
1 

Detect change-point, trend, and seasonality in satellite time series data to track abrupt changes 1 

and nonlinear dynamics: A Bayesian ensemble algorithm 2 

Kaiguang Zhao1,2*, Michael A. Wulder3, Tongxi Hu2, Ryan Bright4, Qiusheng Wu5, Haiming Qin6, 3 

Yang Li2, Elizabeth Toman2, Bani Mallick6, Xuesong Zhang7, and Molly Brown8 4 

1. Ohio Agricultural Research and Development Center, School of Environment and Natural5 

Resources, The Ohio State University, Wooster, OH 44691, USA 6 

2. School of Environment and Natural Resources, Environmental Science Graduate Program, The7 

Ohio State University, Columbus, OH 43210, USA 8 

3. Canadian Forest Service, Natural Resources Canada, Victoria, British Columbia V8Z 1M5, Canada9 

4. Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway10 

5. Department of Geography, Binghamton University, State University of New York, Binghamton,11 

NY 13902, USA 12 

6. Department of Statistics, Texas A&M University, College Station, USA13 

7. Joint Global Change Research Institute, Pacific Northwest National Laboratory, University of14 

Maryland, College Park, MD, 20740, USA 15 

8. Department of Geographical Sciences, University of Maryland, MD 20771, College Park, USA16 

* To whom all correspondence should be addressed (zhao.1423@osu.edu).17 

This is a post-print version of an article published in Remote sensing og Environment. The original version can be found here: 
https://doi.org/10.1016/j.rse.2019.04.034

*Revised Manuscript with no Changes Highlighted
Click here to download Revised Manuscript with no Changes Highlighted: beast_2019 -clean.pdf

http://ees.elsevier.com/rse/download.aspx?id=911215&guid=a80c97a8-d87e-4d5d-a522-1b4db887fe3f&scheme=1


2 
 

Abstract:  Satellite time-series data are bolstering global change research, but their use to elucidate 18 

land surface or vegetation dynamics is sensitive to algorithmic choices. Different algorithms often 19 

give inconsistent or sometimes conflicting interpretations of the same data. This lack of consensus 20 

has adverse implications and can be mitigated via ensemble modeling, an algorithmic paradigm that 21 

combines many competing models rather than choosing only a single “best” model. Here we report 22 

one such time-series decomposition algorithm for deriving nonlinear ecosystem dynamics across 23 

multiple timescales—A Bayesian Estimator of Abrupt change, Seasonal change, and Trend 24 

(BEAST). As an ensemble algorithm, BEAST quantifies the relative usefulness of individual 25 

decomposition models, leveraging all the models via Bayesian model averaging. We tested it upon 26 

simulated, Landsat, and MODIS data. BEAST reliably detected changepoints, seasonality, and trends 27 

in the data; it derived realistic nonlinear trend signals and credible uncertainty measures (e.g., 28 

occurrence probability of changepoints over time)—some information difficult to derive by 29 

conventional single-best-model algorithms but critical for interpretation of ecosystem dynamics and 30 

detection of low-magnitude disturbances. The combination of many models enabled BEAST to 31 

alleviate model misspecification, address algorithmic uncertainty, and reduce overfitting. BEAST is 32 

generically applicable to time-series data of all kinds, serving to improve robustness in uncovering 33 

true time-series dynamics. It offers a new analytical option for changepoint detection and nonlinear 34 

trend analysis and will help exploit environmental time-series data for probing patterns and drivers of 35 

ecosystem dynamics. 36 

Keywords: Changepoint; Bayesian changepoint detection; Disturbance ecology; Breakpoint; Trend 37 

analysis; Time series decomposition; Bayesian model averaging; Disturbances; Nonlinear dynamics; Regime 38 

shift 39 
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1. Introduction40 

Ecosystems are changing constantly, driven by natural forcings and human activities in 41 

complex ways. Disentangling the complexity to build predictive biospheric sciences is a defining 42 

theme of global change research (Franklin et al. 2016)—a goal hard to attain without reliable 43 

capabilities of monitoring lands over time (Pettorelli et al. 2014; Su et al. 2016; Zhao and Jackson 2014). 44 

To date, such spatiotemporal data come primarily from satellites (Hu et al. 2017; Jetz et al. 2016). 45 

Satellite time-series data, such as decades of Landsat, MODIS, or AVHRR imagery, have proven 46 

particularly valuable for elucidating patterns and drivers of land and ecosystem dynamics (Hawbaker 47 

et al. 2017; Li et al. 2018; Zhu and Woodcock 2014). 48 

Despite existing successes in satellite time-series analyses, challenges remain. A notable issue 49 

pertains to the diverging findings from the use of satellite data in addressing the same problem. For 50 

example, there is controversy regarding how the Amazon forests respond to basin-wide droughts; 51 

some satellite analyses suggested a green-up but others not (Huete et al. 2006; Samanta et al. 2010). 52 

Inconsistencies like this are attributed partly to different algorithms and perspectives taken for data 53 

processing and analysis (Liu et al. 2018; Shen 2011; Tewkesbury et al. 2015). A preponderance of 54 

satellite time-series analyses take a statistical modeling perspective, seeking a so-called best model out 55 

of many candidates to decompose time series into vegetation dynamics such as trends and abrupt 56 

changes (Cai et al. 2017; Jonsson and Eklundh 2002). This single-best-model paradigm is broadly 57 

embraced by practitioners (Powell et al. 2010; Zhao et al. 2018), but its use for seeking mechanistic 58 

understandings of ecosystems is not necessarily safe (Chen et al. 2014; Grossman et al. 1996). 59 

Mechanistic interpretations of time-series data are sensitive to choices of statistical 60 

algorithms or models. When fitting a linear model to decades of AVHRR data, a greening trend in 61 

vegetation was inferred and was attributed to global warming (Myneni et al. 1997). If using a piecewise 62 

linear model with one changepoint instead, a greening was observed only for the first period whereas 63 
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a browning for the second, generating new explanations of climate-biosphere interactions (Wang et al. 64 

2011). If piecewise models with multiple changepoints were fitted, the conclusion would change 65 

again, giving alternative speculations on drivers of ecosystem changes (Jong et al. 2012). Similar 66 

studies with diverging findings abound (Alcaraz-Segura et al. 2010; Yu et al. 2010). Extrapolation from 67 

such findings is at stake if applied blindly to validate predictive models and inform resource 68 

management.  69 

 Inconsistent or contradicting insights gained from different models are a common problem of 70 

the single-best-model paradigm. The “best” models are often selected to optimize certain criteria 71 

such as AIC and BIC. Depending on data quality and the choices of optimization algorithms and 72 

model selection criteria, many “best” models are possible for the same time series (Banner and Higgs 73 

2017; Cade 2015). The usefulness of these models is not dichotomous. Favoring one against others is 74 

an over-simplifying strategy that often overlooks the utility of alternative models and ignores model 75 

uncertainties. Model selection in the single-best-model paradigm is also complicated by the 76 

subjectivity in specifying data analysis models and the inability of simple models to represent complex 77 

time-series signals. Model structures with increased complexity are more likely to capture variations 78 

in satellite data at multiple timescales, but they are also more likely to overfit the data and their 79 

estimation entails sophisticated statistical techniques.  80 

Many problems difficult to tackle by conventional methods can now be addressed by turning 81 

to Bayesian statistics—an inferential paradigm that can treat both model parameters and structures 82 

probabilistically and offer a unified framework to address uncertainties of various forms (Denison 83 

2002; Ellison 2004; Finley et al. 2007; Zhao et al. 2008; Zhou et al. 2017). Unlike conventional 84 

criterion-based methods that choose only a single best model, the Bayesian paradigm can embrace all 85 

candidate models, evaluate how probable each of them is a true one, and synthesize the many models 86 

into an average model (Denison 2002; Thomas et al. 2018; Zhao et al. 2013). This scheme is known as 87 
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Bayesian model averaging (BMA). It belongs to a category of multi-model techniques broadly called 88 

ensemble learning. Consideration of many models helps BMA to capture model uncertainty, alleviate 89 

model misspecification, and improve flexibilities and generalizability in modeling complex data. 90 

These advantages of BMA have been exemplified in numerous case studies across disciplines (Banner 91 

and Higgs 2017; Raftery et al. 2005; Zhang and Zhao 2012; Zhao et al. 2013). Despite all the benefits of 92 

Bayesian inference or BMA, its use for satellite time-series analysis remains rather limited, with 93 

enormous potential to tap. 94 

This study seeks to reliably decipher time-series data for via Bayesian modeling. Our aim is 95 

(1) to introduce a generic Bayesian time-series decomposition algorithm for changepoint detection 96 

and nonlinear trend analysis, and (2) to demonstrate its applications to satellite data for tracking land 97 

and ecosystem nonlinear dynamics. We term the algorithm BEAST—a Bayesian Estimator of Abrupt 98 

change, Seasonality, and Trend. BEAST features many advantages over conventional non-Bayesian 99 

algorithms. Foremost, it forgoes the single-best-model paradigm and applies the Bayesian ensemble 100 

modeling technique to combine numerous competing models and generate a rich set of information 101 

unobtainable from non-Bayesian algorithms. BEAST can quantify various sources of uncertainties, 102 

detect abrupt changes of any magnitude, and uncover complex nonlinear dynamics from time-series 103 

data. But due to the Bayesian computation needed, its applications to high-resolution imagery over 104 

large areas may be constrained by computer power. 105 

In what follows, we further justify the value of Bayesian statistics for time-series analysis 106 

(Sect 2; Fig. 1), then detail the formulation of our BEAST algorithm (Sect 3; Figs. 2-3), and test the 107 

capabilities of BEAST using both simulated and real data (Sect 4 &5; Figs. 4-11). We also discuss the 108 

many features of BEAST as contrasted to existing time-series decomposition algorithms, and explain 109 

how ensemble learning and Bayesian modeling help to make BEAST a useful tool to capture, 110 

monitor, and derive land surface dynamics from satellite data (Sect 6).  111 



6 
 

2. Why use Bayesian statistics? 112 

We begin with extra backgrounds on how time-series data have been conventionally decomposed in 113 

non-Bayesian frameworks. Their potential weaknesses are then detailed to justify the needs for 114 

Bayesian algorithms. Below, our presentation focuses on time series of Normalized Difference 115 

Vegetation Index (NDVI)—a spectral variable measuring land surface greenness or vegetation vigor 116 

(Fig. 1a). But the reasoning applies equally to non-NDVI or non-satellite data, such as LAI, albedo, 117 

climate, streamflow, and social-ecological indicators. 118 

 Ecologically speaking, a NDVI time series captures landscape dynamics at three major 119 

timescales (Kennedy et al. 2014): (1) seasonality or periodic variations as forced by intra-annual 120 

climatic variations or phenological drivers; (2) gradual changes as driven by long-term environmental 121 

trends, chronic disturbances, or successional dynamics; and (3) abrupt changes associated with severe 122 

disturbances, sudden recoveries, regime shifts, or altered management practices (e.g., fire, insect, 123 

logging, weeding, urbanization, re-vegetation, extreme weather, crop rotation, and climate shift). In 124 

this decomposition, the time series is treated as the sum of the first two components—seasonal and 125 

trend signals (Fig. 1b). The third component—abrupt changes—do not stand out alone but is 126 

embedded in seasonality and trends as changepoints (Fig. 1b, blue vertical bars). 127 

 Mathematically speaking, the search for ecological interpretations of a time series reduces to 128 

finding the relationship between NDVI (y) and time (t) from the observed data at n points of time 129 

, ,…, 	via a statistical model 	. The model generally treats the time series 130 

 as an addition of seasonal ∙  and trend ∙  signals Fig. 1 : 131 

 ; ; ; , i=1,….,n (1) 

where the parameters  Θ  and Θ  specify the seasonal and trend signals; they also encode the abrupt 132 

changes implicitly. By analogy to linear regression, the time t and data y are independent and 133 

dependent variables, respectively; Θ  and Θ  are parameters to be estimated from the data . 134 
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135 

Fig. 1. Tracking land surface dynamics from space is treated here as a time-series decomposition problem. (a) A 3D 136 

volumetric view of 30 years of AVHRR NDVI data depicts ecosystem dynamics at three timescales: seasonality, 137 

trend (e.g., climate-driven responses or successional dynamics), and abrupt change (e.g., disturbance or 138 

changepoint). Algorithmically speaking, decomposition of a time series into these three components is a model 139 

selection problem, seeking an “optimal” model structure that best fits the time series. (b) But the use of different 140 

inferential procedures or selection criteria yields different or even contradictory decompositions, with adverse 141 

implications. For example, two “optimal” models in (b) can fit the same time series of (a) almost equally well, but 142 

with inconsistent decompositions and ecological interpretations. Vertical blue bars denote changepoints in seasonal 143 

dynamics or trends. The equal plausibility of the two “best” models highlights an inherent weakness of many 144 

existing satellite time-series analyses for studying ecosystem changes. 145 

 By decomposing a time series with Eq. 1, we seek to answer the following questions:  146 

 (1) How many changepoints occur and when? Changepoints indicates any abrupt changes in 147 

trend/seasonal signals (Jamali et al. 2015). By “abrupt”, we refer to not only sudden NDVI jumps 148 

(e.g., forest clearing or quick recovery) but also any turning points or breakpoints at which trend or 149 

seasonal signals start to deviate from the previous regular trajectories. This definition is broader and 150 

more inclusive than that assumed by other algorithms. As examples, a smooth recovery from tree 151 

stand-clearing is often associated with only one changepoint by many algorithms, but in our 152 

definition, the recovery trajectory may have many changepoints related to different succession stages 153 
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or rates of recovery. A subtle transition in vegetation dynamics caused by a shift in climate regime is 154 

rarely considered as a changepoint by many algorithms, but in our definition it is. 155 

 (2) What is the underlying trend? A trend is not just a linear line but can be a complex 156 

nonlinear trajectory interspersed with changepoints. The transient trend trajectory at changepoints 157 

are rarely true discontinuous jumps but rather quasi-continuous sharp transitions. Detection of trends 158 

with high fidelity is critical for inferring subtle drivers of ecosystem dynamics (e.g., climatic effects).  159 

 (3) What is the underlying seasonal signal? A seasonal signal may be also interspersed by 160 

changepoints. Seasonal changepoints do not necessarily coincide with trend changepoints. Detection 161 

of seasonal changepoints helps to identify potential drivers of phenology changes. 162 

Any uncertainties or errors in inferring the model Eq. 1 will be translated to those in answering these 163 

questions, thereby engendering contradictory or wrong ecological insights into ecosystem dynamics. 164 

 Existing methods to infer the model or relationship  come in many fashions (Brooks et al. 165 

2014; Kennedy et al. 2010; Zhu and Woodcock 2014). Often, the trend is parameterized and 166 

approximated by linear, piecewise-linear, or polynomial models (Browning et al. 2017). The seasonal 167 

signal is modeled via flexible basis functions, such as Fourier curves and wavelets (Brooks et al. 2012; 168 

Jiang et al. 2010; Martínez and Gilabert 2009; Shu et al. 2017). Another alternative is to ignore 169 

seasonal signals by fitting a trend model to a sub-time series (e.g., summertime NDVI only) (Wang et 170 

al. 2011). Moreover, abrupt NDVI changes are implicitly encoded in the parameters Θ  and Θ . 171 

These changepoints also need to be inferred from the data  (Chen et al. 2014). Such diverse options 172 

for model configurations lead to a large or even infinite number of candidate models for analyzing the 173 

same time series. Conventional methods aim to seek the “best” model and discard others based on 174 

selection criteria, such as mean square error, Cp, AIC, anomaly threshold, or subjective criteria (Chen 175 

et al. 2014; Wang et al. 2011). 176 
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 These conventional methods have potential weaknesses that were not always articulated in 177 

previous studies (Fig. 1). First, vegetation dynamics normally shows a nonlinear trend (Burkett et al. 178 

2005; Jentsch et al. 2007), which is not guaranteed to be adequately approximated by a single linear, 179 

piecewise-linear, or polynomial model. Second, many conventional analyses make too restrictive 180 

model assumptions. For example, prior studies often assumed a prescribed number of changepoints 181 

or a fixed harmonic order in seasonality (Lu et al. 2004; Wang et al. 2011), which is too arbitrary a 182 

choice. Third, the true model for NDVI dynamics is essentially unknown so that model 183 

misspecification is inevitable (Kennedy and O'Hagan 2001). The use of misspecified or wrong models 184 

is of little concern for those applications on retrievals of biophysical variables (Shmueli 2010; Zhao et 185 

al. 2018), but it becomes problematic for ecological interpretation of NDVI data simply because 186 

different models imply contrasting or contradicting hypotheses. Such model uncertainties are 187 

typically ignored by non-Bayesian approaches.  188 

Fourth, even for the same class of model type, the final model chosen is sensitive to not only 189 

model selection criteria but also data noises, thus opening up possibilities for inconsistent 190 

interpretations. The hyper-sensitivity of model inference to data noises has been widely recognized 191 

and reported in the literature of various disciplines (Grossman et al. 1996; Oreskes et al. 1994; Zhao et 192 

al. 2013). Fifth, the number of all possible models is often enormous, making it computationally 193 

infeasible to evaluate all of them. Instead, efficient approaches, such as forward sweep, greedy 194 

searching, and genetic algorithms, come into play to evaluate a finite selection of models with regards 195 

to some optimization schemes, but these schemes tend to find sub-optimal solutions (Denison 2002). 196 

Sixth, diagnostic statistics generated using conventional approaches are inadequate for answering 197 

many practical questions (e.g., what is the probability of seeing an abrupt change in the year 2002?). 198 

 These potential limitations of conventional statistical modeling can be alleviated by switching 199 

from the conventional single-best-model paradigm to the Bayesian paradigm (Fig. 2). Advantages of 200 
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the Bayesian paradigm are being demonstrated by a growing body of theoretical and empirical 201 

evidence (Denison 2002; Rankin et al. 2017; Reiche et al. 2015; Zhao et al. 2013; Zhou et al. 2017). 202 

Foremost, Bayesian inference treats both model parameters and structures as random and therefore 203 

characterizes them explicitly and probabilistically. As such, Bayesian inference tends not to deem any 204 

single model configuration as the true model, but instead recognizes the relevance and usefulness of 205 

all the potential models (Kennedy and O'Hagan 2001; Zhao et al. 2013). Specifically, each model is 206 

assigned a probability being the true model (Fig. 2); this probability can be learned from data and then 207 

used as an informative weight to synthesize all the models into a weighted average model. This 208 

Bayesian model averaging scheme is flexible enough to approximate complex relationships that 209 

cannot be represented by individual models (Fig. 2). It also alleviates the adverse consequences of 210 

model misspecification and tackles model uncertainty (Zhao et al. 2013). 211 

  Computationally, Bayesian inference or BMA is implemented via stochastic sampling 212 

algorithms known as Markov Chain Monte Carlo (MCMC) (Denison 2002; Green 1995). MCMC 213 

sampling helps to effectively explore the enormous model space at a reasonable computation cost. 214 

The use of MCMC circumvents analytical intractability and enables the Bayesian paradigm to handle 215 

the complexity that conventional methods cannot handle. MCMC also generates various sample-216 

based statistics to test hypotheses that are difficult to tackle using the conventional paradigm.  217 

 Bayesian statistics can aid in inferring the model of Eq. 1, due especially to its additive nature: 218 

a time series is the sum of seasonal and trend signals, with changepoints being inseparable parts of 219 

them. Inference of the three— trend, seasonality, and changepoints,—is not separable. Any 220 

estimation error in one will be leaked to bias the estimation of others. It is unlikely to correctly detect 221 

changepoints if the trend or seasonality is not well modelled. Trend analysis and changepoint 222 

detection are two sides of the same goal. It is also impossible to estimate true decomposition 223 

uncertainties if not accounting for model misspecification simultaneously for the three components. 224 
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Therefore, reliable time-series decomposition requires sufficiently approximating the nonlinearity of 225 

both trend and seasonality and simultaneously incorporating model uncertainties of all sorts. These 226 

issues are explicitly tackled by Bayesian inference, as detailed next. 227 

 228 

Fig. 2. Illustration of BEAST—a Bayesian ensemble time-series decomposition algorithm. Our modeling philosophy 229 

is that a time series can be fitted by numerous competing models, all of which are wrong but useful to some degree. 230 

Conventional methods choose the “best” model, ignoring model uncertainty or misspecification and opening up 231 

room for fortuitous conclusions (Fig. 1). As a remedy, BEAST quantifies the relative usefulness of individual models 232 

(i.e., model structures) and incorporates all the models into the inference via Bayesian model averaging. This 233 

ensemble learning makes BEAST a universal approximator of complex nonlinear trends and allows BEAST to 234 

account for uncertainties difficult to consider by non-Bayesian methods. For example, model uncertainty is explicitly 235 

addressed (e.g., gray envelope around the fitted seasonal or trend signals are 95% credible intervals). BEAST not only 236 
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detects the changepoints but also quantifies their probabilities of being true changepoints, providing confidence 237 

measures to guide informative interpretation of satellite time-series data. 238 

3. BEAST: Bayesian estimator of abrupt change, seasonality & trend 239 

This section describes the formulation and implementation of our BEAST time-series decomposition 240 

algorithm. The description is inevitably mathematical. Readers not interested in technical specifics 241 

may skip to Section 4 while re-visiting Figs. 2 &3 or Section 2 for an overview of the concept and 242 

capabilities of BEAST. The implemented software is available as both a Matlab library and an R 243 

package (to be released upon acceptance of this ms). 244 

 3.1 Parametric form of BEAST for time-series decomposition 245 

 Our analysis considers a time series	 , ,…,  to be composed of three 246 

components—seasonality, trend, abrupt changes—plus noise (Fig. 1b), which is formulated as a 247 

rewriting of Eq. 1:  248 

 ; ; . (2) 

Here, we assume the noise  to be Gaussian, capturing the remainder in the data not explained by the 249 

seasonal ∙  and trend ∙  signals. Following the common practice, we adopted general linear 250 

models to parameterize ∙  and ∙  (Jiang et al. 2010; Verbesselt et al. 2010b). Abrupt changes are 251 

implicitly encoded in the parameters	Θ  and Θ  of the seasonal and trend signals. 252 
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Fig. 3. How does BEAST decompose time series? BEAST is an additive model x β , formulating a time 254 

series y(t) as the linear combination of many basis functions x  (e.g., line segments x1-x6 or harmonics x7-x16 that are 255 

zero-valued except for the active segments). These basis terms are specified by the model structure parameters M: 256 

numbers and locations of seasonal/trend changepoints (i.e., horizontal blue bars such as tcp1 and scp1) and seasonal 257 

harmonic orders (e.g., 3rd and 2nd in this example). The aim is to infer not only the coefficients β  for a given M 258 

but also the model structure M itself (i.e., changepoint and harmonic orders). The combinatorics of all possible 259 

changepoints and harmonic orders gives an enormous model space with numerous candidate basis terms, making it 260 

computationally impossible to pinpoint the true best model. BEAST infers M by randomly traversing the model 261 

space via Bayesian model selection, so it is essentially a Bayesian general linear regression model. (The time axis is 262 

oriented vertically for ease of displaying.) 263 

 Specifically, the seasonal signal  is approximated as a piecewise harmonic model, defined 264 

with respect to p knots in time at 	 , k=1,…p (Fig. 3). These knots divide the time series into (p+1) 265 

intervals , , j=0,…,p, where  and  are the starting and ending times of the 266 

data. The model is specified for each of the (p+1) segments , , k=0,…,p, taking the form of 267 

, sin	
2

, cos	
2

	for		 , 0, … ,  268 

Here, P is the period of the seasonal signal (i.e., one year in our cases);  is the harmonic order for 269 

the k-th segment and is an unknown segment-specific parameter; and the coefficients 270 

, , , ,…,  are the parameters for sins and cosines. This harmonic model is non-continuous as a 271 

whole; the knots  indicate the changepoints at which abrupt seasonal changes may occur. Both the 272 

total number of changepoints p and their timings ,…,  are unknown parameters to be 273 

estimated. In short, we need the following parameters to fully specify the seasonal harmonic curve: 274 

Θ ∪ ,…, ∪ ,…, ∪ , , , 	 ,…, ; ,…,
 275 

which includes the number and timings of changepoints, the harmonic orders for all the (p+1) 276 

segments, and the coefficients of all the harmonic terms. All have to be estimated. 277 
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 The trend  is modeled as a piecewise linear function with respect to m knots at , 278 

j=1,…m (Fig. 3), which divide the time span into (m+1) intervals , , j=0,…,p, with  and 279 

 being the start and end of the time series. The trend knots or changepoints  are not 280 

necessarily the same as the seasonal changepoints . The trend over each interval simply is a line 281 

segment (Fig. 2), defined by coefficients  and :  282 

			for		 , 0, … ,   283 

Similar to the seasonal signal, the number of changepoints m and their timings ,…,  are 284 

unknown parameters to estimate. Hence, the full set of parameters specifying the trend  is 285 

Θ ∪
,…,

∪ , 	
,…,

 286 

which comprises the number and timings of trend changepoints and the intercepts and slopes of 287 

individual line segments.  288 

 Both sets of the parameters, Θ  and Θ , need to be estimated from the data . For ease of  289 

presentation, we re-classified the parameters Θ  and Θ  into two groups (Fig. 3): Θ , Θ M, . 290 

The first group M refers to model structure, including numbers and timings of trend and seasonal 291 

changepoints, and seasonal harmonic orders: 292 

M ∪
,…,

∪ ∪ ,…, ∪ ,…, . 293 

The second group 	is the segment-specific coefficient parameters used to determine exact shapes 294 

of the trend and seasonal curves once the model structure M is given. Collectively,  is denoted by 295 

, 	
,…,

∪ , , , 	 ,…, ; ,…,
. 296 

The subscript M indicates the dependence of  on model structure M. 297 

After this re-grouping, the original general linear model Eq. 2 becomes a familiar form: 298 

 (3) 
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where  and  are dependent variables and associated coefficients, respectively. Again, the 299 

subscript M suggests that the exact form of  and the coefficients in  both depend on the model 300 

structure M (e.g., numbers and timings of changepoints). For example, column vectors of the design 301 

matrix  are associated with individual segments of the piecewise linear and harmonic models 302 

(Fig. 3), with the number of coefficients in  being 2 1 2∑ . 303 

 As revealed in the re-formulated model of Eq. 3, the inference of vegetation dynamics now 304 

reduces to a model selection problem—determining an appropriate model structure M, including the 305 

numbers and timings of changepoints and the harmonic orders. Identifying an optimal model 306 

structure M for our problem is analogous to choosing the best subset of variables for simple linear 307 

regression. Once a model structure M is selected, its coefficients  are straightforward to estimate. 308 

However, unlike simple linear regression, the number of possible model structures for Eq. 3 is 309 

extremely large. Even for a time series of moderate length (e.g., n >100), it takes billions of years’ 310 

computation to enumerate all possible models for finding the best one that optimizes certain criteria 311 

(e.g., BIC). We circumvented this problem by resorting to Bayesian inference, as described next. 312 

3.2 Bayesian formulation of BEAST 313 

We extended the general linear model of Eq. 2 or 3 to build a Bayesian model for detecting 314 

abrupt change, seasonality, and trend from time-series data. In the Bayesian modeling, all the 315 

unknown parameters are considered random, including model structure M, coefficients , and data 316 

noise . Given a time series , ,…, , the goal is to get not just the best possible values of 317 

these parameters but more importantly, their posterior probability distribution β , ,M| . By 318 

Bayes’ theorem, this posterior is the product of a likelihood and a prior model: 319 

 , , | ∝ | , , , , . (4) 

Here, the likelihood | , , M  is the probability of observing the data  given the model 320 

parameters , , and M. Its form is governed by the general linear model  in Eq. 3. 321 
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Owing to the normality of error , the likelihood is simply Gaussian	 | , , M322 

∏ N ; , . 323 

 To complete our Bayesian formulation, what remains is to specify the second term of Eq. 4, 324 

, , M , which is called the prior distribution of the model parameters. By definition, we have  325 

, , M , |M M . 326 

Therefore, it suffices to elicit the conditional prior , |M  and the model prior	 M  327 

separately. The priors encode our existing knowledge or beliefs in possible values of the model 328 

parameters. Because of a lack of such general knowledge beforehand, our choices are flat priors, close 329 

to being non-informative. First, for , |M , we considered the normal-inverse Gamma 330 

distribution and introduced an extra dispersion hyperparameter  into it to further reflect our vague 331 

knowledge of the magnitude of model coefficients . Second, for the prior on model structure 332 

M , we assumed that the numbers of changepoints are any nonnegative integers that are equally 333 

probable a prior. The exact formula of our priors are detailed in Appendix A. 334 

Given our likelihood and prior models, the posterior of the model parameters becomes 335 

 β , , , ∝ ∏ ; , β β , , . (5)  

Its complete formulation after incorporating each component prior is expanded and presented in 336 

Appendix A, with more technical details explained there for interested readers.  337 

3.3 Monte Carlo-based Inference 338 

The posterior distribution β , , ,  of Eq. 5 encodes all the information essential for 339 

inferring ecosystem dynamics. But it is analytically intractable, so we resorted to MCMC sampling to 340 

generate a realization of random samples for posterior inference. The MCMC sampling algorithm we 341 

used is a hybrid sampler that embeds a reverse-jump MCMC sampler (RJ-MCMC) into a Gibbs 342 

sampling framework, as briefly described below.  343 
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The Gibbs framework samples the following three conditional posterior distributions in 344 

alteration for a total of N iterations. 345 

 

, ;	 

β , , , 	; 

β , , , ; 

(6)  

These three conditional posteriors permit generating the (i+1)-th sample 346 

,β , ,  from the previous sample ,β , , . In particular, the 347 

second and third conditional posteriors are a normal-inverse Gamma distribution and a Gamma 348 

distribution (Appendix A), which are easy to sample. In contrast, the first conditional posterior 349 

,  is difficult to sample because it is defined only up to an unknown proportionality 350 

constant (Appendix A) and also because the dimension of  varies from one model to another. These 351 

two difficulties were tackled by using the RJ-MCMC algorithm (Denison 2002; Green 1995). Details 352 

about RJ-MCMC are available in Zhao et al. (2013) and not given here. 353 

3.4 Posterior inference of changepoints, seasonality, and trends 354 

The preceding MCMC algorithm generates a chain of posterior samples of length N 355 

,β , , ,⋯ , . The chain captures all the information essential for inference of land 356 

dynamics, including trends, seasonal variations, and abrupt changes (Fig. 2). In particular, the 357 

sampled model structure , such as timings of changepoints and seasonal harmonic orders, can be 358 

directly translated into the model’s covariates  (Fig.3), with their associated coefficients 359 

being β . Each sampled model  gives one estimate of the land dynamics, ∙ β . 360 

Combining the individual estimates provides not only a final BMA estimate but also uncertainty 361 

measures. The BMA estimate of time-series dynamics is the averaging of all the sampled models:  362 
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∑ β
.  The associated uncertainty is given as a sample-based variance estimate: 363 

∑ β
. 364 

 Although each single model  is a piecewise model, the combination of all the individual 365 

models enables the BMA estimate  to approximate arbitrary nonlinear signals. Moreover, 366 

because the covariates  and model coefficients β  are simply a coalescing of the individual 367 

elements of the trend and seasonal signals, these elements can be separated to recover the trend and 368 

seasonal components, respectively (Fig. 3). 369 

More interestingly, the sampled model structure ,⋯ , ,  which is 370 

,
,…,

, ,
,…,

,
,…,

, allows making inference and testing hypothesis related to 371 

abrupt changes and land disturbances. Specifically, the chain ,⋯ ,  or ,⋯ ,  gives an 372 

empirical distribution of the number of changepoints in the trend or seasonal signals; therefore, the 373 

mean total numbers of trend and seasonal changepoints can be estimated as ∑
  and 

∑
. 374 

For the seasonal signal, the chain of 
0,…, ,⋯ ,  can be used to compute the average harmonic 375 

order  needed to sufficiently approximate the seasonality for any given time t:  376 

∑ 	

N
,			 	 	 ∈ ,

1
.		 377 

The use of differing harmonic orders for different times or intervals is a strength distinguishing 378 

BEAST from those algorithms that choose a pre-set, fixed order uniformly for the seasonal signal. 379 

 In addition, the chains 
,…,

,
,…, ,⋯ ,  indicate the exact timings at which the 380 

trend or seasonal changepoints occurred for the sampled individual models. From these chains, we 381 

can estimate the probability that a changepoint occurs at a time  or within a interval ,  by 382 

counting the frequency of the sample 
,…, ,⋯ ,  containing the time  or falling into , : 383 

	 	 	 	 	 , 	|
# 	 	 	 	 	 	 	 , 	

N
. 384 
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Likewise, given an estimated changepoint, we can derive its credible interval. We can also calculate 385 

many more sophisticated statistics, such as what is the conditional probability of observing a 386 

changepoint in trend at a time if another changepoint has already occurred somewhere, and what is 387 

the joint probability of observing a changepoint in trend at one time and a seasonal changepoint at 388 

another time? All these sample-based statistics serve as important measures for statistical diagnostics 389 

such as uncertainty analysis and hypothesis testing. For example, a changepoint with an estimated 390 

occurrence probability of 3% is less likely to represent a true abrupt change. 391 

3.5 Software Implementation  392 

We implemented BEAST in the C programming language. The core is the MCMC sampler of Eq. 6, 393 

an iterative process involving heavy matrix computation such as matrix multiplication and inversion. 394 

We tested several matrix libraries and found that Intel’s MKL was the fastest. We also implemented 395 

an R and a Matlab interface to BEAST: an R package named “Rbeast” is forthcoming. To facilitate 396 

algorithm assessment, we further developed a toolkit “trackEcoDyn” (Fig. 10). It offers a graphical 397 

user interface (GUI) that allows interactively running BEAST and more importantly, manually 398 

analyzing and interpreting Landsat time series data in reference to other image sources (e.g., Landsat 399 

images, and aerial photos). The tool is automatically linked with Google Earth and its high-resolution 400 

historical imagery, facilitating visually cross-checking land histories among multiple sources. The 401 

purpose of trackEcoDyn is to aid in interpreting Landsat time series and collecting ground-reference 402 

data for algorithm assessment, as used below in our second case study. 403 

4. Examples  404 

Three examples are given below to illustrate the basic usage and typical outputs of BEAST. To 405 

highlight its differences from existing methods, we also compared BEAST to a community-endorsed 406 

algorithm called bfast (Verbesselt et al. 2010a). Bfast is a criterion-based method seeking a single best 407 

model, as opposed to the Bayesian inference with BEAST. Bfast and BEAST adopt the same general 408 
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linear model form, thus allowing us to isolate the effects of inference paradigms and remove other 409 

confounding effects on the algorithm comparison. As shall be seen below, despite the use of the same 410 

parametric model, BEAST and bfast disagreed on decomposition results. 411 

4.1 Example 1: A simulated time series 412 

In Example 1, we simulated a time series of length n=774 with a period of P=24 (Fig. 4a1). In the 413 

simulation, the true reference seasonal signal has two seasonal changepoints (scp), giving three 414 

seasonal segments; the seasonality was simulated using different orders of harmonics for individual 415 

segments (Fig. 4-b1). The true trend has two trend changepoints (tcp), giving three trend segments: 416 

The first two are piecewise-linear; the third is a slow-varying nonlinear continuous signal with no 417 

abrupt jumps (Fig 3a). We chose such a continuous trend for the third segment because this is often 418 

the case for real ecosystem dynamics and the performances of conventional methods for such 419 

nonlinear trends were rarely evaluated in the remote sensing time-series literature.  420 
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Fig. 4. Example 1: Use of a simulated time series (a1-a3) to illustrate BEAST. The true dynamics underlying the time 422 

series (b1) were uncovered by BEAST accurately (b2). Specific information estimated by BEAST includes, but is not 423 

limited to, seasonal and trend signals, seasonal and trend changepoints (scp or tcp, as denoted by vertical blue bars), 424 

and harmonic orders of individual seasonal segments (c, middle). BEAST also provided an array of useful 425 

uncertainty diagnostic statistics, such as credible intervals of the estimated signals (i.e., gray envelopes), the 426 

probability of observing a scp or tcp at any given time, the probability distribution of total numbers of scp or tcp (c, 427 

left), and the probability of having a positive rate-of-change in trend (c, right). For comparisons, the results from the 428 

single-best-model algorithm “bfast” are given in (b3). Bfast detected no scp and six tcps.  429 

 Use of BEAST and bfast is sensitive to the specification of two hyperparameters: maximum 430 

number of changepoints (Mmax)—an upper limit imposed on how many changepoints are allowed in a 431 

single model; minimum separation interval (h) —the minimum distance in time allowed between two 432 

neighboring changepoints in a single model. In this example, we chose Mmax =8 and h= 24 (one 433 

period). (In bfast, h is expressed as the ratio of the interval to the time series length.) 434 

BEAST uncovered the true dynamics from the simulated time series with high fidelity. The 435 

detected signals correlated well with the true references [r=0.998 (seasonal) and 0.956 (trend), 436 

n=774]. BEAST not only successfully pinpointed the two true scps but also correctly identified the 437 

differing harmonic orders for the three seasonal segments (Fig. 4c, middle). In the trend, BEAST 438 

precisely detected the two reference tcps associated with the piecewise-linear segments. For the third 439 

nonlinear trend segment, BEAST additionally detected 2.2≈2 tcps to capture the sinuous 440 

nonlinearity. Because changepoints are defined as any timings at which the trend deviates from its 441 

previous linear trajectory (Sect 2), in theory, the nonlinear trend segment of this example is fraught 442 

with changepoints through the time. This theoretical expectation aligns well with the BEAST-443 

estimated probability of changepoint occurrence (Fig. 4b2), wherein the estimated probability curve 444 

was often nonzero with many small peaks over the third trend segment. All the probabilities were 445 

small, indicating the very low likelihood of identifying high-intensity abrupt changes in this nonlinear 446 
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trend segment, except at the two turning points of the sinuosity. In contrast to BEAST, bfast detected 447 

no scps and six tcps (Fig. 4b2). 448 

BEAST also produced a rich set of uncertainty measures useful to guide the interpretation of 449 

inferred dynamics (Figs. 4b2 & 4c). As examples, the synthesis of individual models allows BEAST to 450 

generate uncertainties that incorporate both data noises and model missspecification. The inferred 451 

trend signal in Fig. 4b2 was not identical to the true signal, but the envelopes of 95% uncertainty 452 

intervals enclosed the true signal almost completely, attesting to the utility and reliability of the 453 

estimated credible intervals (Fig. 4b2). BEAST tells not only the most likely timings and numbers of 454 

tcp or scps but also the probability of observing a scp or tcp for any given time as well as the 455 

probability of detecting a certain total number of scps or tcps (Fig. 4c, left). In this example, the 456 

probabilities of having 2 scps were 0.9963, leaving only a probability of 0.0037 to find other numbers 457 

of scps and suggesting high confidence in pinpointing the two scps.  458 

Likewise, BEAST can derive the probability distribution of harmonic orders needed to 459 

adequately model a seasonal segment. Another output important for ecological remote sensing is 460 

pertinent to the rate of change in trend. For example, BEAST infers not only the sign of the change 461 

(e.g., a greening or browning) but also the probability of having a greening or browning at any time 462 

(Fig. 4c, right). In essence, for all parameters of interest, BEAST infers not only the most likely 463 

values but also the associated error bars and even more, the associated probability distributions, the 464 

latter of which are generally impossible to estimate by non-Bayesian algorithms. 465 

4.2 Example 2: A MODIS NDVI time series 466 

Example 2 is based on 9-years’ MODIS NDVI data at a forest site in Australia (Fig. 5), which 467 

has been used by Verbesselt et al. (2010a) to test bfast. Despite being familiar to large audiences, its 468 

true underlying seasonal and trend dynamics are unknown, except that we know that the site 469 

experienced droughts in 2001 and 2002 and was harvested in 2004. With all trees removed, the 2004 470 
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harvest should have altered both the NDVI trend and seasonality. It remains untested whether the 471 

drought effects are detectable from this time series. To run BEAST and bfast, we used a maximum 472 

changepoint number of Mmax =10 and a minimum inter-changepoint distance of h= .5 year. 473 

 474 

Fig. 5. Example 2: Use of a MODIS NDVI time series in the bfast R package to illustrate the use of BEAST. The true 475 

underlying seasonal and trend signals are unknown, except that we know that this site experienced droughts in 2001 476 

and 2002 and was clear-cut in 2004. BEAST detected 5 scps and 5 tcps, uncovering not only the abrupt changes 477 

from the 2004 clear-cut but also the subtle disturbances associated with the 2001 drought. Phenological changes 478 

resulting from the 2004 clear-cut and the subsequent recovery and forest management activities were captured by a 479 

total of four scps (i.e., scp 1 to 4). For comparisons, bfast found no scp and 9 tcps detected (b2).  480 

BEAST unveiled both the large-magnitude and subtle changepoints (Fig. 5b1). On average, it 481 

detected 5.2≈5 tcps and 5.3≈5 scps. One of the five tcps is attributed to the drought (i.e., tcp#3) and 482 

the other four attributed to the 2004 harvest and the consequent post-harvest recovery. The five scps 483 

are evidenced in the estimated seasonal trajectory, the seasonal changepoint probability graph, and 484 

the harmonic-order graph.  In contrast, bfast detected no scps and 9 tcps. 485 
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BEAST estimated a more parsimonious trend than bfast (i.e., 5.2 < 9). Despite the 486 

parsimony, the BEAST trend captured a complex nonlinear dynamics (Fig. 6b1). As examples, the 487 

low-intensity stresses of the 2001 and 2002 droughts were noticeable in the trend. The effect of the 488 

2001 drought was found more severe and was associated with tcp#3 in Fig. 5.1. The rapid recovery 489 

past the year 2006 was uncovered by BEAST as a continuous nonlinear trajectory, which contrasts 490 

with the bfast-detected discontinuous trajectory that has jumps with a browning trend after the year 491 

2008. Another salient difference pertains to shifts in seasonality. With the 5 scps detected (Fig. 5b1), 492 

BEAST was able to capture the phenological shifts caused by the 2002 drought (scp#5), the 2004 493 

logging (scp#1), and the post-harvest recovery (scp#2, 3, &4). In contrast, bfast detected no scp and 494 

uncovered a stable seasonal trajectory (Fig. 5b2), suggesting no phenological change before and after 495 

the harvest. 496 

4.3 Example 3: CO2 time series at Manua Loa 497 

Example 3 is intended to demonstrate the use of BEAST as a generic algorithm. We considered 45 498 

years’ bi-weekly atmospheric CO2 measurements from the year 1974 to 2018 at Manua Loa (Fig. 499 

7a1). The true trend or seasonal CO2 dynamics are unknown, except that we know there was a rising 500 

trend due to human activities and there was a regime shift in the Earth system in the 1980s (Reid et al. 501 

2016), which should be reflected in the seasonal CO2 dynamics. This knowledge provides valuable 502 

information to assess the validity of the decomposition results. For both BEAST and bfast, we chose 503 

Mmax =10 and h= 1 year. 504 

Decomposition results of BEAST and bfast appeared visually similar, but the exact dynamics 505 

uncovered by the two differed greatly (Fig. 6). On average, BEAST detected 1 seasonal changepoint 506 

(scp) and  7 trend changepoints (tcps); bfast detected no scp and 10 tcps. One of the  tcps—detected  507 

by both BEAST and bfast—occurred around the year 1977, marking a heightened increase in CO2 508 

and coinciding with the start of China’s economic reform (Fig. 7b1). This finding is the first time that 509 
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the carbon footprint of an economic policy has ever been directly pinpointed in a station-based CO2 510 

time series. Exact drivers for other tcps need close scrutiny in future studies.  511 

 512 

Fig. 6. Example 3: Use of 45 years’ atmospheric CO2 data at Manua Loa (a1-a2) to illustrate BEAST for generic 513 

applications. On average, BEAST detected one seasonal changepoint (scp) and 7 trend changepoints (tcps). The true 514 

seasonal or trend CO2 dynamics are unknown, but the BEAST decomposition is consistent with known drivers. The 515 

CO2 trend shifted to a faster rising trajectory around the detected 1977 tcp [i.e., tcp2 in (b1)], coinciding with the 516 

end of China’s Cultural Revolution and the start of its economic reform. More interestingly, the detected scp around 517 

the year 1989 (b1, top; c, middle) is consistent with the growing body of evidence that the Earth system saw a 518 

systematic regime shift in the 1980s. For comparisons, the bfast results detected no scp and 10 tcps. 519 

The most likely seasonal changepoint (scp) detected by BEAST was found around the year 520 

1989, an abrupt change not detected by bfast (Fig. 6b2). This scp is not too sharp a one but a gradually 521 

transient one spanning multiple years in the 1980s (Fig. 6c, middle). Its presence was indicated in the 522 

scp probability graph (Fig. 6b1). Its occurrence was also evident in the trajectory of estimated 523 

seasonal harmonic orders (Fig. 6c, middle). The detection of this 1989 scp is non-trivial, showing that 524 
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the global carbon cycle was subject to a regime shift in the 1980s (Figs. 6b1 and 6c). The validity of 525 

this shift is supported by a converging body of observational and modeling evidence (Reid et al. 2016). 526 

A comparison of the BEAST seasonal trajectories before and after 1989 indicates an intensified global 527 

carbon cycle over time with a strengthened carbon sink. As a rough estimate, the amplitude in 528 

seasonal CO2 variation increased from 6.35 (pre-1989) to 6.58 ppm (post-1989), a 3.6% increase. The 529 

magnitude of peak global carbon sink—estimated as the temporal derivative of the seasonal CO2 530 

trajectories—was enhanced from 26.5 to 27.6 ppm/year. The post-1989 seasonal dynamics also 531 

showed some enhanced springtime carbon sink, an advancing in peak sink, and a slight increase in 532 

autumn carbon source, all consistent with the recognized effects of global warming on ecosystem 533 

productivity (Piao et al. 2008).  534 

5. Case Studies and Results  535 

To evaluate BEAST and further exemplify its usefulness for remote sensing applications, we 536 

conducted three case studies using either simulated or real data (Figs. 7-11). These case studies were 537 

targeted at different aspects of BEAST; each chose a differing type of strategies or reference data for 538 

algorithm assessment: 539 

(1) Case study 1 used simulated data with true reference dynamics precisely known. The aim is to test 540 

how BEAST can uncover the true reference trend signals, an aspect critical for ecological remote 541 

sensing but seldom tested before. A secondary aim is to quantify how the performance of BEAST 542 

responds to data noises and relative magnitude of trend signals. 543 

(2) Case study 2 used dense stacks of Landsat imagery. Ground-reference data on disturbances and 544 

changepoints were visually derived from interpretation of multisource imagery following a protocol 545 

similar to Cohen et al. (2011). The aim is to evaluate the ability of BEAST in detecting disturbances 546 

from high-resolution data; trend signals is not evaluated here due to the impossibility of obtaining 547 

true reference trend signals. 548 
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(3) Case study 3 used MODIS EVI data at 250-m resolution over a region where the extents and 549 

timings of two large-scale disturbance events are known. Independent reference data were obtained 550 

from aerial photos or Landsat imagery. The aim is to determine whether BEAST can help to reveal 551 

the disturbance patterns from the MODIS data and also to assess the utility of the probabilistic 552 

information derived by BEAST. 553 

5.1 Case study 1: Simulated data 554 

Simulated time-series data were generated by additively combining synthetic trend and seasonal 555 

signals, abrupt changes, and random noises. The trends considered were piecewise linear, with 556 

coefficients randomly sampled from a Gaussian distribution; the seasonal signals were piecewise 557 

harmonics, with the order randomly sampled between 1 and 5. The simulation was based on varying 558 

levels of data noises (2% to 20%), relative trend-to-seasonal signal strength (5% to 50%), and 559 

changepoint number (0 to 10). For each combination, we replicated 1000 times with the time-series 560 

length randomly chosen between 200 and 500, with a total of 110,000 time series generated. The use 561 

of such well-controlled data is not only appealing but also necessary for algorithm evaluation because 562 

ground-truthing is rarely available at temporal and spatial scales commensurate with the satellite data.  563 

 564 

Fig. 7. Case study 1: Assessment of BEAST upon 110,000 simulated reference time series. Two performance metrics 565 

are plotted here—correlation between BEAST-detected and true trend signals and error in the number of detected 566 

changepoints. Positive errors indicate underestimates of the true changepoint numbers. Shown here are the 567 

performances of BEAST at different levels of data noises (a) and relative trend-signal magnitudes (b). Each data 568 

point plot here represents the averaging over 110,000/10=11,000 time series. 569 
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 BEAST unveiled true trend signals accurately (Fig. 7). When tested upon the simulated data, 570 

the estimated trends matched the true signals closely, with a correlation coefficient averaging 0.931. 571 

Even for the noisy NDVI simulation with a noise magnitude of 20% (i.e., a signal-to-noise ratio of 572 

5.0), BEAST could detect the true trend signals well; the correlation averaged 0.923 (Fig. 7a). In 573 

contrast, the estimation of trends showed more sensitivity to relative magnitudes of the trend to 574 

seasonal signals (Fig. 7b). For example, when the magnitudes of trends in simulated data were 5% of 575 

those of seasonal signals, the correlation between the BEAST-detected and true trends was 0.67 576 

(p<<0.001); if the relative trend magnitude increased to 10%, the correlation rose to 0.89 (p<<0.001).   577 

 Similarly, BEAST detected changepoints reliably, irrespective of the data noise levels 578 

considered (Fig. 7a). However, when the true trend signals became weak and dwarfed by the seasonal 579 

signals, detection of trend changepoints became difficult or impossible (Fig. 7b)—a data quality 580 

problem that no algorithms can resolve. Therefore, the true changepoint numbers are increasingly 581 

underestimated as the trend signal becomes weaker. The problem with weak trends also explains the 582 

consistent underestimation pattern for all noise levels (Fig. 7a). The error depicted there at a given 583 

noise level is the average over all possible levels of relative trend magnitude; therefore, this error is 584 

contributed and dominated by the underestimation associated with those time series with weak trend 585 

signals. 586 

5.2 Case Study 2: Dense Landsat Stack  587 

 In Case study 2, we acquired 495 images of Landsat TM5 or Landsat 7 ETM+ (WRS2 Path 588 

24/Row 37) over the Southern US. We corrected the images radiometrically and atmospherically into 589 

surface reflectance via the LEDAPS framework and the FMask cloud masking algorithm (Schmidt et 590 

al. 2013; Zhu et al. 2015); we then computed NDVI and stacked the results. The number of clear-sky 591 

dates in the stack averaged 191 across the scene. To assess BEAST, we randomly sampled 200 time 592 

series across the scene. This sample was interpreted independently by three analysts to manually 593 
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identify all potential changepoints to their full capacities using our GUI-based tool “trackEcoDyn” 594 

(Sect 3.5 or Fig. 8). Any inconsistency among the three was reconciled if an agreement could be 595 

reached and otherwise was simply not considered as changepoints. We used the final consensus set as 596 

ground-reference data to assess how well BEAST detects changepoints in Landsat-type images. The 597 

focus here is on evaluating changepoints rather than trend signals, due to the impossibility of 598 

obtaining true reference trend signals. 599 

 600 

 601 

Fig. 8. Case study 2: Algorithm assessment based on dense Landsat stack of 495 scenes (WRS2 Path 24/Row 37) 602 

over the Southern US.  Shown in (a) is just a subset of the full scene. (b) To collect independent data of land 603 

(a) Landsat TM5/ETM+7 Dense Stacked Images (WRS2 Path 24 and Row 37)

Google Earth

(b) trackEcoDyn: a GUI-based toolkit to interactively interpret Landsat stacked time series
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changes, we developed a GUI-based toolkit “trackEcoDyn” through the mixed use of Matlab and C to interactively 604 

analyze and interpret Landsat time series. It integrates BEAST and ingests multiple external data sources. Google 605 

Earth is also synchronized automatically. This toolkit was built here to help image analysts manually and visually 606 

collect reference data for assessing the BEAST algorithm, but it can be equally applied to visually interpret or 607 

automatically analyze other spatiotemporal data. 608 

 BEAST has detected most of the changepoints in the ground-reference data, though with 609 

seemingly non-negligible omission and commission errors.  In the ground reference for the 200 time 610 

series, there were a total of 368 changepoints pinpointed via visual interpretation, including 190 611 

disturbance-type events (i.e.,  declining NDVI) and 178 recovery-type events (i.e., rising NDVI). 612 

These reference changepoints were resolved to individual years. As for comparisons, BEAST 613 

detected 217 disturbance-type and 197 recovery-type changepoints, all of which were resolved to the 614 

sub-monthly level. An automatic matching of the event years showed that the omission and 615 

commission errors of BEAST were 17.7% (i.e., a producer accuracy of 82.3%), and 26.8% (i.e., a user 616 

accuracy of 73.2%). Examined for disturbance-type events only, the omission and commission errors 617 

are 9.5% (i.e., 18/190) and 20.7% (i.e., 45/217); for recovery-type events, the omission and 618 

commission errors are 26.6% and 33.5%. It appears that BEAST had larger commission errors than 619 

omission errors. 620 

 The assessment metrics reported above, especially the commission errors, are underestimates 621 

of the true capabilities and accuracies of BEAST. As a further evaluation, we manually paired and 622 

compared the BEAST results with the ground-reference data. The 18 omission errors out of the 190 623 

disturbance-type reference changepoints, as labelled by the automatic matching, were not always true 624 

errors. Six of the 18 were not true omissions because BEAST correctly detected them to the sub-625 

monthly level in years different from but immediately adjacent to the years in the ground references; 626 

the BEAST-detected timings were more accurate. Likewise, the commission errors reported above 627 
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are not always true algorithmic errors (Fig. 9). At least three of the 45 disturbance-type changepoints 628 

labeled as commission errors are associated with data anomaly due to cloud contamination: we 629 

expected BEAST to detect these anomalies as changepoints, although they are not ecologically 630 

meaningful. More importantly, many other commission errors are unlikely to be true errors because 631 

BEAST detected all kinds of changepoints of varying intensity but the ground-reference data 632 

included only those visually conspicuous to the analysts. For example, in the recovery trajectory of a 633 

forest plot (Fig. 9), BEAST identified three changepoints that demarcated contrasting succession 634 

stages of the recovery, but the analysts could pinpoint only one changepoint. 635 

 636 

Fig. 9. Case study 2: BEAST decomposition of a Landsat time series at a forest pixel as an example to illustrate the 637 

artificial discrepancy in changepoint detection between BEAST and visual interpretation. BEAST found all types of 638 

changepoints—a total of four tcps, being abrupt or gradual. However, when interpreting visually, the three experts 639 

pinpointed only one changepoint (i.e., cp1--the sudden NDVI drop to forest logging). Hence, commission errors of 640 

BEAST in detecting changepoints in reference to the visually-interpreted ground reference are not always true 641 

errors.  Illustrated also here is the capability of BEAST for filling data gaps in the Landsat time series. 642 

5.3 Case Study 3: MODIS EVI 643 
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The study area chosen here is part of the Shawnee State Forest, Ohio, USA (Fig. 12a). This region 644 

has been disturbed or frequently managed across various scales. In particular, the region was struck 645 

by an ice storm in Feb 2003 and a fire in April 2009—Ohio’s largest recorded wildfire (Eidenshink et 646 

al. 2007). The data we examined were EVI data from MODIS’s 16-day L3 data at 250-m resolution 647 

from year 2002 to 2014. To better characterize the disturbance patterns of the ice storm and fire, we 648 

also complied Landsat-5 Thematic Mapper images at 30-m spatial resolution collected before or after 649 

the disturbances. The perimeters of the regions disturbed by the ice storm and fire were manually 650 

delineated from aerial photos (i.e., white polygons in Fig 10.b). We also calculated the Normalized 651 

Burn Ratio from the pre-and post-fire Landsat images and took the difference—dNBR—as an 652 

indicator of burn severity. These high spatial-resolution images and information provide independent 653 

reference data to evaluate and interpret the MODIS results.  654 

 When applied to the MODIS data, BEAST uncovered spatiotemporal patterns of vegetation 655 

dynamics that were consistent with the known disturbance history (Fig. 10). In particular, the two 656 

major landscape-scale disturbances, the 2003 ice storm and 2009 fire, were detected successfully. 657 

The estimated disturbance timings matched closely with the true dates (Fig. 10c). The BEAST-658 

detected locations and extents of the disturbances closely resembled those patterns revealed by the 659 

post-disturbance Landsat images as well as those manually derived from independent high-resolution 660 

imagery. Within the perimeter of the disturbed regions, BEAST depicted the spatial heterogeneity in 661 

disturbance magnitude. One such output is the probability of being a true changepoint. For example, 662 

when tested for the burned region within the 2009 fire rim, the BEAST-estimated changepoint 663 

probability strongly correlated with the independent Landsat-based dNBR (r=0.66, n=288, p-value 664 

<<0.001) (Fig. 11a). Such probabilistic outputs enable BEAST to characterize not only those large-665 

magnitude disturbances but also all other disturbances over a continuous range of magnitude. The 666 
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probabilistic results should be more informative and practically useful than the mere reporting of 667 

binary outcomes about occurrence or not. 668 

 669 

Fig. 10.  Case study 3: MODIS EVI data from 2001 to 2014 over the Shawnee State Forest, Ohio where the forests 670 

have been disturbed by many natural events and anthropogenic activities, for example, including an ice storm in 671 

February 2003 and a fire in April 2009.  Shown in (a) is a 3D volumetric view of the spatiotemporal patterns of forest 672 

trend dynamics detected by BEAST; therein, brown areas indicate spatiotemporal locations where the forest 673 

ecosystem is of low vitality. The ice storm and fire disturbance events are singled out to illustrate the detected 674 

probability of changepoint occurrences. (b) Post-disturbance Landsat images together with manually-derived 675 

disturbed regions (i.e., white polygons) are accompanied as visual references to assess the spatial patterns of 676 

MODIS-based disturbances. Shown in (c) are density plots to depict individual trajectories of detected seasonal and 677 

BEAST-detected Trend in MODIS EVI data over Shawnee State Forest, Ohio, from 2000 to 2014
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trend dynamics for all the MODIS pixels: the darker the color, the higher the trajectory density. Overlaid on the 678 

density plots are red solid curves to indicate the mean trajectories averaged over all the pixels. The “Prob” subplots 679 

show the mean changepoint-occurrence probabilities averaged over all the pixels (blue curves). The true timings of 680 

the ice storm and fire are indicated by vertical blue bars.  681 

 Ecologically speaking, the seasonal and trend dynamics uncovered by BEAST were 682 

compatible with true vegetation responses to ice storm and fire. Sudden drops in NDVI were 683 

detected by BEAST at the starts of the ice storm and fire, followed by rapid continuous transient 684 

transitions for post-disturbance recovery. When uncovering seasonal dynamics, BEAST detected no 685 

seasonal changepoints for the 2003 ice storm but some changepoints over part of the region for the 686 

2009 fire (Fig. 10c). This result is corroborated by the contrasting damage severity of the two 687 

disturbances: the ice storm caused branch breakage and infrequent treefall; the fire was more 688 

destructive and sometimes stand-replacing. The severe fire damages shifted the phenology at some 689 

disturbed pixels (Fig. 10c).  690 

 691 

Fig. 11.  Case study 3: (a) BEAST-estimated probabilities of changepoints occurring in Feb 2009 for 692 

288 MODIS pixels within the fringe of the wildfire are correlated significantly with independently 693 

BEAST−predicted EVI values

Re
fe

re
nc

e E
VI

 va
lu

es
 (d

at
a)

 

 
Data vs BEAST−fitted
Y=X
Best line fit (R2=0.91)

0 0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Landsat−derived dNBR (burn severity)ro
ba

bi
lit

y o
f c

ha
ng

ep
oi

nt
 o

cc
ur

ra
nc

e i
n 

Fe
b 

20
09

 

 
Landsat dNBR vs MODIS changepoint probability
R=0.664

(a) (b)



35 
 

derived Landsat burn severity dNBR. (b) True reference EVI values vs. BEAST-estimated values for 694 

a selected MODIS time series based on the leave-one-out cross-validation. 695 

 From a regression standpoint, BEAST fitted the MODIS time series well and made accurate 696 

predictions within time-series data gaps. Averaged over all the pixels of the region, the correlation 697 

between the actual and fitted time series was 0.943 (Fig. 11a). The strong correlation highlights the 698 

predictive power of BEAST and supports its potential use as a gap-filling method. This capability is 699 

further confirmed by cross-validation. For example, in Fig. 11b, a leave-out-out cross-validation tested 700 

upon a MODIS time series showed that the estimated missing values matched the true reference 701 

values with high fidelity (R2=0.91). 702 

6. Discussion 703 

Leveraging the rapid growth of satellite time-series data to uncover the vagaries of landscape change 704 

is an area seeing a surge in algorithm development (Cohen et al. 2017; Wulder et al. 2012; Zhu 2017). 705 

This advance leads to many new ecosystem dynamics products but, at the same time, opens new 706 

research gaps (Cohen et al. 2017). The problem examined here is how to improve algorithmic 707 

robustness and characterize algorithmic uncertainty. Cohen et al. (2017) stressed this problem by 708 

noticing considerable discrepancies among seven algorithms, with a pixel-level agreement of only 709 

0.2% in detected disturbances and a 1500% difference in estimated disturbance areas. Ensemble 710 

learning is touted as a remedy (Cohen et al. 2018; Healey et al. 2018) but was only partially explored. 711 

The development of BEAST helps to bridge the gap by offering a generic tool that incorporates an 712 

ensemble of models into time-series analysis. Our case studies provide experimental evidence on the 713 

efficacy of BEAST in detecting abrupt change, seasonality, and trend. 714 

6.1 What BEAST can and can’t do? 715 

BEAST is a Bayesian regression method to isolate periodic and trend signals from a time series and to 716 

pinpoint abrupt shifts in the two isolated signals. It is intended primarily for trend analysis and 717 
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changepoint detection, targeted at questions like those elicited in Section 2. Are there any increasing 718 

or decreasing trends, any changepoints, or any phenological shifts? What is the rate of change at a 719 

given time? Is the detected greening trend real? What is the probability of observing 3 changepoints 720 

between 2001 and 2015,  or both a seasonal and a tend changepoint in August 2009?  Interpretations, 721 

connotations, validation of the answers to these questions are context-specific, depending on the 722 

goals of applications (Cohen et al. 2017; Wulder et al. 2012). BEAST is applicable to any real-valued 723 

variables, such as LAI, temperature, soil moisture, gravity, and other biological or even 724 

socioeconomic data; therefore, translating the results into insights is contingent on the natures of the 725 

data and problems at hand. 726 

 BEAST detects temporal dynamics but can’t attribute drivers. Is a detected greening due to a 727 

warming climate, post-disturbance recovery, or reduced grazing? Is a detected forest loss caused by 728 

fire, insect, hurricane, logging, or urbanization? Is a shift in phenology due to climate change, altered 729 

management, crop rotation, succession, or land conversion? BEAST can’t answer these attribution 730 

questions directly. To a lesser extent, even a simple question like whether a detected NDVI drop 731 

corresponds to a forest or grass loss can’t be answered unless we know that the site observed is a 732 

forest or a grassland. To answer the questions, we need to combine BEAST further with other 733 

algorithms and ancillary information. For example, BEAST can be used to map extents, timings, and 734 

severity of gypsy moth infestation if we know that it is the disturbance agent. For applications on 735 

mapping both changes and drivers, BEAST should be interfaced with a classifier that is trained 736 

empirically to relate BEAST-derived metrics with land-change classes or causative agents (Cohen et 737 

al. 2017). The training and validation of the classifier can follow the good practices recommended for 738 

mapping land cover (McRoberts 2011; Olofsson et al. 2014; Olofsson et al. 2013). 739 

 We envision that BEAST is particularly useful for three related but subtly different areas in 740 

remote sensing. One area concerns ecosystem dynamics; the aim is to track vegetation changes over 741 
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time and understand their drivers. Current use of satellite data for such purposes is fraught with 742 

debates, for example, regarding how climate change has affected long-term vegetation growth, how 743 

global warming alters land surface phenology, and how extreme weather impacts forests. The second 744 

area pertains to mapping land disturbances and land conversion over time. Despite recent advances, 745 

the existing algorithms diverged greatly and produced inconsistent disturbance maps. With its proven 746 

analytical capability, BEAST should be able to provide new perspectives into these two areas. A third 747 

area of applications is to apply BEAST to fill temporal gaps in satellite data. BEAST can fit a 748 

nonlinear curve to data with gaps and estimate the missing values. 749 

6.2 BEAST vs. existing methods 750 

Numerous time-series methods have been introduced for applications in remote sensing or other 751 

disciplines (Brockwell and Davis 2016; Hamilton 1994; Zhu 2017). Many of them were developed 752 

under various names, such as trend analysis, seasonal decomposition, changepoint or breakpoint 753 

analysis, signal segmentation, regime shift detector, anomaly detection, and structural change 754 

(Brockwell and Davis 2016; Denison 2002; Hamilton 1994; Harvey 1990). Rigorous comparisons of 755 

BEAST to the existing methods are complicated by the sheer number and diversity of algorithms and, 756 

to some extent, a lack of consensus on nomenclature. For ease of comparisons, our discussion below 757 

focuses only on two aspects of BEAST: trend analysis and changepoint detection.  758 

 BEAST extends conventional trend analyses in several ways. The majority of existing 759 

analyses—based mostly on NDVI—examined linear trends by fitting a global line to the data without 760 

considering seasonality, if any (Brando et al. 2010; Myneni et al. 1997; Piao et al. 2006). BEAST applies 761 

flexible basis functions to fit both linear and nonlinear trends and disentangle trends from seasonality. 762 

Some recent trend analysis methods attempted to address nonlinearity using piecewise linear models, 763 

but with a prescribed number of changepoints (Chen et al. 2014; Wang et al. 2011). A landmark study 764 

in this category is Wang et al. (2011) that applied a piecewise linear model with one changepoint to 765 
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AVHRR data for new insights into climate-ecosystem interactions. Indeed, it is the one-changepoint 766 

model of Wang et al. (2011) that motivated our algorithm development. BEAST goes beyond by 767 

making the changepoint number an unknown parameter and letting the data tell what it is. 768 

Statistically speaking, existing analyses were mostly based on frequentist methods, seeking only the 769 

“best” model; BEAST employs Bayesian model averaging, embracing all candidate models rather 770 

than selecting just one. 771 

 What distinguishes BEAST most from the existing trend analysis methods is its capability of 772 

inferring nonlinear dynamics. BEAST provides a universal approximator of any arbitrarily complex 773 

trends. In contrast, most existing methods derive only linear or piecewise linear trends (Wang et al. 774 

2011). True drivers of ecosystem dynamics are unlikely to be purely linear or piecewise-linear over 775 

time but rather complex and nonlinear. For example, plant successional stages are known to largely 776 

follow a nonlinear recovery trajectory (Burkett et al. 2005). Long-term climate trends are confirmed to 777 

be inherently nonlinear (Franzke 2014). With its better approximation power, BEAST is more likely 778 

to find these true nonlinear trends than the existing methods. Improved fitting of trends can help with 779 

changepoint detection because errors in fitting trends may be translated into errors in changepoint 780 

detection. 781 

 For changepoint detection, existing algorithms are mostly heuristically-based, involving the 782 

testing or optimization of criteria (Cohen et al. 2017; Zhu 2017). For example, several well-known 783 

algorithms, such as LandTrendr, VCT, and CCDC, rely on locally-based heuristic rules by checking 784 

if some deviation metrics meet certain pre-set thresholds. They often iteratively analyze the time 785 

series piece by piece or step by step (Huang et al. 2010; Kennedy et al. 2010; Zhu et al. 2012). In 786 

contrast, BEAST is a parametric regression method. It does not require any threshold testing or 787 

criterion optimization but, instead, fits a global model to decompose the whole time series in one step 788 

and uncover changepoint , trend, and seasonality altogether. As another key difference, many existing 789 
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algorithms are hard detectors in that their outputs are limited to either 1 or 0—a changepoint or not; 790 

BEAST is a soft/fuzzy detector capable of estimating the occurrence probability of changepoints over 791 

time (Cohen et al. 2017; Huang et al. 2010). This difference is analogous to that between hard and 792 

soft/fuzzy classifiers. To our knowledge, BEAST is the first fuzzy time-series algorithm ever 793 

developed for remote sensing applications.  794 

 Of the existing algorithms, bfast is the one that shares the most commonality with BEAST 795 

(Verbesselt et al. 2010a; Verbesselt et al. 2010b). The two have almost identical parametric models 796 

except that bfast fixes the seasonal harmonic order to a constant of 3 or other constants but BEAST 797 

treats it as an unknown to be estimated for individual seasonal segments. This difference seems minor 798 

but has substantial effects, partially explaining why BEAST detected more seasonal changepoints. 799 

The varying harmonic order gives a flexible representation of seasonality and helps BEAST to 800 

capture subtle variations  difficult to represent by a fixed-order seasonal model (Fig. 6b1 vs Fig. 6b2). 801 

The BEAST or bfast model is additive. If parts of the true seasonal dynamics are not captured by the 802 

seasonal model S(t), these seasonal parts will be squeezed into the trend model T(t) or noises. As a 803 

result, seasonal abrupt changes may be confused with trend changepoints. Likewise, parts of the true 804 

tend, if not adequately captured by T(t), will leak to contaminate the estimation of seasonality. This is 805 

why we strived to make BEAST a flexible approximator of any arbitrary trends. In short, reliable 806 

detection of changepoints, especially those subtle ones, requires the accurate modeling of not only the 807 

trend or seasonal component alone but both altogether. 808 

 Another key difference between BEAST and bfast or other algorithms lies in parameter 809 

estimation. Bfast treats the model parameters as unknown constants. BEAST treats them as random 810 

variables; its inferential goal is not only the best values of the parameters--number and timing of 811 

changepoints, harmonic orders, and coefficients--but also their probability distributions. BEAST tells 812 

not only a detection of 3 tcp but also a 71% probability for having 3 tcps, a 20% for 2 tcps, or a 5% for 1 813 
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tcp. Put differently, bfast seeks a single best model but BEAST embraces numerous models in terms 814 

of a probability distribution over the model space. This is likened to the difference between CART 815 

and Random Forests (Friedman et al. 2001). Bfast is like CART that finds only one decision tree; 816 

BEAST is like Random Forests that uses many trees. As shown in the ecology and machine learning 817 

literature, Random Forests is less likely to overfit and more likely to find ecologically-meaningful 818 

relationships than does CART (Breiman 2001a). Similarly, as an ensemble modeling algorithm, 819 

BEAST tends to generate more flexible and interpretable results. 820 

6.3 Ensemble learning: One plus one is more than two 821 

BEAST is based on ensemble learning. Most other algorithms for satellite time-series analysis are not, 822 

except two recent algorithms in Cohen et al. (2018) and Healey et al. (2018). But BEAST and these 823 

two are not comparable. BEAST is a regression method for time-series decomposition wherein 824 

ensemble learning is internalized into the Bayesian formulation. In contrast, the other two algorithms 825 

are some classifiers that ingest the pool of multiple model outputs as predictors to classify disturbance 826 

agents. More generally, ensemble learning comes in many other fashions, but the core is to combine 827 

many models or algorithms into a better one (Friedman et al. 2001). Experimental evidence is 828 

unequivocal about the effectiveness and superiority of ensemble learning, compared to the single-829 

best-model paradigm (Friedman et al. 2001). Recent years also saw a growing urge for better 830 

leveraging the paradigm of ensemble modeling or multi-model inference—a voice that is being heard 831 

in many scientific disciplines and is reinforced again here.  832 

 Why does ensemble learning help with our time-series analysis? The answer lies in a familiar 833 

example: the IPCC relies on many climate models instead of any single model to augment confidence 834 

in climate prediction (Solomon 2007). What is implicit here is George Box’s aphorism “all models are 835 

wrong”, a creed that, if held, may help little with practical modeling but, if ignored, can engender 836 

unwarranted epistemological debate (Beven 2010). All remote sensing models, including radiative 837 
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transfer models in operational use and our BEAST algorithm, are also wrong in the sense that they 838 

are always simplifications and approximations of the true processes (Schowengerdt 2006). This is 839 

connoted by the fact that remote sensing is fraught with the use of different algorithms or models to 840 

decipher the same linkage or functional relationship (Cohen et al. 2017).  841 

  Since all models are wrong, the consideration of many models as in BEAST can reduce the 842 

chance of deviating too far from the unknown truth, compared to the choice of just a “best” model. 843 

When ranking models in terms of usefulness metrics such as AIC and BIC, the “best” ranked model 844 

is not guaranteed to be closer to the truth than other models of lower ranks (Shmueli 2010; Zhao et al. 845 

2013). As a rule of thumb, if two models have an AIC difference of <2.0, there is no strong evidence 846 

that one should be favored over the other (Burnham and Anderson 2003). Similar rules exist for other 847 

model selection criteria. In the current context, each candidate model is uniquely specified by the 848 

model structure parameters, such as numbers and timings of changepoints. The entire model space 849 

may comprise quadrillions of candidates or more. Not surprisingly, there can be numerous competing 850 

models (e.g., millions) that are statistically indistinguishable from the “best” model in terms of AIC 851 

or BIC, a phenomenon called model equalfinality (Beven 2010). The lack of strong statistical power to 852 

discriminate some models against others makes it safer to use the many models than a “best” model.  853 

 Even if not all models are wrong and the true model is in the space of candidate models, 854 

ensemble learning can still be more robust than single-best-model algorithms (Friedman et al. 2001; 855 

Wintle et al. 2003; Zhao et al. 2013). Even in a simple scenario of linear regression, Zhao et al. (2013) 856 

showed that many single-best-model regression procedures failed to recover the true linear model. 857 

More generally, no model selection criterion guarantees finding the true model. The failure is 858 

primarily due to two factors. First, the space of candidate models is so enormous that optimization 859 

may be trapped at local minima, failing to find the real optimal model. Second, even if the real optimal 860 

model is luckily found, it may still not be the true model: optimality is not equivalent to truth. The 861 
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true model may have worse AIC or BIC values than other models, for example, due to data noises or 862 

multicollinearity (Friedman et al. 2001; Grossman et al. 1996). These difficulties justify the use of 863 

ensemble learning even if we can correctly parameterize the true model, let alone when we can’t.  864 

 How can BEAST uncover arbitrary nonlinear vegetation dynamics, given that individual 865 

trend models are just piecewise-linear? A rigorous mathematical answer to this is beyond the current 866 

scope. Intuitively speaking, the averaging of many piecewise irregular functions will smooth out the 867 

irregularity and mold them into a more flexible function (Friedman et al. 2001). Indeed, for almost all 868 

practical applications, the use of ensemble averaging is more flexible in fitting nonlinear functions 869 

than any individual models. A familiar example again is Random Forests: each tree is a discontinuous 870 

partition-based function, but the averaging of many trees is able to approximate complex functions 871 

(Cogger 2010). This is what we call here as “the making of a stronger model from many weak models” 872 

or “one plus one is more than two” (Friedman et al. 2001). It is this property that enables BEAST to 873 

detect realistic vegetation trend dynamics.  874 

 6.4 Bayesian statistical modeling: To explain or predict? 875 

BEAST fits a Bayesian regression model or a function curve to match the observed time series, with 876 

time as the independent variable. In this regard, BEAST is the same as the many existing statistical 877 

models relating remote sensing predictors to biophysical variables. However, their modeling purposes 878 

are not the same (Shmueli 2010). Most of the statistical models are calibrated to minimize differences 879 

between fitted and observed land variables and then estimate the variables for new data unused in the 880 

calibration, that is, to predict (Breiman 2001b; Zhao et al. 2018). The purpose of BEAST is not to 881 

minimize the fitted-vs-observed differences or predict values at a new time but to identify the right 882 

mechanisms underlying the observed time series, that is, to explain (Dashti et al. 2019; Thomas et al. 883 

2018). Models that predict well may not explain well, and vice versa (Shmueli 2010). Black-box 884 

machine learning models are such examples. Although the explain-vs-predict divide is not 885 
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dichotomous, future studies will garner more successes in designing robust statistical algorithms to 886 

obtain useful vegetation dynamics information if we pay attention to the explaining nature of such 887 

modeling efforts.  888 

 Bayesian modeling is of great value in mining complex data to find meaningful and 889 

interpretable relationships (Finley et al. 2008). A confirmatory example is our BEAST algorithm. 890 

Bayesian inference is powerful particularly because of its explicit consideration of various sources of 891 

uncertainty (Denison 2002; Kennedy and O'Hagan 2001). The time-series problem at hand is a 892 

difficult one fraught with uncertainties, due to some apparent conflict. On one hand, model 893 

misspecification is inevitable (in theory, true vegetation dynamics are unlikely piecewise-linear or –894 

harmonic); on the other hand, our aim is to use the misspecified model to capture the true vegetation 895 

dynamics (the model should explain well). This conflict will be subtly translated into uncertainties in 896 

the model parameters and structure. A full characterization of these uncertainties is practically 897 

impossible with the conventional single-best-model paradigm, especially because it ignores model 898 

uncertainty (Beven 2010; Kennedy and O'Hagan 2001). These uncertainties, however, can be 899 

formalized and treated rigorously and systematically by the Bayesian paradigm. 900 

 Despite the exceptional power of Bayesian modeling, its use in remote sensing remains 901 

limited. Many factors contribute to this. Philosophically, the “subjective reasoning” label of Bayesian 902 

inference may deter many researchers from considering it seriously (Denison 2002): who wants to 903 

sound subjective in the science enterprise? This concern is unwarranted, given the rising acceptance 904 

of Bayesian statistics in essentially all fields after decades of philosophical debate (Ellison 2004; 905 

Friedman et al. 2001). Even if its utility is realized, there is habitual inertia to overcome because 906 

conventional statistical methods still find the dominant use. Moreover, the use of Bayesian methods 907 

is often hampered more by practical factors, such as a dearth of easy-to-use Bayesian statistical 908 

software, the unfamiliarity of these methods to the larger community, the inherent complexity of 909 
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Bayesian modeling, a lack of formal training in Bayesian statistics, and often enough, daunting 910 

computation costs of Bayesian methods. Nonetheless, we hope that the demonstrated value of 911 

BEAST provides an impetus to encourage future remote sensing applications of Bayesian techniques. 912 

We envision that Bayesian techniques are particularly appealing in cases that data are complex or 913 

noisy, characterization of uncertainty is pivotal, computation is not constraining, and the modeling 914 

purpose is to explain (e.g., uncover the truth or test theories) rather than predict. 915 

6.5 How to validate time-series decomposition algorithms 916 

What should be validated or evaluated? The goal is to quantify the degrees to which estimated 917 

dynamics and changepoints represent the truth. Because changepoints are parts of trend/seasonal 918 

signals, validation of changepoints underpins that of trend or seasonal dynamics. In particular, 919 

validation of changepoints should cover all the model structure parameters—numbers and timings of 920 

changepoints, and harmonic orders. Changepoints here refer to abrupt shifts in both seasonality and 921 

trend, be positive or negative in direction, that span a continuous spectrum of magnitude. The 922 

changepoints referred to here are consistent with those in Wang et al. (2011) and Browning et al. 923 

(2017). This range goes beyond the consideration of only large-magnitude disturbances (e.g., land 924 

conversion, forest loss, and fire) that are characteristic of many Landsat-based algorithms (Cohen et 925 

al. 2017; Huang et al. 2010). Estimated trend or seasonal dynamics, such as the sign and the rate of 926 

change, should be compared to true dynamics.  927 

 A full evaluation of time-series algorithms such as bfast and BEAST is critical but,  often 928 

enough, difficult due to a lack of ground-truth (Lu et al. 2004). Take bfast as an example. In the 929 

MODIS data of Example 2, only the 2004 trend changepoint (tcp) was originally used to test bfast 930 

(Fig. 6) because the 2014 harvest was known precisely. The other tcps and scps were not assessed yet 931 

and are hard to test (Fig. 6b2). These tests are about whether the bfast-detected changepoints are real 932 

or artificial. A more difficult test is about how many true tcps and scps have been detected by bfast. 933 
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An even more difficult task is to test the veracity of the estimated trend or seasonal signal. (In Fig. 934 

6b2, is the post-harvest browning after tcp#9 a real trend or an algorithmic artifact?) These validation 935 

questions are difficult, if not impossible, to answer. The same difficulties apply to validation of 936 

BEAST. Similar difficulties were also noted in Browning et al. (2017), which, though considering only 937 

15 MODIS time series, is the first study to assess bfast with field-based vegetation dynamics data. But 938 

even for that study, the validation was partial, limited to the testing of user accuracy for changepoints.  939 

 The aforementioned difficulties are manifested in other fashions. Current controversies 940 

surrounding satellite-derived ecosystem dynamics could have been safely dismissed if the associated 941 

time-series analyses had been validated. Even a seemingly simple question, like “is the NDVI trend a 942 

greening or browning?”, has been debated and largely unverifiable. Such issues are not confined to 943 

remote sensing. Other fields, such as statistics, ecology, and econometrics, are also fraught with time 944 

series analyses of the same nature as ours. We are unaware of any studies in these fields that 945 

conducted full validation of changepoint algorithms when tested upon real-world data. For example, 946 

many algorithms were applied to the river flow data of the Nile at Aswan (Balke 1993; Betken 2017; 947 

Denison 2002; Wu and Zhao 2007). Most of them gave similar but essentially different 948 

decompositions. Even for this well-studied data, it is hard to test whether the algorithms uncovered 949 

the true river flow dynamics. 950 

 Because we normally have no access to all the ground-truth needed, we recommend eight 951 

practical strategies for algorithm validation. First, a simple yet powerful strategy is to validate 952 

algorithms against synthetic data. If an algorithm cannot recover the known true dynamics from the 953 

synthetic data to which it is tailored, it unlikely applies well to real data. This test is the first filter that 954 

a useful algorithm must pass. Use of synthetic data also permits full assessments under various 955 

conditions (e.g., different noise levels) (Section 5.1). Second, algorithms can be validated qualitatively 956 

(not equal to “subjectively”) with respect to some general known patterns. This is another filter that 957 
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useful algorithms must pass. If they detect a declining trend in the air CO2 data, a browning for forest 958 

recovery, or no changepoints for a frequently-disturbed region, there must be some problems with the 959 

algorithms. Third, validation can be done using well-established knowledge, such as ecological 960 

principles and empirical evidence. One example is the confirmation of the 2004 scp in the MODIS 961 

time series because forest clearing is known to change phenology. Another is the 1980s regime shift in 962 

the air CO2 time series. Passing this test will enhance users’ confidence in the algorithm. Fourth, as a 963 

relative evaluation, an algorithm can be compared to other algorithms. Fifth, cross-validation is 964 

another effective strategy, especially for those algorithms that apply parametric models to 965 

approximate time series.  966 

 Sixth, validation can be done using known individual events (e.g., disturbance or land cover 967 

change). One example is the evaluation of bfast upon the harvest/planting years over a region in 968 

Australia. Our test of BEAST for the fire and ice storm events in Ohio was another example. Seventh, 969 

validation can be done using reference data derived from independent sources. One example is 970 

through photo-interpretation with TimeSync; another example is our tool trackEcoDyn, which is 971 

functionally similar to TimeSync. As a caveat, such reference data are subject to errors and 972 

uncertainties (Cohen et al. 2010), as explained in Figure 11. Eighth, validation can be done using proxy 973 

data of all kinds. One example is the use of climate variables and field-based vegetation composition 974 

and biomass in Browning et al. (2011) to assess NDVI time series. Another example is our use of 975 

dNBR to assess the BEAST-derived changepoint probability. As a third example, to test if surface 976 

evaporation sees an abrupt change at a time, we can check air temperature or moisture as proxies. 977 

 Overall, none of these validation strategies is complete and perfect. A compromise is to rely 978 

on as many strategies as possible. Indeed, to test BEAST, we employed all the eight strategies, each 979 

emphasizing a differing aspect of BEAST. But in many existing satellite time-series analyses, the 980 

practice was to focus only on one aspect of the algorithms (e.g., large-magnitude changepoint only, 981 
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trend only, or phenology only). Obviously, a comprehensive strategy that embraces more aspects of 982 

the algorithms should be preferred because the various components of time-series decomposition do 983 

not stand on their own but rather are linked: any errors in one component will be leaked to degrade 984 

the estimation of others. Without such comprehensive evaluations, it becomes inevitable that 985 

ecological interpretations of satellite time-series decomposition are laden with inconsistency or 986 

controversies. 987 

6.6 Caveats and future research 988 

Several caveats are noted. First, BEAST detects anomalies and trends but doesn’t attribute the 989 

drivers. If data are contaminated by spurious errors (e.g., clouds) or systematic biases (e.g., gradual 990 

sensor degradation) (Wang et al. 2012), these outliers and drifts can be misconstrued as true signals. 991 

To reduce such commission errors, data artifacts should be removed or suppressed beforehand. 992 

Second, BEAST makes inference via Monte Carlo sampling and therefore, requiring more 993 

computation than many other algorithms (Kennedy and O'Hagan 2001). Applications of BEAST to 994 

massive high-resolution data, such as the Landsat archive at the global scale, will demand daunting 995 

computation. The recommended use of BEAST is for global coarse-resolution or local high-996 

resolution (e.g., Landsat coverage of a county).  997 

 Third, BEAST explicitly quantifies how likely each point of time is a changepoint . The 998 

resultant probability appears indicative of disturbance severity (Fig. 11) and also captures low-999 

magnitude disturbances that may be missed by other algorithms. Interpretation of the probabilities is 1000 

contingent data quality. An abrupt change will have a lower detection probability if data get noisier. 1001 

All else being equal, the higher the signal-to-noise ratio, the larger the estimated probability of the 1002 

same disturbance. The interpretation is also confounded by sub-pixel heterogeneity. A changepoint 1003 

detected with a 5% probability at a pixel, for example, may be due to either a low-magnitude 1004 

disturbance across the whole pixel or contrastively, from a severe disturbance over a small fraction of 1005 
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the pixel. BEAST can’t distinguish the two cases. The confounding can be resolved by turning to 1006 

finer-grained data (Roy et al. 2014; Zhao et al. 2018).  1007 

 Fourth, the scale matters. When detecting changepoints, BEAST is scale-dependent. 1008 

Consider two adjacent pixels, one with a sudden NDVI drop and the other with a rise of the same 1009 

magnitude at the same time. If applied separately, BEAST will detect a changepoint for each pixel. 1010 

But if the two pixels are combined into one, the two abrupt changes cancel out and the changepoint 1011 

disappears at the aggregated scale. This scaling effect is an inherent characteristic of all algorithms. 1012 

On the contrary, we speculate that BEAST is scale-invariant when uncovering trends or seasonal 1013 

dynamics. That is, applying BEAST to many pixels and then aggregating the individual detected 1014 

trends should give the same overall trend as that obtained by first aggregating the individual pixels 1015 

into a large pixel and then applying BEAST to the aggregated pixel. This nice property is attributed to 1016 

the additive nature of general linear models (Zhao et al. 2009). The scale-invariance permits the use of 1017 

BEAST across scales to infer trends without introducing artificial discrepancies , thereby facilitating 1018 

fusion of multi-resolution data. For applications concerning only trends not changepoints, the use of 1019 

BEAST at aggregated scales will also lessen the computation needed. 1020 

 Fifth, BEAST is applicable to any real-valued data. However, it is a univariate method and 1021 

can’t decompose multiple time series simultaneously or leverage the inter-correlatedness of the many 1022 

time series (e.g., multispectral bands). Extending BEAST into a multivariate algorithm is 1023 

conceptually easy but the implementation is complex—a future topic to be explored. Other 1024 

extensions are also possible. Here we tested BEAST upon only dense time series to track both trend 1025 

and seasonality. It can be revised to handle sparser non-periodic time series (e.g., annual Landsat data 1026 

with one observation per year) by simply suppressing the seasonal component in its formulation. 1027 

BEAST can also be extended to handle data collected at irregular time intervals or data with duplicate 1028 

measurements at a single time. As an unsupervised decomposition algorithm, BEAST can’t classify 1029 
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disturbance agents (Kennedy et al. 2015); therefore, another extension is to embed a supervised 1030 

classifier into BEAST for simultaneously detecting changepoints and classifying disturbance types. 1031 

 Last, we highlighted the unique features of BEAST but our intent is not to favor or 1032 

discriminate one algorithm against others. All the algorithms have their own niches and offer different 1033 

perspectives. Algorithmically speaking, there is no panacea for inferring true dynamics from noisy 1034 

data (Breiman 2001b). The validity of the diverse or conflicting perspectives, therefore, needs to be 1035 

judged based on domain-specific knowledge and high-fidelity ground-truthing. Because BEAST is the 1036 

first ensemble-based fuzzy time series decomposition algorithm ever developed for remote sensing 1037 

applications and also because it is able to recover complex dynamics and characterize various types of 1038 

uncertainty, its use can engender new insights not obtainable by other algorithms. Future studies may 1039 

further test the utility of BEAST for various data, problems, and geographic regions. One example is 1040 

the analysis of AHVRR or MODIS data to detect disturbances and nonlinear long-term dynamics and 1041 

determine how ecosystems have been driven by climate change and human activities, an area still 1042 

fraught with many conflicting findings. Overall, BEAST serves a useful tool to derive observational 1043 

information from satellite data, as a way to complement field surveys, controlled experiments, and 1044 

computer models in quantifying ecosystem responses to environmental changes. 1045 

 7. Summary 1046 

We presented a Bayesian algorithm—BEAST—for decomposition of time series into three 1047 

contrasting components: abrupt change, periodic change, and trend. BEAST helps to leverage the 1048 

increasing availability of multisource satellite time-series data for detecting land disturbances and 1049 

tracking nonlinear ecosystem dynamics. Compared to many existing algorithms, BEAST explicitly 1050 

addresses model uncertainties via ensemble learning, thereby alleviating inter-algorithm 1051 

inconsistencies to some extent. Such inconsistencies were widely recognized and, if not addressed, 1052 

would result in diverging or conflicting interpretations of the same data. Conceptually, BEAST 1053 
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combines many individual weak models into a better model via Bayesian model averaging. 1054 

Mathematically, BEAST is rigorously formulated, with its key equations being analytically tractable. 1055 

Practically, BEAST can estimate probabilities of changepoint occurrence, detect not only large but 1056 

also low-magnitude disturbances, and uncover complex nonlinear trend dynamics, all of which are 1057 

difficult to obtain by single-best-model algorithms. BEAST is generically applicable to not only 1058 

remote sensing data but other environmental, ecological, or socioeconomic time-series data. Our 1059 

initial experiments confirm the utility of BEAST. We envision that its use will offer new satellite-1060 

based insights into patterns and drivers of ecosystem dynamics. 1061 

Appendix A. 1062 

Here we described more on the specification of the prior , , M , |M M  for 1063 

BEAST.	1064 

 First, we chose a normal-inverse Gamma distribution as the prior of model coefficients  1065 

and variance  conditional on model configuration M: 1066 

 β , β β , 	 β ; 0 , ∙ ( ; , ).  

where the conditional prior	 β β ,M  is a Gaussian distribution β ; 0 , Ι ;  the prior 1067 

 is an inverse-gamma distribution ;∙,∙  that is independent of the model configuration M and 1068 

is specified by two scalar hyperparameters   and . To parameterize the Gaussian prior β ∙ , we set 1069 

its prior mean to zeros 0  , a justifiable choice if the covariates are centered beforehand; the prior 1070 

covariance we choseK is the ridge prior Ι . The subscript “M” in the zero-mean vector 0  and 1071 

the identity matrix Ι  indicates that their dimensions depend on the model structure M. Moreover, in 1072 

the prior covariance for β ∙ ,  is a scalar hyperparameter. Judicious values for  are not available in 1073 

advance; therefore, we also treated  as random and further assigned it an inverse-gamma prior 1074 
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= ( ; , ) with two hyperparameters  and . This prior  is a hyperprior because it is 1075 

elicited at a level deeper than β  . Consequentially, the full conditional prior of Eq. 5 is refurnished as 1076 

 
β , , M; , , ,

β β , , M | , | ,  
 

where the hyperparameters , , , and  are underlined and made explicit for the respective priors. 1077 

Second, the prior on model structure M  is chosen to be vague in order to reflect a lack of 1078 

prior knowledge on when and how many abrupt changes occur in an observed time series. Because of 1079 

the separate parameterization for the trend and seasonal signals, it is reasonable to independently 1080 

elicit the model priors for the trend and season signals: 1081 

M ∪
,…,

∪ ,…, ∪ ,…, . 1082 

Firstly, the prior for the trend can be decomposed as 1083 

∪
,…, ,…,

| . 1084 

As a way to encode the vagueness of these model priors, we assume that the number of changepoints, 1085 

m, takes any integer with an equal probability a priori. Meanwhile, we impose a constraint on the 1086 

maximum number of changepoints allowable in a trend signal, as denoted by m 	, which helps to 1087 

preclude over-complicated models. The prior  is therefore a uniform distribution over 1088 

{0,1,..	m }: 1089 

1/ m 1 	0 	m 	

0 	 	m  1090 

Further, given a total of m changepoints, their locations,	
,…,

 are assumed to take random 1091 

values from the points of observation time 	 ,…, . This choice again represents a non-informative 1092 

prior. As a practical constraint, we assume that any consecutive changepoints should be separated 1093 

apart by at least a time interval T. Put together, the conditional prior for changepoint  locations is 1094 
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,…,
| ∝

1 max
,

T	

0 otherwise
. 1095 

Secondly, the prior on the seasonal model structure can be re-written as 1096 

∪ ,…, ∪ ,…, ,…, |  1097 

where the priors on the number and locations of changepoints,	  and ,…, | , take the 1098 

same forms as those of the trend signal, except that the maximum number of changpoints allowable is 1099 

p  rather than m  and that the minimum separable distance between adjacent changepoints is 1100 

W rather than T.  Similarly, the prior on the order of the piecewise harmonic model, , is also 1101 

considered non-informative in that  randomly takes any value between pre-defined lower and upper 1102 

limits of the allowable orders (  and : 1103 

1/ 1 	 	 	

0 otherwise
. 1104 

 In the prior above, the model parameters β , , ,   are of inferential interest and are all 1105 

considered random. In contrast, the ten underlined hyperparameters 1106 

, , , , m , p , , 	, , 	are treated as fixed and should be pre-specified, although it 1107 

is permissible to additionally treat them as random variables by further eliciting hyperpior 1108 

distributions at higher levels in a manner similar to the treatment of . There are no general rules on 1109 

how to specify the values of these hyperparameters. The setup in this study was chosen as 1110 

0.01, 0.02, 1	 , 0, 10, m p max	 n/P, 30  with 1111 

n and P being the total number of observations and the period of the NDVI signal, respectively. Such 1112 

choices for the inverse gamma priors are almost equivalent to non-informative priors for practical 1113 

purposes, reflecting our vague knowledge on 	or  a priori. Preliminary trials with various datasets 1114 

suggest that the resulting predictive performances are insensitive to the settings of these 1115 
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hyperparameters as long as m ,  p , and	  assumes a moderately large value (e.g., m 	> 1116 

15, and L 6), { , , ,  take small values, and the data are standardized beforehand. 1117 

As a recap of the Bayesian formulation for BEAST, the likelihood Eq. 4 and the priors Eqs.5 1118 

and 7 combine to reach the full posterior of our formulation according to Eq. 3: 1119 

β , , , M ∝1120 

∏ ; , β β , , | , | , 	
,…,

, |m , T	 ,…, , | , 	 ∏ | , , . 1121 

It can be further factored into three conditional posteriors: 1122 

| , ∝ 	 | , ⋅ ; 1123 

β , , , β ; 	V∗	  XT
, V∗	

⋅ ; ,  X V
∗	

 XT ; 1124 

β , , , 	 ;
2
,

∑ β ,

2
 1125 

where we have V∗	 Ι  XT  X and  is the total number of coefficients collected for all 1126 

segments of the piecewise linear and harmonic models.  These three conditional posteriors were 1127 

sampled iteratively to simulate a chain of posterior samples using our hybrid Gibbs MCMC sampler. 1128 

References 1129 

Alcaraz‐Segura, D., Chuvieco, E., Epstein, H.E., Kasischke, E.S., & Trishchenko, A. (2010). Debating the 1130 
greening vs. browning of the North American boreal forest: differences between satellite datasets. 1131 
Global Change Biology, 16, 760‐770 1132 

Balke, N.S. (1993). Detecting level shifts in time series. Journal of Business & Economic Statistics, 11, 81‐1133 
92 1134 

Banner, K.M., & Higgs, M.D. (2017). Considerations for assessing model averaging of regression 1135 
coefficients. Ecological Applications, 27, 78‐93 1136 

Betken, A. (2017). Change point estimation based on Wilcoxon tests in the presence of long‐range 1137 
dependence. Electronic Journal of Statistics, 11, 3633‐3672 1138 

Beven, K. (2010). Environmental modelling: An uncertain future? : CRC Press 1139 
Brando, P.M., Goetz, S.J., Baccini, A., Nepstad, D.C., Beck, P.S., & Christman, M.C. (2010). Seasonal and 1140 

interannual variability of climate and vegetation indices across the Amazon. Proceedings of the 1141 
National Academy of Sciences, 200908741 1142 

Breiman, L. (2001a). Random forests. Machine learning, 45, 5‐32 1143 
Breiman, L. (2001b). Statistical modeling: The two cultures (with comments and a rejoinder by the 1144 

author). Statistical science, 16, 199‐231 1145 
Brockwell, P.J., & Davis, R.A. (2016). Introduction to time series and forecasting. springer 1146 



54 
 

Brooks, E.B., Thomas, V.A., Wynne, R.H., & Coulston, J.W. (2012). Fitting the multitemporal curve: A 1147 
Fourier series approach to the missing data problem in remote sensing analysis. IEEE transactions on 1148 
Geoscience and Remote Sensing, 50, 3340‐3353 1149 

Brooks, E.B., Wynne, R.H., Thomas, V.A., Blinn, C.E., & Coulston, J.W. (2014). On‐the‐fly massively 1150 
multitemporal change detection using statistical quality control charts and Landsat data. IEEE 1151 
transactions on Geoscience and Remote Sensing, 52, 3316‐3332 1152 

Browning, D.M., Maynard, J.J., Karl, J.W., & Peters, D.C. (2017). Breaks in MODIS time series portend 1153 

vegetation change–verification using long‐term data in an arid grassland ecosystem. Ecological 1154 
Applications 1155 

Burkett, V.R., Wilcox, D.A., Stottlemyer, R., Barrow, W., Fagre, D., Baron, J., Price, J., Nielsen, J.L., Allen, 1156 
C.D., & Peterson, D.L. (2005). Nonlinear dynamics in ecosystem response to climatic change: case 1157 
studies and policy implications. Ecological complexity, 2, 357‐394 1158 

Burnham, K.P., & Anderson, D.R. (2003). Model selection and multimodel inference: a practical 1159 
information‐theoretic approach. Springer Science & Business Media 1160 

Cade, B.S. (2015). Model averaging and muddled multimodel inferences. Ecology, 96, 2370‐2382 1161 
Cai, Z., Jönsson, P., Jin, H., & Eklundh, L. (2017). Performance of Smoothing Methods for Reconstructing 1162 

NDVI Time‐Series and Estimating Vegetation Phenology from MODIS Data. Remote Sensing, 9, 1271 1163 
Chen, B., Xu, G., Coops, N.C., Ciais, P., Innes, J.L., Wang, G., Myneni, R.B., Wang, T., Krzyzanowski, J., & Li, 1164 

Q. (2014). Changes in vegetation photosynthetic activity trends across the Asia–Pacific region over 1165 
the last three decades. Remote Sensing of Environment, 144, 28‐41 1166 

Cogger, K.O. (2010). Nonlinear multiple regression methods: a survey and extensions. Intelligent Systems 1167 
in Accounting, Finance and Management, 17, 19‐39 1168 

Cohen, W.B., Healey, S.P., Yang, Z., Stehman, S.V., Brewer, C.K., Brooks, E.B., Gorelick, N., Huang, C., 1169 
Hughes, M.J., & Kennedy, R.E. (2017). How Similar Are Forest Disturbance Maps Derived from 1170 
Different Landsat Time Series Algorithms? Forests, 8, 98 1171 

Cohen, W.B., Yang, Z., Healey, S.P., Kennedy, R.E., & Gorelick, N. (2018). A LandTrendr multispectral 1172 
ensemble for forest disturbance detection. Remote Sensing of Environment, 205, 131‐140 1173 

Dashti, H., Glenn, N.F., Ustin, S., Mitchell, J.J., Qi, Y., Ilangakoon, N.T., Flores, A.N., Silván‐Cárdenas, J.L., 1174 
Zhao, K., & Spaete, L.P. (2019). Empirical Methods for Remote Sensing of Nitrogen in Drylands May 1175 
Lead to Unreliable Interpretation of Ecosystem Function. IEEE transactions on Geoscience and 1176 
Remote Sensing 1177 

Denison, D.G. (2002). Bayesian methods for nonlinear classification and regression. John Wiley & Sons 1178 
Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B., & Howard, S. (2007). 1145801. A project for 1179 

monitoring trends in burn severity. Nutrition and cancer, 58, 28‐34 1180 
Ellison, A.M. (2004). Bayesian inference in ecology. Ecology letters, 7, 509‐520 1181 
Finley, A.O., Banerjee, S., & Carlin, B.P. (2007). spBayes: an R package for univariate and multivariate 1182 

hierarchical point‐referenced spatial models. Journal of Statistical Software, 19, 1 1183 
Finley, A.O., Banerjee, S., Ek, A.R., & McRoberts, R.E. (2008). Bayesian multivariate process modeling for 1184 

prediction of forest attributes. Journal of Agricultural, Biological, and Environmental Statistics, 13, 1185 
60 1186 

Franklin, J., Serra‐Diaz, J.M., Syphard, A.D., & Regan, H.M. (2016). Global change and terrestrial plant 1187 
community dynamics. Proceedings of the National Academy of Sciences, 113, 3725‐3734 1188 

Franzke, C.L. (2014). Warming trends: Nonlinear climate change. Nature Climate Change, 4, 423 1189 
Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning. Springer series in 1190 

statistics New York 1191 
Green, P.J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model 1192 

determination. Biometrika, 82, 711‐732 1193 



55 
 

Grossman, Y., Ustin, S., Jacquemoud, S., Sanderson, E., Schmuck, G., & Verdebout, J. (1996). Critique of 1194 
stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf 1195 
reflectance data. Remote Sensing of Environment, 56, 182‐193 1196 

Hamilton, J.D. (1994). Time series analysis. Princeton university press Princeton, NJ 1197 
Harvey, A.C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge 1198 

university press 1199 
Hawbaker, T.J., Vanderhoof, M.K., Beal, Y.‐J., Takacs, J.D., Schmidt, G.L., Falgout, J.T., Williams, B., 1200 

Fairaux, N.M., Caldwell, M.K., & Picotte, J.J. (2017). Mapping burned areas using dense time‐series 1201 
of Landsat data. Remote Sensing of Environment, 198, 504‐522 1202 

Healey, S.P., Cohen, W.B., Yang, Z., Brewer, C.K., Brooks, E.B., Gorelick, N., Hernandez, A.J., Huang, C., 1203 
Hughes, M.J., & Kennedy, R.E. (2018). Mapping forest change using stacked generalization: An 1204 
ensemble approach. Remote Sensing of Environment, 204, 717‐728 1205 

Hu, T., Zhao, T., Shi, J., Wu, S., Liu, D., Qin, H., & Zhao, K. (2017). High‐Resolution Mapping of 1206 
Freeze/Thaw Status in China via Fusion of MODIS and AMSR2 Data. Remote Sensing, 9, 1339 1207 

Huang, C., Goward, S.N., Masek, J.G., Thomas, N., Zhu, Z., & Vogelmann, J.E. (2010). An automated 1208 
approach for reconstructing recent forest disturbance history using dense Landsat time series 1209 
stacks. Remote Sensing of Environment, 114, 183‐198 1210 

Huete, A.R., Didan, K., Shimabukuro, Y.E., Ratana, P., Saleska, S.R., Hutyra, L.R., Yang, W., Nemani, R.R., 1211 

& Myneni, R. (2006). Amazon rainforests green‐up with sunlight in dry season. Geophysical 1212 
research letters, 33 1213 

Jamali, S., Jönsson, P., Eklundh, L., Ardö, J., & Seaquist, J. (2015). Detecting changes in vegetation trends 1214 
using time series segmentation. Remote Sensing of Environment, 156, 182‐195 1215 

Jentsch, A., Kreyling, J., & Beierkuhnlein, C. (2007). A new generation of climate‐change experiments: 1216 
events, not trends. Frontiers in Ecology and the Environment, 5, 365‐374 1217 

Jetz, W., Cavender‐Bares, J., Pavlick, R., Schimel, D., Davis, F.W., Asner, G.P., Guralnick, R., Kattge, J., 1218 
Latimer, A.M., & Moorcroft, P. (2016). Monitoring plant functional diversity from space. Nature 1219 
plants, 2 1220 

Jiang, B., Liang, S., Wang, J., & Xiao, Z. (2010). Modeling MODIS LAI time series using three statistical 1221 
methods. Remote Sensing of Environment, 114, 1432‐1444 1222 

Jong, R., Verbesselt, J., Schaepman, M.E., & Bruin, S. (2012). Trend changes in global greening and 1223 

browning: contribution of short‐term trends to longer‐term change. Global Change Biology, 18, 1224 
642‐655 1225 

Jonsson, P., & Eklundh, L. (2002). Seasonality extraction by function fitting to time‐series of satellite 1226 
sensor data. IEEE transactions on Geoscience and Remote Sensing, 40, 1824‐1832 1227 

Kennedy, M.C., & O'Hagan, A. (2001). Bayesian calibration of computer models. Journal of the Royal 1228 
Statistical Society: Series B (Statistical Methodology), 63, 425‐464 1229 

Kennedy, R.E., Andréfouët, S., Cohen, W.B., Gómez, C., Griffiths, P., Hais, M., Healey, S.P., Helmer, E.H., 1230 

Hostert, P., & Lyons, M.B. (2014). Bringing an ecological view of change to Landsat‐based remote 1231 
sensing. Frontiers in Ecology and the Environment, 12, 339‐346 1232 

Kennedy, R.E., Yang, Z., Braaten, J., Copass, C., Antonova, N., Jordan, C., & Nelson, P. (2015). Attribution 1233 
of disturbance change agent from Landsat time‐series in support of habitat monitoring in the Puget 1234 
Sound region, USA. Remote Sensing of Environment, 166, 271‐285 1235 

Kennedy, R.E., Yang, Z., & Cohen, W.B. (2010). Detecting trends in forest disturbance and recovery using 1236 
yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sensing of 1237 
Environment, 114, 2897‐2910 1238 



56 
 

Li, L., Vrieling, A., Skidmore, A., Wang, T., & Turak, E. (2018). Monitoring the dynamics of surface water 1239 
fraction from MODIS time series in a Mediterranean environment. International Journal of Applied 1240 
Earth Observation and Geoinformation, 66, 135‐145 1241 

Liu, D., Toman, E., Fuller, Z., Chen, G., Londo, A., Zhang, X., & Zhao, K. (2018). Integration of historical 1242 
map and aerial imagery to characterize long‐term land‐use change and landscape dynamics: An 1243 
object‐based analysis via Random Forests. Ecological Indicators, 95, 595‐605 1244 

Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. International Journal 1245 
of Remote Sensing, 25, 2365‐2401 1246 

Martínez, B., & Gilabert, M.A. (2009). Vegetation dynamics from NDVI time series analysis using the 1247 
wavelet transform. Remote Sensing of Environment, 113, 1823‐1842 1248 

McRoberts, R.E. (2011). Satellite image‐based maps: Scientific inference or pretty pictures? Remote 1249 
Sensing of Environment, 115, 715‐724 1250 

Myneni, R.B., Keeling, C., Tucker, C.J., Asrar, G., & Nemani, R.R. (1997). Increased plant growth in the 1251 
northern high latitudes from 1981 to 1991. Nature, 386, 698 1252 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E., & Wulder, M.A. (2014). Good 1253 
practices for estimating area and assessing accuracy of land change. Remote Sensing of 1254 
Environment, 148, 42‐57 1255 

Olofsson, P., Foody, G.M., Stehman, S.V., & Woodcock, C.E. (2013). Making better use of accuracy data 1256 
in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified 1257 
estimation. Remote Sensing of Environment, 129, 122‐131 1258 

Oreskes, N., Shrader‐Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of 1259 
numerical models in the earth sciences. Science, 263, 641‐646 1260 

Pettorelli, N., Laurance, W.F., O'Brien, T.G., Wegmann, M., Nagendra, H., & Turner, W. (2014). Satellite 1261 
remote sensing for applied ecologists: opportunities and challenges. Journal of Applied Ecology, 51, 1262 
839‐848 1263 

Piao, S., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., Margolis, H., Fang, J., Barr, A., 1264 
& Chen, A. (2008). Net carbon dioxide losses of northern ecosystems in response to autumn 1265 
warming. Nature, 451, 49 1266 

Piao, S., Mohammat, A., Fang, J., Cai, Q., & Feng, J. (2006). NDVI‐based increase in growth of temperate 1267 
grasslands and its responses to climate changes in China. Global Environmental Change, 16, 340‐348 1268 

Powell, S.L., Cohen, W.B., Healey, S.P., Kennedy, R.E., Moisen, G.G., Pierce, K.B., & Ohmann, J.L. (2010). 1269 
Quantification of live aboveground forest biomass dynamics with Landsat time‐series and field 1270 
inventory data: A comparison of empirical modeling approaches. Remote Sensing of Environment, 1271 
114, 1053‐1068 1272 

Raftery, A.E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian model averaging to 1273 
calibrate forecast ensembles. Monthly Weather Review, 133, 1155‐1174 1274 

Rankin, B.M., Meola, J., & Eismann, M.T. (2017). Spectral Radiance Modeling and Bayesian Model 1275 
Averaging for Longwave Infrared Hyperspectral Imagery and Subpixel Target Identification. IEEE 1276 
transactions on Geoscience and Remote Sensing, 55, 6726‐6735 1277 

Reiche, J., de Bruin, S., Hoekman, D., Verbesselt, J., & Herold, M. (2015). A Bayesian approach to 1278 
combine Landsat and ALOS PALSAR time series for near real‐time deforestation detection. Remote 1279 
Sensing, 7, 4973‐4996 1280 

Reid, P.C., Hari, R.E., Beaugrand, G., Livingstone, D.M., Marty, C., Straile, D., Barichivich, J., Goberville, E., 1281 
Adrian, R., & Aono, Y. (2016). Global impacts of the 1980s regime shift. Global Change Biology, 22, 1282 
682‐703 1283 

Roy, D.P., Wulder, M., Loveland, T.R., Woodcock, C., Allen, R., Anderson, M., Helder, D., Irons, J., 1284 
Johnson, D., & Kennedy, R. (2014). Landsat‐8: Science and product vision for terrestrial global 1285 
change research. Remote Sensing of Environment, 145, 154‐172 1286 



57 
 

Samanta, A., Ganguly, S., Hashimoto, H., Devadiga, S., Vermote, E., Knyazikhin, Y., Nemani, R.R., & 1287 

Myneni, R.B. (2010). Amazon forests did not green‐up during the 2005 drought. Geophysical 1288 
research letters, 37 1289 

Schmidt, G., Jenkerson, C., Masek, J., Vermote, E., & Gao, F. (2013). Landsat ecosystem disturbance 1290 
adaptive processing system (LEDAPS) algorithm description. In: US Geological Survey 1291 

Schowengerdt, R.A. (2006). Remote sensing: models and methods for image processing. Academic press 1292 
Shen, M. (2011). Spring phenology was not consistently related to winter warming on the Tibetan 1293 

Plateau. Proceedings of the National Academy of Sciences, 108, E91‐E92 1294 
Shmueli, G. (2010). To explain or to predict? Statistical science, 25, 289‐310 1295 
Shu, L., Jiang, Q., Zhang, X., & Zhao, K. (2017). Potential and limitations of satellite laser altimetry for 1296 

monitoring water surface dynamics: ICESat for US lakes. International Journal of Agricultural and 1297 
Biological Engineering, 10, 154‐165 1298 

Solomon, S. (2007). Climate change 2007‐the physical science basis: Working group I contribution to the 1299 
fourth assessment report of the IPCC. Cambridge University Press 1300 

Su, Y., Guo, Q., Xue, B., Hu, T., Alvarez, O., Tao, S., & Fang, J. (2016). Spatial distribution of forest 1301 
aboveground biomass in China: Estimation through combination of spaceborne lidar, optical 1302 
imagery, and forest inventory data. Remote Sensing of Environment, 173, 187‐199 1303 

Tewkesbury, A.P., Comber, A.J., Tate, N.J., Lamb, A., & Fisher, P.F. (2015). A critical synthesis of remotely 1304 
sensed optical image change detection techniques. Remote Sensing of Environment, 160, 1‐14 1305 

Thomas, R.Q., Jersild, A.L., Brooks, E.B., Thomas, V.A., & Wynne, R.H. (2018). A mid‐century ecological 1306 
forecast with partitioned uncertainty predicts increases in loblolly pine forest productivity. 1307 
Ecological Applications, 28, 1503‐1519 1308 

Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010a). Detecting trend and seasonal 1309 
changes in satellite image time series. Remote Sensing of Environment, 114, 106‐115 1310 

Verbesselt, J., Hyndman, R., Zeileis, A., & Culvenor, D. (2010b). Phenological change detection while 1311 
accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of 1312 
Environment, 114, 2970‐2980 1313 

Wang, D., Morton, D., Masek, J., Wu, A., Nagol, J., Xiong, X., Levy, R., Vermote, E., & Wolfe, R. (2012). 1314 
Impact of sensor degradation on the MODIS NDVI time series. Remote Sensing of Environment, 119, 1315 
55‐61 1316 

Wang, X., Piao, S., Ciais, P., Li, J., Friedlingstein, P., Koven, C., & Chen, A. (2011). Spring temperature 1317 
change and its implication in the change of vegetation growth in North America from 1982 to 2006. 1318 
Proceedings of the National Academy of Sciences, 108, 1240‐1245 1319 

Wintle, B.A., McCarthy, M.A., Volinsky, C.T., & Kavanagh, R.P. (2003). The use of Bayesian model 1320 
averaging to better represent uncertainty in ecological models. Conservation Biology, 17, 1579‐1590 1321 

Wu, W.B., & Zhao, Z. (2007). Inference of trends in time series. Journal of the Royal Statistical Society: 1322 
Series B (Statistical Methodology), 69, 391‐410 1323 

Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., & Woodcock, C.E. (2012). Opening the archive: 1324 
How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of 1325 
Environment, 122, 2‐10 1326 

Yu, H., Luedeling, E., & Xu, J. (2010). Winter and spring warming result in delayed spring phenology on 1327 
the Tibetan Plateau. Proceedings of the National Academy of Sciences, 107, 22151‐22156 1328 

Zhang, X., & Zhao, K. (2012). Bayesian neural networks for uncertainty analysis of hydrologic modeling: a 1329 
comparison of two schemes. Water resources management, 26, 2365‐2382 1330 

Zhao, K., & Jackson, R.B. (2014). Biophysical forcings of land‐use changes from potential forestry 1331 
activities in North America. Ecological Monographs, 84, 329‐353 1332 

Zhao, K., Popescu, S., & Nelson, R. (2009). Lidar remote sensing of forest biomass: A scale‐invariant 1333 
estimation approach using airborne lasers. Remote Sensing of Environment, 113, 182‐196 1334 



58 
 

Zhao, K., Popescu, S., & Zhang, X. (2008). Bayesian learning with Gaussian processes for supervised 1335 
classification of hyperspectral data. Photogrammetric Engineering & Remote Sensing, 74, 1223‐1234 1336 

Zhao, K., Suarez, J.C., Garcia, M., Hu, T., Wang, C., & Londo, A. (2018). Utility of multitemporal lidar for 1337 
forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux. Remote Sensing of 1338 
Environment, 204, 883‐897 1339 

Zhao, K., Valle, D., Popescu, S., Zhang, X., & Mallick, B. (2013). Hyperspectral remote sensing of plant 1340 
biochemistry using Bayesian model averaging with variable and band selection. Remote Sensing of 1341 
Environment, 132, 102‐119 1342 

Zhou, T., Popescu, S.C., Lawing, A.M., Eriksson, M., Strimbu, B.M., & Bürkner, P.C. (2017). Bayesian and 1343 
Classical Machine Learning Methods: A Comparison for Tree Species Classification with LiDAR 1344 
Waveform Signatures. Remote Sensing, 10, 39 1345 

Zhu, Z. (2017). Change detection using landsat time series: A review of frequencies, preprocessing, 1346 
algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 370‐384 1347 

Zhu, Z., Wang, S., & Woodcock, C.E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, 1348 
cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of 1349 
Environment, 159, 269‐277 1350 

Zhu, Z., & Woodcock, C.E. (2014). Continuous change detection and classification of land cover using all 1351 
available Landsat data. Remote Sensing of Environment, 144, 152‐171 1352 

Zhu, Z., Woodcock, C.E., & Olofsson, P. (2012). Continuous monitoring of forest disturbance using all 1353 
available Landsat imagery. Remote Sensing of Environment, 122, 75‐91 1354 

 1355 

 1356 




