
Contents lists available at ScienceDirect

Ecological Informatics

journal homepage: www.elsevier.com/locate/ecolinf

Automatic detection of woody vegetation in repeat landscape photographs
using a convolutional neural network

Ulrike Bayr⁎, Oskar Puschmann
Norwegian Institute of Bioeconomy Research (NIBIO), Division of Survey and Statistics, Department of Landscape Monitoring, P.O. Box 115, 1431 Ås, Norway

A R T I C L E I N F O

Keywords:
Repeat photography
Photo monitoring
Landscape monitoring
Landscape change
Vegetation succession
Machine learning

A B S T R A C T

Repeat photography is an efficient method for documenting long-term landscape changes. So far, the usage of
repeat photographs for quantitative analyses is limited to approaches based on manual classification. In this
paper, we demonstrate the application of a convolutional neural network (CNN) for the automatic detection and
classification of woody regrowth vegetation in repeat landscape photographs. We also tested if the classification
results based on the automatic approach can be used for quantifying changes in woody vegetation cover between
image pairs. The CNN was trained with 50× 50 pixel tiles of woody vegetation and non-woody vegetation. We
then tested the classifier on 17 pairs of repeat photographs to assess the model performance on unseen data.
Results show that the CNN performed well in differentiating woody vegetation from non-woody vegetation
(accuracy= 87.7%), but accuracy varied strongly between individual images. The very similar appearance of
woody vegetation and herbaceous species in photographs made this a much more challenging task compared to
the classification of vegetation as a single class (accuracy=95.2%). In this regard, image quality was identified
as one important factor influencing classification accuracy. Although the automatic classification provided good
individual results on most of the 34 test photographs, change statistics based on the automatic approach deviated
from actual changes. Nevertheless, the automatic approach was capable of identifying clear trends in increasing
or decreasing woody vegetation in repeat photographs. Generally, the use of repeat photography in landscape
monitoring represents a significant added value to other quantitative data retrieved from remote sensing and
field measurements. Moreover, these photographs are able to raise awareness on landscape change among policy
makers and public as well as they provide clear feedback on the effects of land management.

1. Introduction

It is in the nature of cultural landscapes to undergo continuous
change in close interaction with the way we use them. Unfortunately,
not all landscape changes move in the desired direction. In Norway as
in many other countries, secondary forest succession on semi-natural
and marginal land as consequence of abandonment is at present one of
the most prevailing trends. The result has negative impacts on farmland
and grazing resources, landscape diversity, cultural values and biolo-
gical diversity (Amici et al., 2017; Fjellstad and Dramstad, 1999;
Lasanta et al., 2015; Sang et al., 2014). Landscape monitoring is an
efficient way to identify ongoing trends at an early stage, which enables
us to steer landscape changes towards a more sustainable land man-
agement.

Today, landscape monitoring is mainly based on remote sensing
imagery retrieved from aerial or satellite platforms. However, also
ground-based photographs have been acknowledged as an important

data source for documenting the state and change of landscapes and
ecosystems for a long time (Pickard, 2002). Repeat photography, often
referred as photo monitoring, is a method where ground-level photo-
graphs are taken from exactly the same location at different points in
time. In the case of landscapes, the time steps between the images are
usually several years or decades, sometimes even up to a whole century.
These “then and now” images are effective in communicating long-term
landscape changes to a broad audience (Klett, 2010). However, with the
technological advances in aerial and satellite remote sensing, ground-
based photographs have lost most of their relevance in modern land-
scape monitoring. One of the main reasons for this development is that
the retrieval of quantitative information from photographs and their
use for spatial analyses is limited. Nonetheless, these photographs tell a
detailed story on how the landscape has changed and therefore, land-
scape monitoring can greatly benefit from the integration of this rich
data source.

With The Changing Mile, Hastings and Turner (1965) laid the
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foundation for systematic repeat photography as a research method.
Klett et al. (1984) supplemented this work with their experiences from
the photographic project Second View. Since then, repeat photography
has been used for the monitoring of glacier retreat (Molnia, 2010;
Wiesmann et al., 2012), geomorphological processes (Khan et al., 2013,
Frankl et al., 2011, Conedara et al., 2013), tree line changes (Roush
et al., 2007; Van Bogaert et al., 2011), vegetation cover (Herrero et al.,
2017, Masubelele et al., 2015, Rhemtulla et al., 2002, Hendrick and
Copenheaver, 2009, Manier and Laven, 2002), costal habitats (Reimers
et al., 2014), plant phenology (Julitta et al., 2014; Luo et al., 2018;
Moore et al., 2016; Snyder et al., 2016), accuracy assessment (Kolecka
et al., 2015) and for the study of general landscape changes (Kaim,
2017; Kull, 2005; Nüsser, 2001; Puschmann et al., 2006; Sanseverino
et al., 2016). For a comprehensive overview of the broad application of
repeat photography in the natural science, we refer to the work of Webb
et al. (2010).

The majority of these studies use repeat photographs as qualitative
data, often with the intention to support the results from field mea-
surements or other remote sensing data. One reason is that missing
geographical information, highly variable image content and scale as
well as perspective issues make it difficult to perform quantitative and
spatial analysis on oblique photographs. In general, ground-based
photographs suffer from perspective distortion, high interclass varia-
tion, varying illumination and background clutter (Clark and
Hardegree, 2005; Kull, 2005).

Despite these limitations, there have been attempts to retrieve
quantitative information directly from photographs. Hall (2001) and
Roush et al. (2007) applied a rectangular grid on top of the photographs
to calculate vegetation cover percentages. Clark and Hardegree (2005)
used point sampling along randomly placed horizontal transects
through the image. They classified each image manually into cover
types and introduced image cover as a quantitative measure. Some
ecological studies combined repeat photographs with in-situ field
measurements to achieve quantitative results (Hoffmann and Todd,
2010; Masubelele et al., 2015; McClaran et al., 2010). More recently,
the use of monoplotting software offered the possibility to assigning
real world coordinates to photographs in order to use them for geos-
patial analysis (Bozzini et al., 2012; Conedera et al., 2013; Stockdale
et al., 2015). Fortin et al. (2018) retrieved class-specific land cover
estimates from repeat photographs taken within the Mountain Legacy
Project and compared results with Landsat classifications. Common to
all these studies is that the classification step is performed manually,
usually by drawing polygons around specific landscape elements fol-
lowed by a visual interpretation. Although there exists a wide range of
automatic segmentation and classification approaches for aerial and
satellite imagery (Blaschke, 2010; Tewkesbury et al., 2015), these
methods do not work in the same way for ground-based photographs
due to the very oblique perspective.

Machine learning, and particularly deep learning, has evolved into
the most commonly used approaches for the automatic classification of
digital images (LeCun et al., 2015). The major advantage of deep
learning is that the time-consuming and complex step of previous fea-
ture extraction becomes unnecessary. Instead, the model learns and
extracts the relevant features itself during the training process. The
major drawback of deep learning is that large amounts of labeled
training data are required (Kamilaris and Prenafeta-Boldú, 2018).
Among the deep learning architectures, convolutional neural networks
(CNN) are particularly suitable for image analysis due to their ability to
extract spatial features. CNNs have proven to be quite powerful in
performing different tasks such as object detection (Everingham et al.,
2010; Tompson et al., 2014), classification (Traore et al., 2018, Xu
et al., 2017, Amara et al., 2017, Lu et al., 2017, Han et al., 2018) and
semantic segmentation (Chen et al., 2014; Shelhamer et al., 2016).

However, many automatic detection and classification tasks in
computer vision focus on rather easily distinguishable objects like hu-
mans, roads or vehicles (Krizhevsky et al., 2017). While automatic

vegetation classification is a common task in remote sensing (Längkvist
et al., 2016; Zhang et al., 2018), there are few studies based on ter-
restrial RGB photographs. Harbaš et al. (2018) used a fully convolu-
tional network (FCN) to detect and segment roadside vegetation for the
navigation of autonomous vehicles. Buscombe and Ritchie (2018)
combined a CNN with conditional random fields (CFR) to classify and
segment landscape classes in images from different data sources, among
them also oblique photographs. However, most of these studies handle
vegetation as a single class, while less emphasis has been put on dis-
tinguishing between different vegetation types in landscape photo-
graphs. In contrast to aerial and satellite remote sensing, landscape
repeat photography operates only in the visible spectrum, which
strongly limits the possibilities to differentiate between different species
(Harbaš et al., 2018). Nevertheless, the automatic identification of
single plant species in simple photographs (e.g. taken with mobile
phones) has made great progress in recent years (Wäldchen et al.,
2018). Unfortunately, these advanced classifiers are limited to detailed
close-up photographs and thus, not yet suitable for landscape photo-
graphs.

More species-specific classifications based on landscape photo-
graphs can be found in precision agriculture, for example, for weed
detection or ground cover estimations (Kamilaris and Prenafeta-Boldú,
2018; Milioto et al., 2017; Skovsen et al., 2017). Some studies in
computer vision dealing with ‘scene parsing’ use separate classes for
grasses and trees (Farabet et al., 2013). For example, Bosch et al. (2007)
tried to separate tree vegetation from grass vegetation in natural images
using a probabilistic classifier. Zhang et al. (2016) applied spatial
contextual superpixel models to differentiate between different vege-
tation types along roads.

While research is striving towards new aerial and satellite remote
sensing technologies, we are sitting on enormous quantities of valuable
photographic material from the ground perspective. The potential for
quantitative research represented by this material remains largely un-
exploited. Thanks to their potential for high level of detail, repeat
photographs provide extensive information on landscape change ran-
ging from a broad landscape level down to the species level. By sup-
plementing conventional remote sensing imagery and field measure-
ments with ground-level repeat photography, we are able to gain a
more holistic view of landscapes. However, the retrieval of quantitative
information from landscape photographs is still challenging. The au-
tomatic classification of image content presents a first step to use large
quantities of photographs more efficiently and to analyze them in a
standardized way.

Forest regrowth is a central topic in landscape monitoring and one
of the predominant processes covered by repeat photography. Hence,
this study will focus on the detection of typical regrowth vegetation in
photographs. The gradual transition from open grassland to forest
makes the drawing of distinct lines between vegetation classes difficult.
To our knowledge, no study has tested an automatic approach to dis-
tinguish between woody vegetation and non-woody vegetation in re-
peat landscape photographs.

The main objective of our study is to test the application of a CNN
for the automatic recognition of woody regrowth vegetation in repeat
landscape photographs. This can be useful for analyzing large quantities
of photographs, quantifying changes between repeat photographs and
help to identify general trends of landscape change. To reach this ob-
jective, we define the following subordinate objectives:

1. We evaluate the performance of the trained CNN for the automatic
classification of woody vegetation in repeat landscape photographs.

2. We test how the automatic classification performs in quantifying
changes in woody vegetation compared to the manual classification.
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2. Material and methods

2.1. Taking repeat photographs

There exist a large number of local and regional repeat photography
projects, but quality and precision of the used photographic method is
varying considerably. Repeat photography as a scientific approach is
more than just taking a second snapshot in time. It requires careful
preparation and a special consideration of the physical conditions. To
achieve comparable image pairs, lighting, weather and seasonal con-
ditions should be as similar as possible. In older photographs, where
season or time is unknown, this information can be roughly estimated
through visual interpretation of shadow cast and plant phenology.
Unfortunately, weather and lighting conditions are in practice difficult
to replicate since field work needs to be planned beforehand, budgets
are limited and schedules are usually tight (Puschmann and Dramstad,
2002).

More important than the physical aspects is that repeat photographs
have to be taken from exactly the same location in order to avoid shifts
in the perspective. This point from where a picture is taken is called the
vantage point (Klett et al., 1984). Mislocating the vantage point by as
little as half a meter can cause visible mismatch between repeat pho-
tographs. Depending on the origin of the initial photograph, the re-
construction of the original photo location can be more or less chal-
lenging. Historical photographs retrieved from private and public
archives often contain only scarce information on date and place, which
makes the identification of the original location time-consuming, if not
impossible. However, distinct landmarks and local knowledge may help
to identify the original location. In contrast, newer initial photographs,
taken with the intention of repeating them in the future, already con-
tain information on GPS-location, date and time, which allows re-
visiting the location easily (Puschmann et al., 2018).

Even if coordinates are known, the spatial error of mobile GPS de-
vices does require some effort to find the exact location. In order to get
as close as possible to the original vantage point, we use a method
which has been progressively developed through the “Tilbakeblikk”-
project by Puschmann et al. (2006). This method is based on overlaying
the initial photograph with a rectangular grid that corresponds to the
internal grid of the camera (Fig. 1).

Lines and crossing points allow checking the current view against
the spatial arrangement of objects and landscape elements in the old
photograph. The camera position is adjusted accordingly until all check
points in the current angle of view match the initial photograph. This
method allows us to reconstruct the original photo location with high
precision. As a result we achieve repeat photographs with a high degree
of concordance, which in turn is an essential prerequisite for further
overlay analyses. Until now, the grid has been applied manually on top
of each photograph using Adobe Photoshop™ software. During this
study, we developed a program which is able to perform this task au-
tomatically. In the field, we use a paper printout of the overlaid initial
photograph together with a mobile GPS-device and a compass.

After the correct vantage point has been identified, we record GPS-
coordinates, focal length, viewing direction, time and date as well as
further important characteristics describing the vantage point.
Photographs are always taken using a tripod-mounted single-lens reflex
camera (SLR). The focal length is chosen in accordance with that one
used for the older image. However, using a slightly smaller focal length
than in the original photo, provides more room for cropping operations
during post-processing.

In the field, we often face the problem that shrubs and trees have
grown up in front of the vantage point, which then block the view
partially or completely. We still aim to retake the photograph as these
images convey a message. Another simple reason is that future revisits
may reveal that the same area has been reopened again. Back in office,
the raw images are edited as little as possible to maintain the natural
representation of the landscape. Precise image matching of the initial

photograph and the new photograph is performed through semi-trans-
parent overlay in Adobe Photoshop™. The final image pairs are ar-
ranged vertically to allow easy comparison (Fig. 2).

2.2. Data material

As part of the Norwegian monitoring program for agricultural
landscapes, the Norwegian Institute of Bioeconomy Research (NIBIO)
has been working with repeat photography since 1998 (Dramstad et al.,
2002; Puschmann and Dramstad, 2002). The related project “Tilbake-
blikk – Norwegian landscapes in retrospect” supplements the program by
retaking landscape photographs from all over Norway dating back until
the mid-19th century. A selection of repeat photographs taken within
the Tilbakeblikk-project is publicly available at www.tilbakeblikk.no
(NIBIO, 2018). At present, NIBIOs photo archive contains> 3500 re-
peat photographs illustrating changes in the Norwegian cultural land-
scape. Given the limited spectral information that can be captured from
black-and-white photographs, we restricted the study to RGB color
photographs.

For our study, we used two independent sets of photographs. The
first set contained 50 single landscape photographs with varying image
content, scale and illumination taken by the authors. These photo-
graphs were used to collect a broad range of training samples. The
second set consisted of seventeen image pairs (= 34 repeat photo-
graphs), which were used to test how the trained classifier performs on
unseen data (Fig. 2). We had to limit the number of image pairs to
seventeen, because their manual classification for model evaluation is

Fig. 1. Vantage point adjustment method. The initial photograph is overlaid
with a rectangular grid corresponding to the internal grid of the camera. The
grid allows checking crossing points and lines with the current view to obtain
repeat photographs of high concordance. The photographs are taken in
Hemsedal, Buskerud County, Norway showing forest regrowth on extensively
grazed pastureland.
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time-consuming. Except for two initial images originating from private
archives, all repeat photographs used in this study were taken by Oskar
Puschmann in the period 1994 to 2018.

2.3. Data preparation

From the first set of training photographs, we extracted a total of
57,960 samples with a tile size of 50× 50 pixels and labeled them
manually. Since our focus lies on woody vegetation, we decided to
perform a binary classification with woody vegetation as the positive
class. The negative class contains all other content such as grasses,
herbs, open soil, buildings, humans, animals, sky, water, stone and
asphalt. The data set is nearly class-balanced comprising 28,080 sam-
ples (48.4%) of the positive class and 29,880 samples (51.6%) of the
negative class. Example tiles from the training set are shown in Fig. 3,
which illustrates the high intra-class variability.

To prevent spatial autocorrelation between neighboring tiles, the
tiles retrieved from all 50 training photographs were collected in one
folder and shuffled, before they were split into training, validation and
test set. In this regard, the validation set is used during training for the
fine tuning of hyperparameters and model selection (Hastie et al.,
2009). Only after the best model setup has been found, its prediction
error is assessed once again on the test set. For splitting the whole set of
samples into the three sets, we first took a random sample of 10% from
the total number of tiles as validation set and then a further sample of
10% as test set. The remaining 80% of the tiles were used as training
set. To further increase the number of sample tiles, we performed data
augmentation on the training set. Data augmentation is a common
practice in machine learning to artificially increase the number of
training samples by applying slight transformation on the original data,
e.g. horizontal flip, rotation, scaling, brightness changes, shearing or
zooming.

The second set of photographs was used for testing the model per-
formance on new and more realistic data. When whole images needs to
be classified with CNN, there arise two problems. First, classical CNNs
assign only a single category on the input data and do not provide a
classification with distinct boundaries. Second, the CNN takes only a

fixed input size. To overcome these limitations, we split each photo-
graph into 50×50 pixel tiles to match the size of the training samples.
Before splitting, all photographs were resized to a maximum width of
2500 pixels to reduce computing time.

2.4. Convolutional neural network setup and training

CNNs are composed of three main components: convolutional

Fig. 2. Examples of the repeat photographs used in this study. Forest regrowth is one of the predominant ecological processes in repeat landscape photographs (left
and middle). However, occasionally photographs capture also the reopening of regrown land (right).

Fig. 3. Examples of the 50× 50 pixel sample tiles for training. Woody vege-
tation is used as positive class (a), the negative class (b) contains grass, open
soil, buildings, human, animals, sky, water, stone and asphalt. Note that many
tiles of grassy and herbaceous plants look very similar to tiles of woody plants.
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layers, pooling layers and fully connected layers (Voulodimos et al.,
2018). The first two components are responsible for automatic feature
extraction by applying a large number of different filters on the input
data. This process of feature extraction is performed on multiple levels,
whereby the output of each level is the input to the following. From
level to level, the extracted features increase in complexity - from rather
simple features (e.g. edges) on the lowest level to more complex fea-
tures on the highest level (Gu et al., 2018). By passing large quantities
of labeled training data through the network, the model successively
learns to recognize the relevant features, which are necessary to dis-
tinguish between classes.

For the automatic classification of woody vegetation, we developed
a CNN consisting of three convolutional layers and one fully connected
layer (Fig. 4). Each of the three convolutional layers was filtered with
128 kernels of size 3× 3. Average pooling with a 2× 2 filter was
performed on each convolutional layer. Besides the conventional
dropout on the fully connected layer (dropout rate= 0.7), we ad-
ditionally applied spatial dropout (Tompson et al., 2014) on each
convolutional layer (dropout rate= 0.3). This was in our case more
successful in preventing overfitting and improving generalization.
Dropout was applied on the training set only. We added a sigmoid
function to the final layer, which is responsible for the binary classifi-
cation. The optimal structure of the CNN was determined through a
heuristic trial-and-error process. We implemented the CNN using the R-
package “R Interface to keras” (Chollet and Allaire, 2017) and Ten-
sorFlow backend. The R code for model setup is available as supple-
mentary material (Supplemental 1).

Although the use of pre-trained models has proven to be advanta-
geous for many image recognition tasks (Weiss et al., 2016), we decided
to train the model from scratch. We recognized that our specific clas-
sification problem was too different from the pre-trained networks.
Moreover, we considered the number of labeled samples available
(nearly 30,000 per class) as large enough for training our own network.

We trained the CNN using ReLU activation for the convolutional layers
and an exponential linear unit (ELU) activation on the fully connected
layer (Clevert et al., 2015). As optimizer we chose the adaptive ADAM
(Adaptive Moment Estimation) with a learning rate of lr=0.0001.
Training was performed with a batch size of 256 over 16,290 iterations
(= 90 epochs).

In addition to our model for the classification of woody vegetation,
we trained a second model (hereafter called CNNveg) for the classifica-
tion of all vegetation (woody, herbaceous and grassy vegetation). For
this purpose, we aggregated the sample tiles for woody vegetation with
samples for grassy and herbaceous vegetation into the positive class.
The sample data for the negative class included now open soil, build-
ings, humans, animals, sky, water, stone and asphalt. Since grassy
samples accounted for a large proportion of the negative class, the
sample number for positive and negative classes was heavily im-
balanced after redistribution (49,489 vegetation vs. 8404 non-vegeta-
tion samples). Since vegetation is overrepresented in most photographs,
this imbalance is considered to be of limited importance.

2.5. Binary classification of whole photographs

In the next step, we tested how the trained CNN performs on new
and more realistic data. For this purpose, we applied the classifier on
the second set of photographs, containing 34 repeat photographs split
into tiles. All 50× 50 pixel tiles of the photographs are predicted by the
trained classifier in a fixed order and then reassembled into a raster grid
of the original size showing the classification result (compare Fig. 4).
This grid-based approach is not only more suitable for the CNN, which
requires identical input sizes during training and prediction, it is also
more robust against slight differences between the image pairs, which
may have occurred due to camera distortion.

For evaluation purpose, the seventeen image pairs were also clas-
sified manually. This has been done by overlaying each photograph in

Fig. 4. Illustration of the CNN architecture and the classification process. The network was trained with manually labeled samples with a tile size of 50×50 pixel.
The trained classifier was then applied on whole repeat photographs, which were also split into 50× 50 pixel tiles. The classifier predicts the output for each single
tile and reassembles them to the original image size.
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Esri ArcMap (10.5) with a grid consisting of 50× 50 pixel cells, which
corresponds to the tile size from the automatic approach. The high
resolution of the photographs allowed to visually distinguish between
classes. Thus, the results from the manual approach can be considered
as reference data. For most tiles, the class was unquestionable. Tiles
containing both classes were classified as positive class, if woody ve-
getation covered at least 50% of the cell. When it comes to quantifi-
cation, 2D ground photographs cannot provide real area coverage.
Therefore, we used image cover as a quantitative measure to analyze
changes between image pairs. According to Clark and Hardegree (2005)
image cover is defined as percentage of the pixel count of specific cover
types in a landscape photograph.

2.6. Model evaluation

All statistics were performed in R (version 3.3.1). The best model
was chosen based on the two parameters accuracy and loss, whereby
loss serves as a measure on how far model predictions differ from the
actual class. Model accuracy and loss were calculated for both training
and validation set. We tested the performance of the final model on two
different data sets: 1) on individual tiles and 2) on whole repeat pho-
tographs. Prediction accuracy on individual tiles was calculated using
the 5796 tiles from the test set (= 10%), which has been separated from
the total number of samples before training. We evaluated the accuracy
on whole repeat photographs based on the image pairs of the second set
of photographs. The classification results for each of these 34 images
were compared to the corresponding manual classification (reference
data). A confusion matrix was prepared for each photograph in-
dividually. The confusion matrix consists of pixel numbers for true
positives (TP), true negatives (TN), false positives (FP) and false nega-
tives (FN). As accuracy metrics, we use Overall Accuracy (OA),
Precision (P), Recall (R), F1 score (F1) and the Matthews correlation
coefficient (MCC). Metrics are calculated as follows:

=

+

R TP
TP FN (1)

=

+

P TP
TP FP (2)

= ∗
∗

+

F P R
P R

1 2
(3)

=
+

+ + +

OA TP TN
TP TN FP FN (4)

=
∗ ∗

+ ∗ + ∗ + ∗ +

MCC TP TN FP FN
TP FP TP FN TN FP TN FN

–
( ) ( ) ( ) ( ) (5)

The MCC measures the correlation between observed and predicted
values (range −1 to 1) and is used to evaluate the quality of binary
classifications (Vihinen, 2012). In contrast to R, P and F1 measures, the
MCC takes into consideration all four numbers in the confusion matrix.
To prove that the model performs better than by chance, we compared
our results with the accuracy reached by classifying the whole image as
the majority class (No Information Rate, NIR) and by a class-weighted
random guess (wRG).

In order to evaluate the overall performance, we averaged the
mentioned metrics over all 34 images. To explain differences in clas-
sification accuracy between images, we divided them into two groups
according to image quality (0= low, 1=high). The grouping was
performed manually through visual assessment of lighting conditions
and image resolution. We assume unequal variances and thus, use
Welch's t-test for comparing the means of both groups.

To assess the usability of the automatic prediction for change ana-
lysis between single photographs, we compare the automatically mea-
sured change in image cover of woody vegetation with the actual
change (based on manual approach). The difference between auto-
matically measured change and actual change is reported as absolute
error (percentage difference). We rank the seventeen image pairs ac-
cording to the absolute error and calculate Spearman's rank correlation
coefficient.

3. Results

3.1. Training and model performance on individual tiles

We stopped the learning process after 90 epochs, where the learning
curve converged and loss values did not longer decrease. Fig. 5 illus-
trates the improvement in loss and accuracy during the training pro-
cess. The fact that validation accuracy exceeds training accuracy is a
common effect when dropout and data augmentation is applied on
training data only. Consequently, the training set contains more diffi-
cult tiles than the validation set. Based on the validation set, the best
model reached a maximum accuracy of 96.4% (loss=0.13). Ad-
ditionally, we evaluated the performance of the final model on a se-
parate test dataset containing n=5796 individual tiles, which were not
used during the process of model selection. On these individual tiles,
the model reached an accuracy of 96.7% (loss=0.08).

Fig. 5. Learning process for loss (left) and model accuracy (right) over 90 epochs. The gap between training and validation accuracy is caused by using dropout on
the training data only.
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3.2. Classification accuracy on whole photographs

After testing the model performance on individual tiles, the trained
CNN was used to classify the tiles of whole photographs. Examined
individually, overall accuracies varied considerably between images
from min=73.5% to max=96.4%. Of the 34 images, 15 reached ac-
curacies above 90%, another 15 between 80% and 90% and four images
reached accuracies below 80%. F1 scores ranged from 0.42 to 0.98. A
full list of results for all 34 images is provided in Table A1, Appendix.
Fig. 6 shows three image pairs in direct comparison to the manually
classified photographs. In order to evaluate the overall performance of

Fig. 6. Classification results for three image pairs. The illustration compares the classification of woody vegetation using a manual approach (middle) and the
automatic CNN-based approach (right). Examples a) and b) show image pairs with good predictions, while c) illustrates an example with poor prediction. The broad-
leafed vegetables in c) appear for the CNN like woody vegetation. Percentages represent the corresponding overall accuracies.

Table 1
Mean accuracy metrics for different classifiers when applied on whole repeat
photographs (wRG=weighted random-guess, NIR=No Information Rate/
majority-class, CNNwoody=woody vegetation, CNNveg=all vegetation).

Classifier Overall
accuracy (%)

Min (%) Max (%) Recall Precision F1 MCC

wRG 64.3 49.0 98.2 – – – –
NIR 73.1 54.3 99.5 – – – –
CNNwoody 87.7 73.5 96.4 0.82 0.78 78.2 0.66
CNNveg 95.2 86.7 99.5 0.96 0.97 96.5 0.87
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the CNN on the test images, we calculated averaged metrics from the
individual results. Averaged over all 34 images, the model reached an
overall accuracy of 87.7% and a F1 score of 78.2% (Table 1). With this,
the model lies above the accuracy achieved by weighted random guess
(wRG=64.3%) and a majority class classification (NIR=73.1%).
Matthews correlation coefficient reached a value of 0.66. Most confu-
sion existed between woody vegetation and other similar vegetation
types such as grasses and herbaceous species. Some further confusion
appeared between woody vegetation and wooden houses or cabins,
which are very common landscape elements in Norway. The automatic
classification results for all test images are available as supplemental
material (Supplemental 2).

For comparison purposes, we trained the same network a second
time but with vegetation as one class. In this case, overall accuracy for
recognizing vegetation reached a mean of 95.2%, which is an increase
of 7.8% compared to the classification of only woody vegetation
(Table 1). Also mean F1 scores were considerably higher (96.5%) as
were mean MCC (0.87). For individual photographs, accuracy ranged
from min=86.7% to max=99.5%. Only four photographs reached
accuracies below 90%, while nine photographs resulted in an almost
perfect prediction with ≥98%. Particularly photographs with rather
poor predictions for woody vegetation, reached considerably higher
accuracies when vegetation is classified as one class. For example, the
worst prediction (B14-2004) improved from OA=73.5% to
OA=98.8%, which is a difference of 25%. Confusion matrices for both
classification tasks are shown in Table 2 (woody vegetation) and
Table 3 (all vegetation). Two examples for results achieved by the
CNNveg are shown in Fig. 7.

3.3. Influence of photo quality on classification accuracy

Since accuracies for classifying woody vegetation varied strongly
between images, we grouped the images according to their image
quality (image resolution and lighting). The grouping resulted in two
unequal sample sizes with n=13 for low quality images and n=21 for
high quality images. Welch's t-test showed that the means of both
groups are significantly different on the 95% confidence interval
(p= .045). The group of high quality images reached a mean accuracy
of 89.3%, images with low quality 85.0% (Fig. 8a). We compared also
means for classification accuracies when vegetation was scored as one
class. In this case, the influence of image quality on accuracy was not
significant (Fig. 8b).

3.4. Quantifying changes in image cover between repeat photographs

We compared the manually classified image pairs with each other
and used image cover of woody vegetation as a quantitative measure-
ment. The same was done with the automatically classified images.
Fig. 9 shows the absolute error (%) between actual changes (manual
approach) and changes measured with the CNN-based approach. Only
six image pairs classified by the CNN were within the acceptable tol-
erance range of± 5% from the reference. Twelve images were within a
range of± 10% difference. Due to one outlier with an error of 34.8%,
the mean (μ= 9.17, sd=8.17) diverged considerably from the median
(M=6.80, MAD=5.34). By comparing the absolute error with clas-
sification accuracies of the single images, we found that the absolute
error was highest for image pairs where the prediction was very

different between the two images. Absolute error was also high for
image pairs, where both images had poor classification accuracies. To
test for correlation between predicted change and actual change, we
ranked the seventeen image pairs corresponding to the absolute error.
Spearman's rank correlation coefficient was rho=0.917 (p < 0.001)
(Fig. 10).

4. Discussion

4.1. Performance of the CNN for classifying woody vegetation in repeat
photographs

We have tested the performance of a convolutional neural network
in terms of classifying woody vegetation in repeat landscape photo-
graphs. With an accuracy of 96.7% on individual tiles and 87.7% on
whole photographs our network performed well in detecting woody
vegetation. In comparison, Zhang et al. (2016) reached an accuracy of
79.8% on the class “tree” in natural roadside photographs using a
spatial contextual superpixel model. Similar to our approach, the au-
thors tested the classifier also on individual tiles and achieved an ac-
curacy of 94.8% for the tree-class. Byeon et al. (2015) reached a class
accuracy of 64.2% for trees in ground photographs using a LSTM Re-
current Neural Network (RNN). Similarly, Shuai et al. (2016) combined
a CNN with a directed acyclic graphic RNN (DAG-RNN) for scene la-
beling and achieved an accuracy of 82.5% for the tree-class. Although
our results acquired better results than these studies, it is obvious that
the model is far from perfect. Even though we aggregated all negative
classes into one class, there were some obvious class-specific mis-
classifications. Most confusion appeared between woody vegetation
and grassy or herbaceous vegetation. This is not surprising since re-
growth vegetation is often characterized by a very gradual transition
from perennial species to woody species (Harper et al., 2005). Even for
experts it can be difficult to draw a distinct line between woody ve-
getation and other vegetation types only based on photographs.

The fact that classification accuracy on individual test tiles was
considerably higher than on whole photographs is an expected effect of
the sampling process. When we collected the sample data, we selected
primarily tiles, which could be clearly assigned to the positive or ne-
gative class. Predicting the tiles of a whole photograph leads inevitably
to the inclusion of uncertain tiles, for which a distinct assignment is not
possible. With this in mind, we want to underline the importance of
testing classifiers not only on standardized image sets, but also on more
complex real-world images to get a realistic impression of how well the
classifier performs in practice.

In this study we find the wide range of accuracies across individual
photographs particularly notable. It is likely that the high variation in
image content, resolution, scale and illumination affected the classifi-
cation accuracy in this specific task. We identified image quality as an
important influencing factor. The advances in camera technology have
led to a strong increase in image quality over time. As a consequence,
older RGB photographs are usually of poorer quality than newer ones,
which in turn affects the performance of the automatic classification
approach. Low resolution leads to the disappearance of the textural
characteristics of woody vegetation so that it can be easily confused
with grassy vegetation. Particularly in RGB photographs, the textural
information is of high importance to distinguish between different ve-
getation types. Clark and Hardegree (2005) address the same issues

Table 2
Confusion matrix for the CNNwoody showing mean class accuracies for tiles from
whole photographs.

CNNwoody Woody Non-woody

woody 86.1 11.5
non-woody 13.9 88.5

Table 3
Confusion matrix for the alternative CNNveg showing mean class accuracies for
tiles from whole photographs.

CNNveg Vegetation Non-vegetation

Vegetation 96.2 8.1
Non-vegetation 3.8 91.9
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regarding image quality when trying to quantify vegetation changes
between repeat photographs using transect point sampling. Also
Skovsen et al. (2017) experienced a higher rate of misclassification on
blurred images, when they tried to distinguish clover from grasses and
weeds.

Nevertheless, as our test with the alternative CNNveg demonstrated,
image quality seems only to be relevant for distinguishing woody ve-
getation from other vegetation types. The CNNveg provided excellent
results in the classification of total vegetation in nearly all test photo-
graphs (mean OA=95.2%), even in photographs with low resolution.
We assume that in this case color information alone was sufficient to
successfully differentiate vegetation from non-vegetation. The high
accuracy in classifying vegetation as a single class is in line with the
results of Buscombe and Ritchie (2018), who reached accuracies be-
tween 89% and 96% in three data sets using 96×96 pixel tiles from
RGB UAV images. Similarly, Harbaš et al. (2018) reached an accuracy

of 96.3% using fully convolutional networks (FCN) to detect roadside
vegetation. However, we need to emphasize, that our approach of as-
sessing image quality only visually, is not ideal. To test the relationship
between image quality and classification accuracy more systematically,
an in-depth study of this particularly aspect should be carried out.

Besides image quality, we encountered further problems concerning
the classification of woody vegetation in landscape photographs. The
varying scale in photographs appeared to be a severe problem for the
automatic classification approach. In particular, grassy and herbaceous
vegetation close to the camera position was often wrongly classified as
woody vegetation. Although the training data contained samples from
both foreground and background, the network was not always able to
distinguish properly between these two vegetation types. The most
obvious reason for this is the strong visual similarity between woody
species and herbaceous species. In this regard, broad-leafed crop plants
are particularly challenging as Fig. 6c illustrates. Even for the human

Fig. 7. Example of two photographs comparing the results from CNNwoody and CNNveg. In the left images, only woody vegetation is classified, the right images show
classification of all vegetation.

Fig. 8. Boxplot comparing accuracies reached on low quality and high quality photographs. Classification of woody vegetation (a) resulted in lower accuracies and a
significant difference in means between low and high image quality. Classification of vegetation as one class (b) showed generally higher accuracies, but difference
between image qualities was not statistically significant.
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eye the vegetables in this example may look like the leaves of woody
plants. However, in contrast to the network, it is easy for us to under-
stand the spatial context and to recognize the area as cultivated land. To
solve this issue, it would be necessary that also the network understands
the spatial context in order to classify vegetation accordingly. This
might be reached by including more information from the whole image
during training, but would also require another approach than the tiling
method we used in our study. For example, Tang et al. (2015) were able
to improve classification accuracy by including GPS coordinates of the
location from where each image was taken. Through this information,
the network was able to make predictions based on the geospatial
context. Since also most repeat photographs contain GPS information, it
should be possible to link these photographs to spatial information from
existing land cover maps.

Regarding the background problem, one opportunity would be to
limit the classification to the middle and foreground, while excluding
the background. This requires a concise definition of where exactly the
background begins. To retain the benefits of machine learning, an au-
tomatic approach would be preferable for this task. However, due to the

high variability in image content, image quality, viewing angle and
scale, it is complicated to develop a universal rule for defining the
background in landscape photographs.

Also photographs with strong shadow cast posed to be a problem for
the automatic approach. Although we could not examine this incident
systematically due to the limited number of test images, we discovered
in some of them that shadowed areas were wrongly classified as woody
vegetation. This is most likely because the training data for woody
vegetation naturally contain a large number of very dark samples.
Moreover, shadow cast on grassland makes it more difficult to re-
cognize the typical texture of grassy vegetation. By increasing the
number of training samples from shadowed areas, the networks might
improve its classification accuracy for such areas.

4.2. Quantifying changes in image cover: Manual vs. automatic approach

We quantified changes in image cover of woody vegetation between
repeat photographs based on the automatic CNN-based approach and
on the manual classification. The comparison of change statistics from
both approaches show that changes based on the automatic classifica-
tion deviates considerably from the changes recorded through the
manual approach. Although the CNN-based classification provided
good individual results on the majority of the 34 photographs, we ex-
perienced some crucial limitations when changes were quantified on
basis of the automatic classification. The most obvious problem is that
the accuracy of change statistics strongly depends on classification ac-
curacy of both images. Even if woody vegetation in one image is pre-
dicted perfectly, poor prediction in the second image causes consider-
able bias in the analysis. Moreover, the limitation to RGB images offsets
one of the major advantages of repeat photography, namely capturing
historical changes over much longer periods of time than remote sen-
sing imagery.

A typical challenge for performing change analysis on photographs
is the presence of non-static objects such as humans, animals or ve-
hicles. Thanks to our contextual understanding, humans are in most
cases able to guess what lies behind these objects, but for the network
the same task is nearly impossible. The unintended classification of
temporary objects in one image leads to discrepancies when classifi-
cation results are compared with the second image.

Similar to raster analyses in remote sensing, we experienced the
grid-based approach as most comfortable for analyzing changes be-
tween photographs. Although a smooth delineation of classes would
result in a visually more appealing representation, it is rather incon-
venient for overlay analysis. Moreover, a grid-based representation is
more robust against slight perspective differences between photo-
graphs. If photographs are not taken from exactly the same location as
the initial image, a sharp delineation would result in a large number of
sliver polygons, which do not represent real image cover changes.

However, even if the automatic classification was not capable of
providing accurate cover percentages of woody vegetation, it was quite
successful in recognizing clear trends of increase or decrease.
Depending on the research goal, approximate statements about changes
between repeat photographs might be sufficient, especially when sup-
plemented with other data sources. For example, in monitoring, the
regrowth of woody vegetation on agricultural land is often used as an
indicator for land abandonment. For this purpose, it would be sufficient
to differentiate between strong, medium and weak increase (or de-
crease) of woody vegetation in order to draw appropriate conclusions.
If these trends are registered by several repeat photographs of an area,
we can assume that it is a general trend for this specific area. On this
basis we can initiate further, more accurate investigations of extent and
underlying causes. Nevertheless, in research questions, where accurate
cover percentages are essential or historical black-and-white photo-
graphs needs to be analyzed, the manual classification is supposed to be
superior.

With further improvements in the future, the automatic

Fig. 9. Absolute error (%) in image cover change, which is calculated by sub-
tracting predicted change (CNN-based classification) from actual change
(manual classification). The dashed line and the grey area marks the
median ± mean absolute deviation MAD (median=6.8, MADmedian=5.1).

Fig. 10. Plot comparing change measured on basis of the automatic classifi-
cation and actual change based on the manual classification. Spearman's rho of
0.917 indicates a relationship between the two variables.
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classification of woody vegetation might reach a level where it is able to
provide acceptable results in shorter time. Possible improvements may
be achieved by further increasing the sample size, using more photo-
graphs with high quality or by testing alternative CNN-architectures.
Another possibility poses transfer learning, meaning that knowledge
gained from one classification task is reused for another similar task
(Weiss et al., 2016). While training time and computing requirements
are considerably reduced, fine tuning a pre-trained model to fit the new
task can be time-consuming, in particular when the input data are
different. Nevertheless, for many classification tasks, pretrained models
such as VGG16 (Simonyan and Zisserman, 2014) or ResNet50 (He et al.,
2015) have proven to be beneficial, particularly in cases where only a
small amount of training data is available.

Finally, we want to emphasize, that image cover as a quantitative
measurement should be interpreted with caution, since it provides only
relative changes between photographs instead of real area changes
(Michel et al., 2010). Distant objects appear much smaller, while ob-
jects in the foreground are overrepresented. Also blocking through re-
growth of vegetation or other objects in the foreground can give a
skewed impression of actual landscape changes. A promising way to
overcome many of the mentioned limitations of photographs is a
technique called monoplotting, which allows relating the content of
photographs to real-world coordinates as illustrated by Stockdale et al.
(2015). Although classification is performed manually, their work de-
monstrates impressively how spatial information can be retrieved from
landscape photographs.

4.3. Repeat photography in landscape monitoring

Repeat photography has shown to be a valuable tool for doc-
umenting and communicating landscape change. The remarkable
richness of details in ground-based photographs is hardly to reach with
other remote sensing imagery. Still, if photographs are to be used in
systematic landscape monitoring, they need to fulfill some basic re-
quirements:

• GPS coordinates and viewing direction must be recorded

• environmental conditions (lighting, weather, season) and photo lo-
cation (perspective) should be as similar as possible to the initial
photograph

• photo locations should be evenly distributed over the study area and
photos need to be taken in several compass directions to ensure
spatial representativeness

Particularly the last aspect is difficult to achieve with repeat pho-
tographs, which are based on a historical initial photograph. Many
historical photographs have been taken rather unsystematically along
roads and popular trails with the intention to capture special landscape
characteristics. Thus, such photographs are often not spatially re-
presentative and typically cover a rather small portion of an area. These
issues are also addressed by Kull (2005) and Pickard (2002). Never-
theless, for research questions related to tourism, these photographs
might still be of high value. However, as a direct consequence of an
uneven distribution, photographs can easily give a false impression of
ongoing landscape changes. For example, it is a common problem that
regrowth of shrubs and trees close to the camera location blocks the
view partially or completely. Although single photographs from a cer-
tain region may show regrowth in the image foreground, we can hardly
conclude that this is a general trend in the larger area. In this case,
repeat photographs should be supplemented with additional informa-
tion, for example from aerial photographs. In general, we think the
linkage of ground-based photographs to other remote sensing data has
great potential and allows us to make use of the advantages of seeing
landscape changes from both perspectives.

To avoid the aforementioned issues, an even distribution of photo-
graphs over the study area is essential. To achieve this, initial

photographs need to be taken with the intention of being used for
landscape monitoring. Only then can it be ensured that photo locations
are evenly distributed and that they give a representative picture of the
study area. Predefined photo points and the taking of photographs in all
four compass directions ensure uniform area coverage. However, ex-
periences described by Puschmann et al. (2018) document that addi-
tional “free” images are recommended in order to capture elements not
covered with fixed photo directions. In the future, drones could also be
used for the automatic acquisition of repeat photographs and help to
achieve an even distribution of photo points.

Beside the drawbacks described, repeat photographs offer also a
range of advantages. The greatest strength of photographs is their high
information content, especially for historical periods where other re-
mote sensing imagery did not exist. By combining aerial and satellite
imagery with ground-based photographs, the research period can be
expanded into the past by almost one century. Moreover, the high
image resolution and the oblique view of photographs allow capturing
changes not detectable from the vertical view, for example, local
changes in species composition or facade changes of buildings. While
aerial photographs perform well in measuring horizontal changes, ob-
lique photographs can tell us much more about vertical changes, for
example in vegetation structure (stratification) and height.

With respect to landscape monitoring, photographs are thus capable
of providing a much earlier indication of ongoing changes. Another
advantage is that the acquisition of ground-based photographs is more
flexible and cost-efficient compared to aerial photography (Kull, 2005).
Finally, the ground-level perspective of photographs is closer to people's
natural perception of landscapes. This is a significant advantage for
communicating landscape changes in public and to policy makers. Even
without experience in aerial photo interpretation, ground-based pho-
tographs are easy to understand and quite powerful in stimulating
contemplation and debate (Kull, 2005).

Although the possibilities for quantitative analyses may still be
limited, we should not forget the main purpose of repeat photographs:
to serve as a qualitative supplement to quantitative monitoring results
retrieved through remote sensing and field measurements. Moreover,
repeat photography plays an important role in raising awareness of the
dynamic character of landscapes among policy makers and public.
Repeat photography can further provide valuable feedback for decision
makers on the effectiveness of environmental subsidies and main-
tenance measures.

5. Conclusion

We demonstrated the application of a convolutional neural network
for the automatic detection woody vegetation in repeat landscape
photographs. Our results showed that the differentiation of woody re-
growth vegetation from other vegetation types is a much more chal-
lenging task than the classification of vegetation as a single class. We
found that image quality is an important factor influencing the per-
formance of the automatic approach, while factors such as shadow cast
and varying scale were additional key factors. Although the network
did not provide perfect predictions, we do find our results promising.
Regarding the measurement of changes between image pairs, the CNN-
model was capable of recognizing rough trends of increasing and de-
creasing woody vegetation, which can be useful information in many
research questions. In cases, where more accurate measurements are
essential, the manual classification was superior. However, with further
improvements as proposed, the automatic classification of woody ve-
getation might provide reasonable results, which would enable a more
efficient analysis of large numbers of photographs more efficiently.

Finally, we evaluated the usability of repeat photography in land-
scape monitoring. Results in this study illustrate that despite the large
technological and methodical advances in image analysis, there are still
difficulties in retrieving meaningful quantitative information from
photographs. In order to examine further possibilities, our future
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research will focus on the geospatial analysis of photographs and their
linkage to other remote sensing data. This might allow us to use the
automatic classification from this study to retrieve real area coverage.

The results of our study can also be important for sharpening con-
sciousness for how and under which conditions photographs for mon-
itoring purposes should be taken in the future. Keeping in mind some of
the mentioned issues such as illumination, shadow cast, spatial dis-
tribution and image resolution, the photographer is able to take pho-
tographs that are suitable for use in landscape monitoring.

Regardless of whether we can use photographs as quantitative data
or not, based on our experiences, we consider repeat photography as a
powerful tool in landscape research. Communicating landscape related
issues to a broad audience and raising awareness of the dynamic
character of landscapes are the main contributions of repeat photo-
graphy. This awareness is essential to understand the consequences of
decisions made by policy makers, management and farmers. Through
this, repeat photography is no longer merely a glimpse into the past, it
becomes even capable of forming the future.
Table A1
Classification results and accuracy measures for all images, sorted by overall
accuracy (values above 90% are bold).

Image-Year R P F1
(%)

MCC OA (%)
Woody vege-
tation

OA (%)
All vegeta-
tion

Image
quality

B01-2006 0.53 0.44 48.0 0.46 96.4 97.6 +
B09-2015 0.83 0.78 80.2 0.78 95.5 96.9 +
B11-2014 0.97 0.98 97.4 0.72 95.3 99.5 +
B03-2015 0.79 0.67 72.2 0.69 94.4 94.3 −
B04-2015⁎ 0.17 0.01 2.7 0.03 93.6 97.0 +
B12-2015 0.91 0.97 94.1 0.87 93.4 91.1 −
B05-2018 0.95 0.90 92.7 0.86 93.2 93.6 +
B07-2006 0.84 0.84 84.0 0.80 93.0 99.2 −
B16-2011 0.98 0.93 95.4 0.78 92.6 98.0 +
B04-2009 0.85 0.87 85.9 0.81 92.6 93.3 +
B10-2009 0.90 0.95 92.7 0.85 92.3 96.7 +
B17-2010 0.93 0.86 89.4 0.83 91.6 97.4 +
B06-2017 0.89 0.96 92.2 0.82 90.9 93.0 +
B07-2017 0.73 0.90 80.7 0.75 90.9 99.0 +
B12-2009 0.86 0.86 85.9 0.78 90.1 95.3 +
B15-2006 0.68 0.73 70.6 0.64 89.8 97.3 +
B06-2002 0.82 0.87 84.5 0.76 88.8 91.6 −
B17-2000 0.89 0.94 91.6 0.74 88.6 98.3 −
B14-1994 0.96 0.83 89.4 0.76 87.6 91.6 +
B13-2005 0.90 0.89 89.6 0.74 87.4 98.4 +
B15-2018 0.98 0.86 91.6 0.67 87.1 97.0 +
B01-2018 0.94 0.77 84.4 0.73 86.2 97.2 +
B16-2016 0.87 0.92 89.1 0.70 86.1 88.4 +
B02-2018 0.82 0.31 44.7 0.44 84.0 96.8 −
B13-1999 0.95 0.73 82.3 0.70 83.9 98.1 −
B09-2010 0.87 0.89 87.7 0.64 83.8 98.3 +
B08-2002 0.76 0.99 85.9 0.66 81.7 94.9 −
B11-1994 0.79 0.64 71.1 0.58 81.3 93.2 −
B10-2001 0.69 0.79 73.5 0.58 80.2 87.7 −
B03-2010 0.54 0.93 68.4 0.59 80.0 97.4 −
B08-2017 0.78 0.94 85.6 0.54 79.5 86.7 +
B02-2002 0.81 0.23 36.3 0.36 78.0 88.1 −
B05-2002 0.94 0.41 57.4 0.52 77.8 95.0 −
B14-2004 0.71 1.00 82.9 0.43 73.5 98.8 +
Mean 0.83 0.78 78.2 0.66 87.7 95.2

⁎ Poor results due to generally low amount of positive class (woody vege-
tation) in this image.
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