
vulnerability to insect disturbance; increased shrubbiomass; increased ignitionofwildfires; increased
growing seasonCO2uptake,with counterbalancing increases in shoulder season andwinterCO2

emissions; increased carbon cycling, regulatedby local hydrology andpermafrost thaw; conversion
between terrestrial and aquatic ecosystems; and shifting animal distribution anddemographics. TheArctic
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biophysical system is nowclearly trending away from its 20thCentury state and into anunprecedented
state,with implicationsnot onlywithinbut beyond theArctic. The indicator time series of this study are
freely downloadable atAMAP.no.

1. Introduction

Rising concentrations of greenhouse gases are driving
widespread changes in global physical climate and its
ecosystems (IPCC 2014a, 2014b). This article assem-
bles nine diverse observational records that serve as
key indicators of Arctic climate and ecosystem status.
This review of physical changes is accompanied by a
discussion of links with the Arctic biological systems.
We present and discuss each indicator in turn and
where possible, we discuss ecosystem impacts. A
statistical evaluation of correlations between the
indicators and various time series of pan-Arctic, Arctic
regional or hemispheric surface air temperatures (or
precipitation) is made in effort to identify, quantify
and further illuminate potential interactions. Key
findings are listed in the conclusion section, including
a commentary on observational gaps with recommen-
dations for futurework.

2. Key indicators

While ‘indicator’ has been defined in various ways in
the literature, this study will follow the definition of
Kenney et al (2016) by regarding indicators as ‘refer-
ence tools that can be used to regularly update status,
rates of change, or trends of a phenomenon using
measured data, modeled data or an index’. We apply
the notion of indicators to capture the state of the
Arctic environment through observational data series
that span various components of the Arctic system.
Figure 1 illustrates nine key Arctic indicators, updated
and expanded from the AMAP 2017 assessment. Each
indicator is discussed in the following subsections and
where considered appropriate, their inter-relations are
further examined.

3.Methodology

3.1. Period of analysis
While homogeneous datasets for some variables pre-
date 1971, such datasets for other indicator variables
(e.g. sea ice, permafrost temperature, wildfire area) are
not available until the 1970s. The 1971–2017 period
used in this synthesis spans the decades prior to and
during the Arctic’s systemwide changes starting in the
mid-1980s (Overland et al 2004) and unprecedented
extremes that have occurred since the mid-1990s (e.g.
Overland et al 2018).

3.2. Temperature andprecipitation data
Here, near surface air temperature data timeseries are
taken from the NCEP/NCAR Re-analysis (updated
from Kalnay et al 1996). Justification for the use of
these data are prompt updates and consistent perfor-
mance versus other reanalysis products (Overland and
Wang 2016). The data are not separated between land
and ocean because our aim is to include changes both
over the land and above the ocean for an integrated
‘indicator’, which is associated with other indicators
we are studying in this study (e.g. sea ice (ocean),
permafrost (land), snow cover (land)). Our coverage is
pan-Arctic, regional and Northern Hemispheric.
Nevertheless, the relative contribution of the land
versus ocean stations to e.g. air temperature, is not the
same, and this sampling bias is a possible source of
uncertainty.

3.3. Seasonal and regional variable definitions
We define temperature and precipitation variables for
both seasonal or annual and pan-Arctic or regional areal
averages. By ‘warm season’ we refer to the June through
September period that often includes above freezing air
and surface temperatures. By ‘cold season’we refer to the
October through May period that is characterized by
below-freezing temperatures over much of the Arctic.
‘Arctic’ here refers to the area north of 60 degrees
latitude. The Northern Hemisphere is abbreviated as ‘N.
Hem.’ For example, when referring to Arctic air temper-
ature we use the following variable: TArctic warm season.
Regional polygons cover land ice areas and hence we
refer to e.g. TN. Hem. Warm Season. For a snow cover
statistical evaluation, we choose the May to June (MJ)
period since parts of theArctic canbe snow free by June.

3.4. Regressionmethodology, definition of trend
units
Potential relationships to air temperatures are quanti-
fied by regressions between Northern Hemisphere (or
Arctic) seasonal or annual temperatures and other
climate parameters against the assembled collection of
Arctic climate indicators for the 1971–2017 period.
The regressions that reveal signals of interconnection
with high confidence (1− p> 0.9) in correlations (R)
are emphasized using bold text in table 1.

When assessing confidence in regressions between
two time series, e.g. air temperature and precipitation,
one year lagged temporal correlations (rlag1) are eval-
uated to control for serial autocorrelation, in which we
compute effective degrees of freedom not as n_time-
series_years-2 but as (neffective):
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n n rlog .effective timeseries years lag 1= - ( )

The lowest neffective is then used to determine the p-
value of the correlation. The effect of controlling for
serial autocorrelation is to give more realistic (lower)
‘confidence’ (1−p) values.

While a correlation is indicative of a possible rela-
tionship, it does not distinguish the contributions of
the trends and the interannual variations super-
imposed on the trend. Physically meaningful relation-
ships should be manifested in interannual variations
as well as in corresponding trends. Since trends are
apparent in figure 1, we focus our correlation analysis
on the interannual timescale. To do so, we temporally

detrend the data prior to computing cross-correla-
tions. Further, here, we make no lagged correlation
analysis.

Our use of the term ‘change’ refers to the magni-
tude of linear trends assessed by standard least squares
regression (Chatterjee and Hadi 2006), that is, the
regression slope multiplied by the duration of data in
years.

3.5. Smoothing of series
To illustrate longer-term variations than that of single
years and recognizing that some temporal autocorrela-
tion can occur, figure 1 presents normal distribution

Figure 1. (Left)Arctic climate observational indicator records.Multi-year running averages are illustrated usingGaussian smoothing
lines, (right) data sources are described.
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Table 1. Linear trends and temporally detrended correlation offigure 1Arctic climate indicators versus air temperature fromNCEP/NCAR re-analysis.

Indicator Units Trend per decade Change during period 1−p Versus variable Corr. coef. 1−p Earliest year Latest year

TArctic Annual °C 0.6 2.7 >0.999 TN. Hem. Annual 0.660 >0.999 1971* 2017

TArctic Warm Season °C 0.4 1.8 >0.999 TN. Hem. Warm Season 0.295 0.950 1971* 2017

TArctic Cold Season °C 0.7 3.1 >0.999 TN. Hem. Cold Season 0.660 >0.999 1971* 2017

PArctic Annual % 1.3 6.2 >0.999 TArctic Annual 0.503 0.998 1971* 2017

TN. Hem. Annual 0.303 0.948 1971* 2017

PArctic Cold Season % 1.4 6.8 0.994 TArctic Cold Season 0.447 0.996 1971* 2017

TN. Hem. Cold Season 0.447 0.996 1971* 2017

PArctic Warm Season % 1.0 4.7 0.935 TArctic Warm Season 0.061 0.314 1971* 2017

TN. Hem. Warm Season 0.061 0.314 1971* 2017

Ob river annual % −0.6 −2.6 0.255 TArctic Annual −0.024 0.122 1971* 2015

TN. Hem. Annual 0.162 0.695 1971* 2015

Pechora River annual % 1.7 5.8 0.564 TArctic Annual 0.191 0.704 1981 2014

TN. Hem. Annual 0.271 0.864 1981 2014

SevernayaDvina River % 5.9 25.9 0.956 TArctic Annual 0.035 0.175 1971* 2014

TN. Hem. Annual −0.036 0.180 1971* 2014

Yenisei River % 1.6 7.0 0.844 TArctic Annual 0.065 0.326 1971* 2015

TN. Hem. Annual 0.035 0.179 1971* 2015

LenaRiver % 3.3 13.6 0.945 TArctic Annual 0.114 0.514 1971* 2011

TN. Hem. Annual 0.074 0.348 1971* 2011

KolymaRiver % 7.4 33.3 0.987 TArctic Annual −0.001 0.004 1971* 2015

TN. Hem. Annual −0.133 0.604 1971* 2015

YukonRiver % 3.1 13.0 0.989 TArctic Annual 0.090 0.394 1975 2016

TN. Hem. Annual 0.048 0.213 1975 2016

Mackenzie River % 1.1 4.8 0.575 TArctic Annual −0.019 0.093 1973 2015

TN. Hem. Annual −0.135 0.601 1973 2015

EurasianArctic rivers composite km3 y−1 18.7 56.1 0.996 TArctic Annual 0.152 0.555 1981 2011

TN. Hem. Annual 0.075 0.294 1981 2011

NorthAmericanArctic rivers composite km3 y−1 5.9 23.6 0.972 TArctic Annual −0.266 0.862 1975 2015

TN. Hem. Annual −0.048 0.213 1975 2015

TundraMaxNDVI st. dev. 0.1 0.05 >0.999 TArctic Warm Season 0.406 0.982 1982 2017

Tundra time-integratedNDVI st. dev. 0.1 0.23 0.999 TArctic Warm Season 0.555 0.999 1982 2017

Alaska burned area 1e6Ha 0.1 0.5 0.863 TArctic Warm Season −0.054 0.251 1980 2017

Canada burned area 1e6Ha −0.0 −0.0 0.077 TArctic Warm Season 0.010 0.044 1980 2017

September Arctic Sea Ice extent 1e6 sq. km −0.8 −3.3 >0.999 TArctic Warm Season −0.623 >0.999 1979 2017

Spring SnowCoveredArea days −3.4 −15.5 >0.999 TArctic MJ −0.464 0.998 1972 2017
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Table 1. (Continued.)

Indicator Units Trend per decade Change during period 1−p Versus variable Corr. coef. 1−p Earliest year Latest year

GreenlandMass Balance st. dev. −0.7 −3.2 >0.999 TArctic Warm Season −0.472 0.999 1971* 2017

CanadaMass Balance st. dev. −0.3 −1.5 >0.999 TArctic Warm Season −0.332 0.974 1971* 2017

AlaskaMass Balance st. dev. −0.3 −1.6 0.999 TArctic Warm Season 0.115 0.551 1971* 2017

ScandinaviaMass Balance st. dev. −0.2 −0.8 0.937 TArctic Warm Season −0.184 0.776 1971* 2017

SvalbardMass Balance st. dev. −0.2 −0.7 0.879 TArctic Warm Season −0.339 0.977 1971* 2017

Note.Bold values highlight high confidence (1−p>0.9) correlations. An asterix beside the year indicates data that begin before then but are not analyzed here.
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weighted running average values, i.e. smoothing. The
chosen envelope is ±5 years and the Gaussian width
has 1.5 standard deviations per 11-year sample.Within
4 years of the time series beginning or end, the tail on
the Gaussian sample is truncated by one in each year
toward the end of the series until the sample size is 6
years. While we present smoothed data, in all cases, all
presented statistics are computed only from the
unsmoothed raw data. In order to detrend the data, we
subtract the linear trend resulting from temporal
regression.

4. Arctic climate indicators

4.1. Air temperature
Arctic air temperature change (ΔT) from 1971 to 2017
measured by the regression slope (multiplied by 47
years) indicate warming by: 2.7 °C at the annual scale
(ΔTArctic Annual); 3.1 °C in the cold season (October–
May) (ΔTArctic Cold Season) and 1.8 °C in the warm
season (June–September) (ΔTArctic Warm Season) (table 1,
figure 1(a)). A number of processes contribute to
amplified Arctic temperature variations as compared to
global temperatures (Pithan and Mauritsen 2014). As a
metric of Arctic Amplification (AA), comparing the
change in Arctic temperatures with those from
the Northern Hemisphere, we find AAAnnual=
ΔTArctic Annual/ΔTN. Hem. Annual= 2.4, AACold Season=
ΔTArctic Cold Season/ΔTN. Hem. Cold Season=2.8, and
AAWarm Season=ΔTArctic Warm Season/ΔTN. Hem. Warm

Season= 1.7. Thus, similar to the observed increase in
temperature changes from 1971 to 2017, AA is greatest
in the cold season and smallest in thewarmseason (June
through September).

Later freeze up of sea ice (e.g. Markus et al 2009)
and advection of moisture into the Arctic (Zhang et al
2013, Neff et al 2014) are key contributors to the rise in
cold season air temperatures, producing maximum
Arctic warming in autumn and winter. For the
1959–2008 period, Bekryaev et al (2010) conclude
annual AA to be 1.52 for 1959–2008. The values of AA
depend on the region considered, e.g. Arctic Ocean
else land, distance from the coast (Bekryaev et al (2010)
and altitude (Hernandez-Henriquez et al 2015). See
Serreze and Barry 2011) for further review. Evaluating
AA using paleo data, Miller et al (2010) concluded a
higher AA, between 3 and 4. However, during the last
glacial maximum, AA was negative due to a stronger
northern latitude insolation increase as compared to
the present Anthropogenic warming driven by exces-
sive greenhouse gas concentrations.

4.2. Permafrost and carbon cycling
New record-high annual average temperatures in the
upper 10–20 m of the ground have been observed at
many permafrost observatories with the greatest
temperature increases (>2 °C) occurring in the colder
permafrost of the northern Arctic (Romanovsky et al

2017). Here, at 20 m depth for three North Slope of
Alaska sites (West Dock, Deadhorse and Franklin
Bluffs) we find a 2.5 °C permafrost temperature
increase in the past 47 years (figure 1(b)). In northern
Alaska, the active layer freeze-up date in the 2010s
(mid-December) was almost two months later than in
the mid-1980s (mid-October). In Zackenberg, north-
east Greenland, maximum thaw depths increased by c.
1.6 cm yr−1 between 1997 and 2010 (Lund et al 2014).
Reduced permafrost area contributes to amplified
warming because of a reduced ground latent heat sink
(Lund et al 2014, Parazoo et al 2018).

The impact of thawing permafrost on ecosystem
processes is dependent on permafrost type and local
hydrology. In areas with discontinuous permafrost,
thawing can lead to permafrost collapse with major
implications for hydrology, vegetation composition
and biogeochemical cycling (Johansson et al 2006).
Bring et al (2016) suggest that permafrost thaw may
increase hydrological connectivity between ground-
water and surface water systems and change water sto-
rage in lakes and soils, which will influence exchange
of moisture with the atmosphere. Jorgenson et al
(2001) document permafrost degradation causing
ecosystem shifts from birch forests to fens and bogs. In
upland tundra areas with continuous permafrost,
increasing active layer depths may on the other hand
lead to soil drying (Liljedahl et al 2016), limiting vege-
tation growth.

As a response to increased air and ground temper-
ature, there are now clear signs of permafrost thaw
(Nicolsky et al 2017, Romanovsky et al 2017). In com-
bination with warming-induced impacts on Arctic
tundra vegetation, these landscape-scale structural
changes will affect tundra-atmosphere interactions
including both biogeophysical and biogeochemical
feedback effects on the climate system (Lund 2018).

Jeong et al (2018) find accelerating rates of carbon
cycling revealed by 42 years of atmospheric CO2 mea-
surements from Barrow, Alaska (71.29 N, 156.79W).
They conclude that: ‘Temperature dependencies of
respiration and carbon uptake suggest that increases in
cold season Arctic labile carbon release will likely con-
tinue to exceed increases in net growing season carbon
uptake under continued warming trends’. See also
section 4.4. Tundra greening and terrestrial ecosys-
tems, below.

For the Canadian boreal forest, Price et al (2013)
document how ‘approximately 40% of the forested
area is underlain by permafrost, some of which is
already degrading irreversibly, triggering a process of
forest decline’. Throughmodeling, Schuur et al (2015)
suggest that Arctic climate warming will cause an
increasingly large net upward flux of terrestrial carbon
to the atmosphere viamicrobial release of carbon from
decomposition of accumulated surface biomass.
Observational data from Zackenberg, NE Greenland,
combined with ecosystem modeling for the period
2000–2014 also shows trends towards increased
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overall carbon cycling but of a variable nature differing
between time periods 2000–2008 and 2008–2014
(Zhang et al 2018). Long-term observational records
are needed to verify any possible consistent trends in
possible Arctic tundra carbon emissions as the poten-
tial releases are hypothetically an extremely important
feedback given that it would likely amplify future cli-
mate warming.Hugelius et al (2014) estimate that Arc-
tic soils contain∼50%of the world’s global soil carbon
and hence the potential release is enormous.

While Arctic seafloor methane (CH4) release is
observed (Shakova et al 2013, Andreassen et al 2017),
there is no conclusive proof that hydrate-derived CH4

is reaching the atmosphere today (Ruppel and Kessler
2017). Most of the CH4 is oxidized or dissolved into
the sediments or water column before reaching the
atmosphere, especially in deeper waters (>50 m) (Par-
mentier et al 2017). Nonetheless, the idea of warming-
triggered carbon release is hypothetically an extremely
important feedback given that it would likely amplify
future climate warming. This effect was recently quan-
tified for CH4 only to potentially cause a more than
20% increase in the CH4 radiative forcing on top of
anthropogenic ‘business as usual’ scenario. However,
it is also shown that with serious mitigation of anthro-
pogenic emissions or a ‘maximum feasible reduction’
scenario the effect of even extreme natural arctic CH4

emission increase will be neutralized and even still
maintain a lower radiative forcing by 2100 than a busi-
ness as usual scenario will lead to (Christensen et al
2019).

Recent changes in biogeophysical energy exchange
and transport within the Arctic, and between this
region and the rest of the globe, now exceed even
extreme projections. There is now clear evidence for
both the marine and terrestrial Arctic environments
that winter is not, as has previously been assumed, a
dormant time for ecosystem processes (Mastepanov
et al 2008, Christensen, 2014, Pirk et al 2016, Commane
et al 2017). The winter includes carbon exchange
through sea ice (Parmentier et al 2013). Terrestrial
carbon exchange is complicated by the interaction
of thawing permafrost, intensified hydrological cycle,
vegetation change, and coupling between the land and
ocean.

There is now mounting evidence for increasing
gross primary production and ecosystem respiration
with warming, however, the net effect on land-atmos-
phere CO2 exchange remains unclear (Lund et al 2010,
Lopez-Blanco et al 2017). The sea ice decline asso-
ciated with late-summer-focused warming impacts
terrestrial processes and ecosystems and greenhouse
gas exchange (Parmentier et al 2013, Post et al 2013).
The greening of the Arctic is expected to result in
stronger growing season carbon uptake as well as
lower albedo and higher turbulent heat fluxes (Chapin
et al 2005, Lund 2018). Conversely, thawing perma-
frost mobilizes carbon through both vertical (Schuur
et al 2015) and lateral pathways (Spencer et al 2015).

The CO2:CH4 emission ratio from thawing perma-
frost soils is dependent on soil moisture conditions
(Schadel et al 2016). While higher temperatures pro-
mote CH4 production within Arctic soils, the net flow
into the atmosphere is constrained by the water table
depth. Whether the Arctic surface will become wetter
or drier may thus determine the net atmospheric CH4

exchange (Watts et al 2014). Under climate change,
trends in the net carbon flux may thus be damped
(Parmentier et al 2011, Lund et al 2012) and possibly
offset by increases in early winter respiration when
plants have senesced (Commane et al 2017).

4.3. Changes to arctic hydroclimatology
4.3.1. Arctic humidification
Available observations from land and coastal stations
indicate a humidity increase at the Arctic surface
(Hartmann et al 2013, Vihma et al 2016) and in themid
troposphere (Serreze et al 2012). The humidification is
in part related to increased advection of moist air from
mid-latitudes (Zhang et al 2013) and longer sea ice-free
seasons (Markus et al 2009, Serreze et al 2012). Walsh
et al (2011) find increases in cloudiness over the Arctic,
especially in low clouds during the warm season. The
higher humidity increases downward longwave radia-
tion (Zhang et al 2001), contributing to amplification of
warming (Pithan andMauritsen 2014).

4.3.2. Precipitation increase
While there is considerable uncertainty in precipita-
tion trends over the Arctic, the available observations
and reanalysis datasets (Rawlins et al 2010, Rapaic et al
2015) suggest increases of 1.5%–2.0% per decade in
annual precipitation which is consistent with the
estimated temperature sensitivity of Arctic precipita-
tion of 4.5%perK (Bintanja and Selten 2014).

Here, according to NCEP/NCAR Reanalysis, the
increase in annual total precipitation for the area north
of 50 deg. N latitude 1971–2017 (47 years) is strongest
during the cold season (October through May),
increasing from 1971 to 2017 by 6.8% about an aver-
age rate of 225 mm during the eight-month period
with high confidence (1−p=0.994). The increase
during the June through September warm season is
less; 4.7% about an average rate of 168 mm during the
four-month period (1−p=0.935). The 1971–2017
period of Arctic precipitation exhibits inter-decadal
fluctuations with a prominent increase from the mid
1980s to the late 2000s (figure 1(c)). Annually, the
increase is 6.2% (1−p>0.999) about an average of
rate of 393 mmper year.

Consistent with precipitation enhancement from
water vapour feedback theory (e.g. Trenberth 2011),
Box et al (2013) find a+6.8% °C−1 increase in Green-
land snow accumulation. Here, regression of annual
NCEP/NCAR reanalysis precipitation for the Arctic
region (north of 50° latitude) for the 1971–2017
(47 year) period with Northern Hemispheric air
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temperatures suggest a +7.5% °C-1sensitivity
(R=0.276, 1−p >0.937)25. Seasonally, the pre-
cipitation sensitivity is 7.1% °C−1 (R=0.191,
1−p=0.795) for the Arctic warm season and
6.5% °C−1 (R=0.203, 1−p=0.823) for the cold
season. When using Arctic temperatures (instead of
the Hemispheric temperatures), the precipitation sen-
sitivity values range from 3.3% to 3.7%, roughly a fac-
tor of two lower, presumably because the amplitude of
Arctic temperature variability is roughly 2×higher
than hemispheric air temperature. The associated cor-
relations: 0.270 (1−p=0.930) in the warm season,
R=0.447 (1−p=0.998) in the cold season and
R=0.510 (1−p>0.999) annually, suggest that
interannual variations in air temperature is not the
only process controlling precipitation.

Increased precipitation does not necessarily mean
that the Arctic surface will become wetter, since
increased temperature tends to increase evapo-
transpiration (Zhang et al 2009). For example, drying
conditions result in areas where changes in evapo-
transpiration exceed precipitation inputs. Increased
drainage following permafrost thaw may also lead to
drier conditions (Liljedahl et al 2016), and reductions
in water availability will limit vegetation growth and
CO2 uptake.

4.3.3. Rainfall increase
Decreasing snowfall at the expense of increasing rain-
fall is observed around the Greenland ice sheet margin
(Doyle et al 2015) and in regions with warmer winter
climates such as Scandinavia and the Baltic Sea basin
(Rasmus et al 2015, Irannezhad et al 2016). Increasing
snowfall is documented in colder regions such
as northern Canada and Siberia (Kononova, 2012,
Vincent et al 2015) and the lower elevations of the
Greenland ice sheet (Box et al 2013, Hawley et al 2014,
Wong et al 2015).

4.3.4. Soil moisture
Spatial variability in soilmoisturemay be an important
driver of local-scale plant composition (Nabe-Nielsen
et al 2017). On a larger scale, the spatial variability in
soil moisture may explain the heterogeneous pattern
of vegetation growth as deducted from remotely-
sensed vegetation greenness indices (Bhatt et al 2017).
Changes in precipitation patterns (e.g. shifts from
snow to rain) will impact animal distribution and
demographics both directly (e.g. Schmidt et al 2015,
Kankaanpaa et al 2018) and indirectly through changes
in plant composition and productivity. Increased
winter snow fall will accelerate permafrost warming
from increased insulation (Zhang 2005). Increasing
cloudiness decreases tundra ecosystem photosynthesis
and, contrary to the effect over snow- and ice-covered
surfaces, it reduces surface energy availability (Lund

et al 2017). Any summer dryingmay be outweighed by
enhanced winter precipitation (Serreze et al 2002).
Further, changes in evaporation only exceed those in
precipitation in a limited area of the Arctic oceanic
domain and not over land areas (Jakobson and
Vihma 2010).

4.3.5. Arctic river discharge increase
An increase in the discharge of major rivers terminat-
ing in the Arctic is well documented (e.g. Peterson et al
2002, Serreze et al 2006, Rawlins et al 2010, Haine et al
2015, Holmes et al 2015, Vihma et al 2016), with
Eurasian rivers showing the greatest increase. Here, we
assess Arctic river discharge using Global Runoff Data
Centre (GRDC) data, providing 91% complete tem-
poral coverage of six Eurasian rivers (Ob, Pechora,
Severnaya Dvina, Yenisei, Lena, and Kolyma) during
1981–2011 and 86% complete coverage from the two
major North American Arctic rivers (Mackenzie and
Yukon) during 1975–2015 (figure 1(d)). By volume,
the six-Eurasian river discharge is 1.8 times the average
of the assessed two-North American river discharge.
The combined river basin area cover 70% of the pan-
Arctic drainage area (Holmes et al 2015).

For the limited set of cases when all rivers are
reporting data, we find the average discharge increas-
ing in Eurasian rivers by 56.1 km3 yr−1 or . The North
American river discharge increased by 23.6 km3 yr−1

over the 1.32×longer 1975–2015 period (table 1).
While for a different period, the Eurasian discharge
increase about a six-river 1981–2011 average of
467 km3 yr−1 is +12%, the North American Arctic
river discharge about a 1975–2015 average of
253 km3 yr−1 is lower; +9%. We find no high con-
fidence correlations of individual nor composite river
discharge with Arctic nor hemispheric temperatures
(table 1).

4.3.6. Arctic sedimentation increase
Increased delivery of organic matter and nutrients is
evident in Arctic near‐coastal zones (Bring et al 2016).
Increases in Greenland ice sheet meltwater runoff
during the 20th Century are linked to increased
sedimentation rates (Bendixen et al 2017). Hawkings
et al (2016) estimated that the Greenland ice sheet
contributes about 15% of total bioavailable phos-
phorus input to the Arctic oceans (∼11 Gt yr−1) and
dominates the total phosphorus input (408 Gt yr−1),
which is more than three times that estimated from
Arctic rivers (126 Gt yr−1).

4.3.7. Arctic ocean freshening
Arctic Ocean freshening is being driven by increases in
Arctic precipitation and river discharge (Vihma et al
2016), with enhanced oceanic heat inflows from both
the North Atlantic and the North Pacific playing a role
in the retreat of sea ice in the Arctic Ocean. Increased
ocean heat storage in newly sea-ice-free ocean areas

25
Both temperature and precipitation time series are temporally

detrended to avoid spurious correlation.
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has been confirmed from recent shipboard observa-
tions (Walsh et al 2011).

4.4. Tundra greening and terrestrial ecosystems
Arctic greening (overall increases in vegetation bio-
mass as deducted from satellite observations of land
surface reflectance via NDVI, the normalized differ-
ence vegetation index) has been observed across
tundra ecosystems over the past 30 years (e.g. Bhatt
et al 2017) (figure 1(e)). Since Arctic tundra vegetation
is temperature-limited, summers with above average
summer warmth correspond to higher NDVI values
and vice versa. Here, the increase of Arctic tundra
average andmaximumNDVI both correlate with high
confidence with TArctic Warm Season (table 1). The NDVI
covariability with air TArctic Warm Season is most likely
related to greater amounts of photosynthetically active
radiation during warmer-than-normal summers.
Further, Martin et al (2017) link shrub biomass with
air temperature, soil moisture, herbivory, and snow
dynamics. Declines in the NDVI, i.e. ‘browning’, may
be related to water or nutrient limitation, permafrost
degradation, and extreme winter events (Phoenix and
Bjerke 2016, Bhatt et al 2017).

Tundra-atmosphere CO2 exchange, as presented
by observation-based modelling (Zhang et al 2018),
indicates a trend towards increased tundra CO2 sink
functioning (more negative net ecosystem exchange)
during 2000–2008, caused by a stronger increase in
gross primary production compared with ecosystem
respiration (Lund et al 2012). However, this trend
reversed from 2008 to 2014. As discussed above, high-
latitude CH4 emissions fromArctic tundra ecosystems
represent a potentially important biogeochemical cli-
mate feedback, and are related to changes in temper-
ature, moisture, and shifts in vegetation composition
(e.g. Olefeldt et al 2013). Long-term observations of
CH4 emissions at Arctic sites are still relatively rare,
and in particular few studies include non-growing sea-
son CH4 emissions, whichmay represent up to 50% of
annual CH4 emissions (Treat et al 2018). The rather
stable interannual variation in ecosystem respiration,
as indicated by CH4 emissions is observed at Zacken-
berg, NE Greenland. However, when comparing with
other sites where similar monitoring is taking place in
West Greenland and on Svalbard, a clear relationship
is found with an increasing annual CH4 emission with
growing degree days (figure 3; Pirk et al 2017). Differ-
ing local tundra CH4 dynamics points towards the
importance of comparable observations beingmade at
multiple sites for an improvement of our under-
standing of the potential CH4 tundra emission chan-
ges (Christensen 2014).

In terms of floral population dynamics, there is
now strong evidence that the summer warming trend
is causing an earlier and more condensed flowering
period of key plant species in the interaction web,
including pollination. A condensed flowering period

leaves a progressively shorter time-window for the
pollinators with possible subsequent cascading effects
through the ecosystem (Hoye et al 2013, Schmidt et al
2016).

4.5. Fire
Fire clearly causes dramatic short-term changes in
vegetation and ecosystem function (Bret-Harte et al
2013). Drier conditions and an increase in maximum
air temperatures contribute to increased fire risk (Jolly
et al 2015). Price et al (2013), conclude that increases in
the average North American area burned will be
gradual, despite periodic extremes. The fire data
analyzed here (figure 1(f)) do exhibit non-normal
distributions, containing a relatively small number of
severe years. Burned area does not exhibit any co-
linearitywithTArcticWarm Season in this analysis (table 1).
Rather, the fire-climate relationship is related to sub-
seasonal dry/warm episodes and to increasing light-
ning ignition that is shown to correlate with air
temperature and precipitation (Veraverbeke et al
2017). That study finds an increase in lightning
ignitions since 1975, and that the large 2014 and 2015
events (figure 1(f)) ‘coincided with a record number of
lightning ignitions and exceptionally high levels of
burning near the northern treeline. Indeed, lightning
ignition explains the majority of the interannual varia-
bility in burned area’. Supportive of a climate driven
fire relationship, for Alaska, Young et al (2017) find
‘summer temperature and annual moisture availability
as the most influential controls of historical fire regimes’
and ‘a nonlinear increase in the probability of fire above
an average July temperature’.

4.6.Disturbance
Physical disturbance events such as wildfire and abrupt
permafrost thaw and insects are becoming more
frequent and could accelerate biome shifts, including
increasing tree density in taiga, expansion of tall shrubs
and trees into tundra, and conversion between terres-
trial and aquatic ecosystems. For example, shrubs and
trees have been observed to increase in upland tundra
ecosystems when permafrost thaw increases soil drai-
nage. Price et al (2013) make the following synthesis
‘Maladaptation commonly occurs when climate becomes
significantly different from that to which the local
gentoypes have adapted. The climatic effects may be direct
(e.g. effects of increased temperature on respiration rates)
or indirect (e.g. increased drought stress owing to decreased
soil water availability resulting from increased evapotran-
spiration and (or) reduced precipitation). These climatic
effects often render trees more susceptible to additional
stressors and their interactions, including insect pests (Frey
et al 2004, Hogg et al 2008, Morin et al 2009), disease
(Kliejunas et al 2009), and fire (e.g. Bergeron and
Leduc 1998,Volney andHirsch 2005).’
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4.7. Terrestrial snow cover decrease
Seasonal snow covers part of the Arctic for up to ten
months each year. Through its unique physical
properties of high reflectivity and low thermal con-
ductivity, as well as its water storage effects, snow cover
plays critical roles in energy and water exchanges, ice
growth, hydrology, ground thermal regime, carbon
cycling, and ecosystem services (Brown et al 2017).
The start and end dates of snow cover, and hence its
duration, are closely linked to air temperature with
spring snow cover duration anomalies significantly
correlated with May–June (MJ) Arctic air tempera-
tures (R=−0.464, 1−p=0.998) (table 1).

There is widespread evidence of a reduced snow
cover duration in the Arctic; by two to four days per
decade over the past 30–40 years (figure 1(g)). The lar-
gest downward trends are occurring at high latitudes
and elevations, a pattern that is consistent with Arctic
amplification of warming and enhanced albedo feed-
backs (Hernandez-Henriquez et al 2015, Pepin et al
2015). Most of the decrease in snow cover duration
results from earlier snowmelt, but delayed snow onset
is more important to the snow duration decline in e.g.
eastern Canadian Arctic (Brown et al 2018). Climate
change attribution studies have detected the influence
of greenhouse gas induced climate warming in the
observed decreases of spring snow cover (Najafi et al
2016) and snowwater equivalent (Jeong et al 2017).

Arctic spring (May through June) snow cover
extent on land has now decreased by more than 30%
since 1971 (figure 1(g)). Trends in annual maximum
snow accumulation are more uncertain but suggest a
decreasing trend of pan-Arctic land areas in the
amount of water stored in seasonal snow cover over
the past ∼20 years. There is evidence of increased ice
layer development in snowpacks in some regions of
the Arctic in response to more frequent winter thaw
and rain-on-snow events (Langlois et al 2016).

Snow is a major driver for Arctic ecosystem func-
tioning, affecting the surface energy balance, perma-
frost thaw, hydrology, plant phenology and greenhouse
gas exchange. Longer snow-free periods will strongly
affect tundra energy budgets, with increasing surface
energy availability and higher turbulent heat fluxes to
the atmosphere (Chapin et al 2005, Stiegler et al 2016).
The timing of snowmelt is key for both growing season
CO2 (Parmentier et al 2011, Lund et al 2012) and CH4

emissions (Mastepanov et al 2013, Pirk et al 2016).
Longer snow-free seasonswill further extend the period
of plant growth, enhancing CO2 uptake, but at the same
time respiration increases too. Changes in the net car-
bon balance may, therefore, not be as strong (Parmen-
tier et al 2011, Lund et al 2012) and possibly offset by
increases in early winter respiration when plants have
senesced (Commane et al2017).

Changes in snow cover can also have large impacts
on ecosystems outside of the growing season. Snow
cover is a good insulator and protects plants from
extreme winter temperatures. Winter warm spells,

however, may remove this protective cover and cause
plant damage (Phoenix and Bjerke 2016). Rain-on-
snow events can lead to thick ground ice while a com-
pletemelt of snow cover exposes vegetation to a return
to cold conditions. The damage caused by these
extreme winter events can affect vegetation growth
and carbon cycling in the following growing season
(Parmentier et al 2018) and is linkedwithmass caribou
mortality (Tyler 2010).

Snow cover sensitivities are complex and may
include timing dependencies that create transient phe-
nological and trophic mismatches from rapidly chan-
ging snow cover, e.g. Doiron et al (2015). Rapid
advance in snowmelt timing can cause a timing mis-
match between Arctic plant flowering and pollinating
species, with cascading effects throughout the trophic
levels (Hoye et al 2013, Schmidt et al 2016).

The relation between declining Arctic spring snow
cover and lower latitude climate is unclear, as most of
the available evidence suggest that potential linkages
are more likely during the snow cover onset period in
the fall (Cohen et al 2014). Observations of increasing
Arctic snow cover in the fall period from the NOAA-
CDR dataset (e.g. Cohen et al 2012) have been shown
to be inconsistent with multiple lines of observational
evidence and climate model simulations (Brown and
Derksen, 2013,Mudryk et al 2017).

The loss of the perennial snow banks that buffer
low flow periods in dry Arctic environments is evident
(Woo and Young 2014). Traditional activities of
northern residents such as hunting are sensitive to
snow conditions (Bokhorst et al 2016). The Arctic-
wide trend towards a shorter snow season is adversely
impacting access to food sources with implications for
health and disposable income (Furgal et al 2012).

4.7.1. Sea ice
The recent decade continues the unprecedented
change in Arctic sea ice, in both the rates and
magnitude of change in extent, area, thickness, spatial
distribution, and most aspects of temporal and spatial
variability (e.g. Overland and Wang 2013, Meier et al
2014, Comiso et al 2017). The Arctic has transformed
from an environment dominated by thick multi-year
sea ice to one dominated by thinner first-year sea ice
(Tschudi et al 2016), with an earlier melt onset (Bliss
et al 2017), later freeze-up (Markus et al 2009, Stroeve
et al 2014), and longer open water period (Parkin-
son 2014, Stroeve et al 2016, Peng et al 2018,Wang et al
2018). Sea-ice extent (figure 1(h)), thickness and
volume (Kwok andCunningham2015) are continuing
their downward trends. The past six years have seen
high variability, with record-low extent in summer
2012, low extents in 2015 through 2017, but relatively
higher extent and thickness in 2013 and 2014 (though
still much lower than values in the 1980s and 1990s).
Here, the highest correlation among the compared
variables with TArctic Warm Season is for September sea
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ice extent (table 1), strongly suggesting that further sea
ice loss is to be expected from awarmingArctic.

The Pacific sector of the Arctic Ocean, and Hudson
Bay and Baffin Bay, are showing increased open water
from August through December. This autumn exten-
sion of the open-water period (Stroeve et al 2016; Peng
et al 2018) is dominated by the ice albedo feedback (Per-
ovich andPolashenski 2012; Stroeve et al2014) andheat
capture in the upper ocean (Serreze and Barry 2011;
Lien et al 2017). The Atlantic sector shows increased
open water in winter. The open-water period is domi-
nated by horizontal ocean heat fluxes. Understanding
the evolution of snow on sea ice remains a significant
challenge and basin-wide estimates of snow are rare
(Webster et al 2014). The increasing presence of very
young ice types results in high salinity ice covers (e.g.
frost flowers) that are reactive in chemical exchanges
with the atmosphere andocean.

Along with Arctic sea ice decline, there is emerging
evidence for a loss of biodiversity in sea-ice habitats
(Meier et al 2014), including that of the polar bear
(Amstrup et al 2010). Open-water species, here whales
(cetaceans), may see new habitats opening. According
toMeier et al (2014), ‘Killer whales (Orcinus orca) sight-
ings have increased markedly in the eastern Canadian
Arctic over a period of decades; associated with changing
ice patterns (Higdon et al 2012), blue whales (Balae-
noptera musculus) have been acoustically recorded in
Fram Strait over an extended seasonal period, covering
June through until October (Moore et al 2011), and
North Atlantic right whales (Eubalaena glacialis) appear
to have spread north as southeast Greenland (Mellinger
et al 2011). Similarly, in the Pacific regions, fin whales
(Balaenoptera physalus) are present in the Bering Sea
almost year-round now (Stafford et al 2010) and gray
whales (Eschrichtius robustus) are spending increasingly
long periods in Arctic waters, delaying the southward
migrations [Moore 2008]. White whales (Delphi-
napterus leucas) in West Greenland have shifted their
summer distribution westward as sea ice has declined
[Heidi-Jørgensen et al 2010]. Sea surface temperature
changes (intimately linked to sea ice formation) have also
been implicated in changing phonologies of movements
in this species in the Canadian Arctic [Bailleaul et al
2012]. Bowhead whale (B. mysticetus) distribution has
also shifted recently, with significant population level
implications; Alaskan and Greenlandic populations,
which have been separated by ice in the past, are
now overlapping spatially in the Northwest Passage
[Heidi-Jørgensen et al 2012].

4.7.2. Land ice
Observational records of Arctic land ice mass balance
indicate stability or growth from 1971 until the mid
1980s, followed by a strong increase in ice loss. In the
47 year period (1971–2017), the Arctic was the largest
global source of land ice to sea-level rise, accounting
for 48% of the contribution during 2003–2010
(AMAP 2017) and 30% of the total sea-level rise since

1992 (Box et al 2018). After Greenland, the largest
northern contributions are from Alaska, Arctic
Canada and the Russian High Arctic. Glacier mass
balance deficit increased in the Alaskan sector in the
late 1980s followed by Arctic Canada then Greenland
(figure 1(i)).

Persistent extremes in warm season atmospheric
circulation are very influential for the observed mass
balance changes. In figure 1(i), note for example peri-
ods of anti-correlation between Alaska and Arctic
Canadamass balance, after 21st century, linked to per-
sistent regional atmospheric circulation extremes
(Box et al 2018). A shift to more negative Arctic
Canada glacier mass balance occurred after 1986
(Gardner and Sharp 2007), linked to increased July air
temperatures related to variations in the position and
strength of the July circumpolar vortex. The years
since 2013 have been amix of extremes; Ahlstrøm et al
(2017) suggest evidence for a regime shift in atmo-
spheric circulation after 2006.

Increases in the post-2005 equilibrium line alti-
tude by>250 m relative to the pre-2005 levels (Thom-
son and Copland 2017, Burgess 2017) coincide with
enhanced warming of ice cap surfaces above 1400 m
a.s.l. (Mortimer et al 2016). Densification of ice cap
firn areas due to warming has reduced or eliminated
the refreezing storage capacity of the many ice caps in
this region, thus increasing their sensitivity to future
warming (Noël et al 2018). Of the global glacier mass
loss between 1991 and 2010, 70% has been attributed
to anthropogenic climate change by Marzeion et al
(2014).

Here, NCEP/NCAR reanalysis region-specific warm
season (June through September) (Tregional Warm Season)
and cold season (October through May) precipitation
(Pregional Cold Season) is comparedwithGreenland, Alaskan,
Canadian, Scandinavian and Svalbard land ice mass bal-
ance (table 2). First, glaciermass balance is closely varying
with Tregional Warm Season. The connection is through the
long demonstrated simple melting degree days relation-
ship (e.g. Braithwaite 1995) but also connected with
downward longwave irradiance (Ohmura 2001) and sur-
face albedo reduction associated with increased melting
(Hock 2003). Of the glacier mass balance regions com-
pared, the Greenland ice sheet exhibits the strongest cor-
relation with Tregional Warm Season, followed by Arctic
Canada andSvalbard land icemass balance. Scandinavian
mass balance records, though more numerous and thus
being expected to yield robust statistical sampling, do not
correlate withTregional Warm Season. Scandinavianmass bal-
ance variability has been more influenced by precipita-
tion variability (Dowdeswell et al 1997). Norwegian
glacier positive mass balance anomalies in the 1990s are
attributed to North Atlantic Oscillation (NAO) extremes
(Nesje et al 2000). The NAO is regarded as internal varia-
bility that is not well correlated with Tregional Warm Season.
The lacking Alaskan sensitivity to Tregional Warm Season is
similar to the low correlation also found comparing with
theNorthernHemisphere air temperature series.
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Including precipitation totals in the regression
analysis suggests a dominance of warm season climate
on mass balance, consistent with Dowdeswell et al
(1997) and Østby et al (2017). Note how there is a con-
sistent pattern of larger magnitude negative mass bal-
ance correlation with Tregional Warm Season and a smaller
magnitude positive mass balance correlation with
Pregional Cold Season (table 2).

Taking the reasonable assumption that Tregional Warm

Season is independent of Pregional Cold Season yields multiple
regression correlation coefficients that are larger
than single regressions with Tregional Warm Season or
Pregional Cold Season (table 2). Explained variance is highest
for Scandinavia (Correlation2=0.674) where precipita-
tion correlates with mass balance nearly as highly as with
Tregional Warm Season. Dowdeswell et al (1997) similarly
found that Scandinavia had a stronger mass balance
response from the relatively more variable precipitation
rate for otherArctic glaciated regions.

Arctic Canada has no apparent precipitation sensi-
tivity yet exhibits the strongest Tregional Warm Season sen-
sitivity (Correlation=−0.760), consistent with low
precipitation rates (under 300 mm yr−1, Cogley et al
1996, Dyurgerov 2002) based on the reanalysis pro-
duct. Arctic Canada snow accumulation rates are simi-
lar to other High Arctic glacier regions. With few
exceptions, using annual or warm season precipitation
degrades the correlations, reinforcing the expectation
that mass balance may be best represented by integrat-
ing cold season precipitation, i.e. the accumulation
season part of the so-called ‘winter balance’.

4.8. Ecosystems
Long-term observational data to identify ecosystem
trends in the Arctic are few, due to the remoteness of
the region. However, in the past decade, newly
available contributions through sustained long-term
research have begun to enhance our ability to docu-
ment ecological change in the Arctic. Some of these
contributions are through research programs asso-
ciatedwith Arctic observatories, including Zackenberg
in Greenland (Schmidt et al 2017), northern Sweden at
Abisko (Callaghan et al 2013), and the Alaskan Arctic
near Toolik Lake (Hobbie and Klings 2014, Hobbie
et al 2017). Other long-term ecological data are
available through coordinated networks spanning
multiple sites, such as the International Tundra

Experiment, that aims to evaluate the long-term effects
of increases in temperature on plant growth, phenol-
ogy, and community composition (Oberbauer et al
2013). Moreover, long-term Arctic vertebrate data
have been compiled and routinely updated based on
contributions from individuals and organizations to
identify trends across 35% of the known Arctic
vertebrates since 1970 (Barry and Helgason 2016).
While these newly available contributions are essential
for reaching a better understanding of long-term
ecological Arctic change, new initiatives are also
needed, particularly for data collected during the
critical spring and fall shoulder seasons, as well as the
winter period, to gain a better understanding of change
over the full annual cycle (e.g. Bokhorst et al 2012;
Blume-Werry et al 2016).

5. Summary and conclusions

5.1. Keymessages
Arctic air temperature: Arctic annual average air
temperatures 1971–2017 increased 2.7 °C, at 2.4 times
the rate of the Northern Hemisphere average. The
3.1 °C increase in the cold season (October–May) is
the largest by season, 2.8 times the rate of theNorthern
Hemisphere cold season average. Arctic warm season
(June through September) temperatures increased
1.8 °C, 1.7 times the rate of Northern Hemisphere
summer.

Alaskan permafrost: New record-high annual
average temperatures in the upper 10–20 m of the
ground have been observed atmany permafrost obser-
vatories. At 20 mdepth for threeNorth Slope of Alaska
sites (West Dock, Deadhorse and Frankiln Bluffs) we
find a 2.5 °C permafrost temperature increase in the
past 47 years.

Arctic hydroclimatology: Observations from land
and coastal stations indicate widespread increases in
humidity, low-level clouds, precipitation, rainfall (at
the expense of snowfall), river discharge, sedimenta-
tion and delivery of organicmatter to the Arctic ocean,
freshening of the Arctic Ocean, and reductions in
snow cover, all of which are controlling factors in Arc-
tic terrestrial and probablymarine ecosystems.

Snow cover: Arctic snow cover is responding to
multiple environmental drivers and feedbacks (such as
warming, increased moisture availability, changing

Table 2.Regional land icemass balance comparisonwith regional warm season temperature and regional cold season precipitation.

Region

Correlation coefficient,

mass balance versus

Tregional Warm Season

Correlation coefficient,

mass balance versus

Pregional Cold Season

Multiple correlation

coefficient,mass balance versus

Tregional Warm Season andPregional Cold Season

Greenland −0.612 −0.038 0.620

Alaska −0.715 0.281 0.744

Arctic Canada −0.760 0.087 0.760

Scandinavia −0.674 0.627 0.823

Svalbard −0.633 0.032 0.656
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atmospheric circulation, changing vegetation,
increased frequency of winter thaws, rain-on-snow
events). There is widespread multi-dataset evidence of
declining snow cover over the Arctic with the annual
duration of snow on the ground shortening by 2 to
4 days per decade with the largest negative trends
occurring at high latitudes and elevations consistent
withAAof warming and enhanced albedo feedbacks.

Arctic Ocean sea ice: Sea ice extent and volume are
continuing their downward trends. The past decade
had record-low extent in summer 2012, and it is the
lowest decade ever in satellite era beginning in the
1970s. These are unprecedented change in Arctic sea
ice, in both the rates and magnitude of change in
extent, area, thickness, and spatial distribution. Along
with Arctic sea ice decline, there is emerging evidence
for a loss of biodiversity in sea-ice habitats.

Arctic land ice: In the 47 year period (1971–2017),
the Arctic was the largest global source of sea-level rise
contribution, 48% of the global land ice contribution
2003–2010 and 30% of the total sea-level rise since
1992. Temperature effects are dominant in land ice
mass balance; precipitation represents a source of
either damping or amplifying feedbacks respectively
via snow and rain.

Arctic region wildfires: Drier conditions and an
increase in maximum air temperatures contribute to
increased fire risk. Fire clearly causes dramatic short-
term changes in vegetation and ecosystem function.
The fire-climate relationship is related to increasing
lightning ignition that is shown to correlate with air
temperature and precipitation, thus linking Arctic
warmingwith the liklihood for increased fire.

Tundra and terrestrial ecosystems: Arctic greening
has been observed across tundra ecosystems over the
past 30 years. The increase of Arctic tundra average
andmaximumNDVI both correlate with Arctic warm
season air temperature with high confidence.

Carbon cycling: The changes in the global climate
system are already affecting biogeophysical energy
exchange and transport within the Arctic. The
response of the carbon cycle in northern high latitude
regions is influenced by terrestrial carbon exchange
and by coupling between the land and ocean, which
has worldwide consequences. Importantly, there are
substantial organic matter stocks of carbon in the Arc-
tic contained in permafrost and within the methane
hydrates that exist beneath both subterranean and
subsea permafrost of the Arctic, all of which can affect
carbon cycling. Observational data indicate increased
tundra ecosystem CO2 uptake during the growing sea-
son. Further temperature increase will affect tundra
CO2 and CH4 emissions, their ratio being dependent
on local hydrology and permafrost thaw.

5.2. Closing remarks
Increasingly clear linkages are evident within and
between multiple Arctic climate indicators, having

cascading effects, from condensed flowering and
pollination plant species periods; timing mismatch
between plant flowering and pollinators; increased
plant vulnerability to insect disturbance; increased
shrub biomass; increased ignition of wildfires;
increased growing season CO2 uptake, with counter-
balancing increases in shoulder season andwinter CO2

emissions; increased carbon cycling, regulated by local
hydrology and permafrost thaw; conversion between
terrestrial and aquatic ecosystems; and shifting animal
distribution and demographics.

The Arctic biophysical system is now clearly trend-
ing away from its previous state and into a period of
unprecedented change, with implications not only
within but also beyond the Arctic. These indicator-
based observations also provide a foundation for the
research that is needed to address the gaps in knowl-
edge and to support a more integrated understanding
of the Arctic region and its role in the global dynamics
of the Earth’s biogeophysical systems.

5.3. Recommendations for futurework
Future work should be concerned with further unify-
ing our understanding of physical and biological
elements of theArctic system.

In situ observationsmust bemaintained, especially
where verifying higher spatial coverage satellite obser-
vation, in data assimilation and for model verification
studies. Further, in situ observations should be exten-
ded to include the critical winter period.

There is a need to quantify ecosystem impacts of
changes and their relationships to physical drivers in
the Arctic system.

Indicators that capture changes in extreme events
(winds, extreme temperatures, intense precipitation
events, droughts, fires) are needed to complement
indicators based onmean values, especially in the con-
text of impacts on humans and ecosystems.

Socioeconomic indicators are largely absent from
this study, primarily because their development has
lagged the compilation of physical and biological
indicators.

Major gaps include: poor knowledge of Arctic pre-
cipitation; Arctic snow water equivalent; Arctic fresh-
water budget, lacking high resolution homogeneous
reanalysis datasets; hydrological and biophysical pro-
cesses inmountain regions; etc.

The period since SWIPA 2011 has seen important
advances in snow science and greater understanding of
the role and interactions of snow in Arctic soil-cli-
mate-vegetation systems. However, there are still fun-
damental knowledge gaps and scaling issues that need
to be addressed to narrow uncertainties in observing,
understanding, and predicting Arctic snow cover and
snow-cover processes.

Critical areas for further work include: document-
ing and narrowing the uncertainties in snow observing
systems over the Arctic (snow water equivalent in
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particular); more realistic treatment of sub grid-scale
processes and snow-vegetation interactions in land
surface models; and the development of fully-coupled
snow chemistry and physicsmodels.
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