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Abstract

Wood is a porous, hygroscopic material with engineering properties that depend signifi-

cantly on the amount of water (moisture) in the material. Water in wood can be present in

both cell walls and the porous void-structure of the material, but it is only water in cell walls

that affects the engineering properties. An important characteristic of wood is therefore the

capacity for water of its solid cell walls, i.e. the maximum cell wall moisture content. How-

ever, this quantity is not straight-forward to determine experimentally, and the measured

value may depend on the experimental technique used. In this study, we used a triangula-

tion approach to determine the maximum cell wall moisture content by using three experi-

mental techniques based on different measurement principles: low-field nuclear magnetic

resonance (LFNMR) relaxometry, differential scanning calorimetry (DSC), and the solute

exclusion technique (SET). The LFNMR data were furthermore analysed by two varieties of

exponential decay analysis. These techniques were used to determine the maximum cell

wall moisture contents of nine different wood species, covering a wide range of densities.

The results from statistical analysis showed that LFNMR yielded lower cell wall moisture

contents than DSC and SET, which were fairly similar. Both of the latter methods include

factors that could either under-estimate or over-estimate the measured cell wall moisture

content. Because of this and the fact that the DSC and SET methods are based on different

measurement principles, it is likely that they provide realistic values of the cell wall moisture

content in the water-saturated state.

Introduction

The physical properties of wood depend to a large extent on the amount of moisture within

the solid cell walls. It is therefore important to know the moisture content of the wood to
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predict the material performance. Under normal environmental conditions (temperature and

relative humidity), moisture is predominantly found within the solid cell walls [1]. However,

at high relative humidity (> 98–99%), moisture is also held as capillary water in the macro-

void structure of the wood [2, 3]. To understand how moisture affects wood performance in

the full moisture range, it is therefore important to be able to distinguish between cell wall

water and capillary water in wood. Moreover, how much moisture that can be accommodated

in the solid cell walls is an important characteristic of the material, i.e. the maximum cell wall

moisture content. This moisture content is reached in the fully water-saturated state, when

both cell walls and the wood void structure are saturated with water [1]. The maximum cell

wall moisture content should, however, not be confused with the fibre saturation point (FSP)

determined from changes in physical wood properties with moisture content [4], since the cell

wall moisture content in this FSP state is lower than the maximum cell wall moisture content

[1].

The total moisture content of wood can be experimentally determined with high accuracy

using gravimetric techniques [5], however, classifying that moisture into cell wall water and

capillary water by experimental methods is less straightforward. In the fully water-saturated

state, there are three main techniques that can be used for this: Differential scanning calorime-

try (DSC) [1, 6, 7], the Solute exclusion technique (SET) [8–11], and Low-field nuclear mag-

netic resonance relaxometry (LFNMR) [12–14]. However, because of the inherent

measurement uncertainty in each of these techniques, it is difficult to accurately measure the

maximum cell wall moisture content of wood. One way to tackle this issue is to use a large

number of repeated measurements with a given technique. However, a given experimental

technique may be biased towards either over- or under-estimation. The results may therefore

be skewed towards higher or lower values than the true value, even if a large number of repli-

cates are measured. Another way, which is perhaps more valuable, is to use a triangulation

approach [15, 16], where the same parameter is determined using several techniques based on

different measurement principles. Such an ensemble of experimental methods is typically asso-

ciated with different underlying assumptions, uncertainties and biases. If agreement is found

in the determined parameter across different techniques, this is a stronger indication that the

measured value is close to the true value than relying on measurements from a single experi-

mental method.

In this study, we used LFNMR, DSC, and SET, to determine the cell wall moisture content

in the fully water-saturated state of specimens from nine different wood species. While these

techniques have been used for a variety of wood species in previous studies, they have never

been employed concurrently on the same sample material.

Materials and methods

Specimen preparation

Wood from nine different species with different densities was used in this study (Table 1).

Oak, beech, and ash specimens originated from trees grown in Canton Zurich, Switzerland

and was provided by colleagues at the Institute for Building Materials, ETH Zürich. The Nor-

way spruce originated from an experimental forest in southern Sweden, for a detailed descrip-

tion, see [17] (mature sapwood, southern location). The poplar originated from southern

Sweden (latitude: 55.85˚ longitude: 13.12˚) and was felled in 2015 at an age of about 40 years.

The spruce and poplar was kept in a climate room (20˚C/60% relative humidity) for several

years after felling. The remaining four species (abachi, balsa, Douglas fir, ironwood) were of

unknown origin and had been kept in room climate for several years. The wood was cut into

cubes with side 10 mm, dried in a vacuum oven at 60˚C, and further extracted using a Soxhlet
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apparatus, first with ethanol and toluene (ratio 1:2) for 24 h and subsequently with acetone

and MilliQ water (ratio 9:1) for 24 h. This was done since the extractives might otherwise

interfere with the SET measurements. The density of the different wood species before and

after extraction was determined for four of the cubes of each species. For these cubes, both the

dry mass and the dimensions were determined after drying in a vacuum oven at 60˚C before

and after extraction. The mass was taken on a balance with 0.1 mg resolution and the dimen-

sions were measured using a calliper with 0.01 mm resolution. For the latter, two measures

were taken in each direction and the average of these was used to determine the volume of

each cube. The dry densities before and after extraction were then determined as the dry mas-

ses divided by the dry volumes. The cubes were then further cut into samples sizes and geome-

tries suitable for each method. The final specimen geometries were 5 x 10 x 10 mm3

(longitudinal x radial x tangential (L x R x T)) for SET, 10 x 5 x 5 mm3 (L x R x T) for LFNMR,

and roughly circular discs of 4 mm diameter and 2 mm (L) thickness for DSC. The number of

replicates for measurements with LFNMR and DSC was five, whereas it was three for SET.

However, in the latter method two cuboids of 5 x 10 x 10 mm3 were used for each replicate

measurement.

Characterisation of the chemical composition

The chemical composition of the different wood species was determined by combined Ther-

mogravimetric/Differential scanning calorimetry/Fourier transform infrared (TG/DSC/FTIR)

analysis using a Netzsch STA 449F1 (Selb, Germany) combined with a Bruker Tensor FTIR

(Billerica, MA, USA) [18–20]. The samples were ground to 1 mm mesh size and three repli-

cates were analyzed for each wood species. Samples of 8 mg were weighed into Al2O3 crucibles

and placed into the DSC/TG Octo S Type sample carrier together with an empty reference cru-

cible. The samples were heated from 42˚C to 710˚C at a rate of 10˚C min-1. Pure nitrogen gas

(70 ml min-1) was used to purge the furnace from 42˚C until 439˚C, pyrolyzing the carbohy-

drate fraction of the material. Then the furnace gas was switched to a mixture of pure nitrogen

(20 ml min-1) and air (50 ml min-1) to combust the remaining lignin and determine the ash

content. FTIR spectra of the evolved gases were collected using 7 scans, providing an average

spectrum every 6 seconds. The FTIR measurements were collected from 6000 cm-1 to 600 cm-1

with a resolution of 4 cm-1. Sixteen background scans were collected. A Gram-Schmidt (GS)

curve was obtained from the acquired IR data. The GS orthogonalization allows a quantitative

analysis of the total evolved gases detected by the spectrometer over time.

Table 1. Wood species used in this study along with their measured density before and after extraction. Species are listed after ascending density. Standard deviations

are given in brackets.

Wood species Botanical name Density (kg m-3)

Initially Extracted

Balsa Ochroma lagopus Sw. 90 (9) -

Abachi Triplochiton scleroxylon K. Schum. 278 (24) 279 (32)

Poplar Populus x canadensis Moench. 404 (13) 399 (17)

Norway spruce Picea abies (L.) Karst. 405 (16) 387 (17)

Douglas fir Pseudotsuga menziesii (Mirb.) Franco 577 (22) 539 (22)

Beech Fagus sylvatica L. 606 (9) 572 (5)

Ash Fraxinus excelsior L. 662 (9) 613 (4)

Oak Quercus robur L. 751 (13) 695 (9)

Ironwood Lophira alata Banks ex. Gartn. 1026 (13) 977 (9)

https://doi.org/10.1371/journal.pone.0238319.t001
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Chemical content was determined from sample mass loss at various temperature ranges.

Extractive content was estimated from the mass loss between 105˚C until the start of the first

main peak in the GS curve. The hemicellulose fraction was obtained from mass loss from this

point until a clear inflection point in either the first derivative of the GS curve or the first deriv-

ative of the DSC curve. Cellulose content was estimated from here until the next local mini-

mum in the GS curve. Mass loss during the rest of the measurement was attributed to lignin.

The mass remaining in the crucible after the measurement provided the ash content.

Water-saturation and moisture conditioning

After extraction and final cutting of specimens, these were water-saturated by vacuum impreg-

nation. This was done by placing the specimens of the same species of a given geometry in 50

mL reaction flasks. Thereafter, vacuum was applied for 30 minutes followed by injection of 20

mL MilliQ-water while pumping continued for 1 minute. Finally, atmospheric pressure was

re-established after a period of 15 minutes without pumping.

Determination of cell wall moisture content with low-field NMR

relaxometry

LFNMR was used to distinguish between moisture in cell walls and different macro-voids

within the wood specimens using a similar experimental procedure as described Fredriksson

and Thygesen [12], but with settings as described below. The water-saturated specimens were

measured one-by-one in a LFNMR probe (mq20-Minispec, Bruker, Billerica, MA, USA) held

at constant temperature of 25˚C. In the measurements, the spin-spin relaxation time (T2) was

determined using a 1D Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence [21, 22] with a

pulse separation (τ) of 0.1 ms, 8000 echoes, 32 scans and a recycle delay of 30 s. For the speci-

mens of abachi, ash, oak and ironwood, the total measurement time was not enough to give

full decay of the LFNMR signal. For these specimens, the number of echoes was therefore

increased to 20000. The 1D CPMG yields a decaying LFNMR signal which is then analysed by

exponential decay analysis. This is done by fitting the decaying signal by the sum of one or

more exponential functions with the fitting parameters being the characteristic decay time and

the pre-exponential coefficient(s). Two types of exponential decay analysis were performed:

discrete exponential and multi-exponential. In the previous, the “expfit” function (release ver-

sion 1.5) [23, 24] for MATLAB was used. This function fits the decay signal with the sum of a

selected number of exponentials. In this study, fitting was done with a range of 1 to 7 exponen-

tials, and the optimum number of exponentials was then selected based on the residuals. These

are reported by the “expfit” function as the norm of the vector in Euclidian space which con-

tains the differences between fit and experimental data for the individual time points. With an

increasing number of fitted exponentials, the residuals decreases but reaches a plateau after fit-

ting around 3–5 exponentials. For each wood species, the optimum number of exponentials

was then selected as the lowest number on the residuals plateau. For all wood species except

Douglas fir and balsa, this optimum number of exponentials was four, while for Douglas fir

and balsa it was three and five, respectively.

For multi-exponential decay analysis, the sum of a large number of exponentials is fitted to

the decaying LFNMR signal. The characteristic decay times of these exponentials is logarithmi-

cally spaced in a pre-selected time interval which ranges from the first to the last time point in

each data series. Thus, the aim of the analysis is to find the optimal combination of values for

the pre-exponential coefficients that best fit the decay curve. The fitting was performed by use

of the non-negative least squares algorithm of [25] which minimises the following statistic
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[26]:
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i¼1
Aie
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þ
1
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where Ai (-) is the pre-exponential coefficient of the ith relaxation component, τi (ms) is the

characteristic time constant (T2 relaxation time) associated with the ith relaxation compo-

nent, N (-) is the number of exponential components fitted to the data, Ej (-) is the LFNMR

signal in the jth time point, tj (ms) is the time of the jth time point, n (-) is the total number of

time points in the measurement series, and α (-) is a parameter that controls the smoothness

of the spectrum, i.e. the difference in relative weights between adjacent τ’s in the selected

range. In this study, 128 relaxation components (N) were fitted to the experimental decay

curves, which resulted in a smooth spectrum with between 3 and 5 peaks, each representing

water molecules in a specific physicochemical environment within the wood. The peak with

the shortest T2 relaxation time, in the range of 1 ms, represents water molecules most tightly

interacting with the solid wood material, i.e. the cell wall water [12, 27–33]. By multiplying

the total moisture content with the sum of pre-exponential components Ai related to the

peak with the shortest T2 relaxation time, and normalising this sum with the sum of all pre-

exponential components of the peaks in the spectrum, a value for the fractional amount of

cell wall moisture can be found. For the discrete exponential decay analysis, this quantity is

determined by normalising the pre-exponential coefficient of the exponential with the short-

est decay time with the sum of all pre-exponential coefficients determined. Subsequently, the

fractional amount of cell wall moisture is multiplied by the total moisture content deter-

mined gravimetrically before the measurements to arrive at the cell wall moisture content,

ucw (g g-1) by

ucw ¼ utot
Scw
Stot

ð2Þ

where utot (g g-1) is the total moisture content of the wood, Scw (-) is the pre-exponential coef-

ficient or sum of pre-exponential coefficients related to cell wall water, and Stot (-) is the sum

of all pre-exponential coefficients Ai in the spectrum, i.e. excluding potential non-zero Ai’s at

each end of the spectrum found with multi-exponential decay analysis, since these are arte-

facts. In the statistical analysis, the results of the two analysis methods of the LFNMR data are

treated as sub-methods, called LFNMR-discrete and LFNMR-multi.

Determination of cell wall moisture content with differential scanning

calorimetry

DSC was used to distinguish between water inside and outside of cell walls [1, 6, 34]. Each

water-saturated specimen was placed in a sample pan (Tzero hermetic pans, TA Instruments,

Eschborn, Germany) and a lid was put on which was then hermetically sealed with a Tzero

press (TA Instruments, Eschborn, Germany). All DSC pans were then loaded in the autosam-

pler of a DSC Q2000 (TA Instruments, Eschborn, Germany) and one-by-one measured in the

following temperature cycle: First the pan was quenched to -20˚C and held at isothermal con-

ditions for 5 minutes before the temperature was increased by 2˚C min-1 to 20˚C. This cycle

was repeated once before the temperature was finally increased rapidly from 20˚C to 40˚C and

the sample pan unloaded and a new sample pan was loaded. After the DSC measurements, all

lids were pierced multiple times with a syringe and the pans were dried in a vacuum-oven

(65˚C, 0 mbar) for 22 h. Finally, the dry masses were determined gravimetrically with a resolu-

tion of 0.01 mg after the dried pans had cooled over molecular sieves 3Å.
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Heat flow curves from the experiments were analysed with the software TA Universal Anal-

ysis 2000 (version 4.5A, TA Instruments, Eschborn, Germany). The total melting energy, Q (J)

was determined by integration of the melting peak in a temperature interval visually picked

from the heating curves. The cell wall moisture content, ucw (g g-1), was calculated for each

specimen by

ucw ¼
mws � mdry �

Q
Hf

� �

mdry
ð3Þ

wheremws (g) is the specimen mass in water-saturated state,mdry (g) is the specimen dry mass,

andHf (J g-1) is the enthalpy of fusion of water of 333.7 J g-1. Calibration of the DSC Q2000 for

enthalpy of fusion was done with deionised water (melting point 0˚C, enthalpy of fusion 333.7

J g-1). In the statistical analysis, the results of the two temperature cycles in the DSC method

are treated as two sub-methods.

Determination of cell wall moisture content with solute exclusion

SET was used to determine the amount of moisture in water-saturated cell walls by probing

the wood specimens with solute probe molecules too large to enter cell walls [8–11, 35].

Water-saturated wood specimens were added to individual 3.6 mL cryogenic nunc plastic vials

after excess surface water was removed by dabbing each specimen on a water-soaked Wettex

cloth (Wettex, Vileda, Freudenberg Home & Cleaning Solutions AB, Malmö, Sweden). About

1 cm3 wood was added to each vial. The mass of the wet specimens was then determined before

1.5 mL probe solution was added to each vial. The probe solutions consisted of a mix of poly-

ethylene glycol molecules of different molecular masses and hence different sizes: PEG6k

(average molar massMn = 6 000 g mol-1, hydrodynamic diameter d = 6.4 nm), PEG40k (Mn =

40 000 g mol-1, d = 17.9 nm), and PEG108k (Mn = 108 000 g mol-1, d = 30.5 nm). In order to

have probe solution with narrow size distributions, PEG6k was acquired as reference standard

from U.S. Pharmacopeia (USP, Rockville, MD, USA), while PEK40k and PEG108k were

acquired as analytical standards for gel permeation chromatography from Sigma Aldrich

(Darmstadt, Germany). Molecular sizes are according to regression of hydrodynamic diameter

(d) with the molar mass (Mn) by [36]. The initial concentration of each probe molecule was

0.6% w/w. After keeping the specimens in the probe solutions for 18 days at 5˚C, the solution

was removed with a 1 mL syringe by carefully pulling in the liquid from the top of the vial and

then gradually tilting the vial while pulling the piston of the syringe. Hereby, the vast majority

of the liquid in the vial was taken out. Subsequently, potential wood particles were removed by

injecting the liquid into 2 mL HPLC glass vials through a nylon syringe filter (pore size

0.45 μm) put onto the tip of the syringe.

The quantification of probe molecules in the initial (stock) solution and the solution after

specimen conditioning was determined with a Summit HPLC instrument (Dionex) equipped

with Shodex OHpak SB-803 HQ with Phenomenex CHO-9225 guard column (0.18x250 mm

tube between the two columns). Liquid samples were loaded in an autosampler set to 10˚C,

while the column oven and refractive index detector (Shodex) were kept at 40˚C. The injection

volume of analyte was 20 μL and the flow rate of the mobile phase (degassed MilliQ water) was

kept at 0.8 mL min-1. Each sample measurement lasted 20 minutes and each liquid sample was

measured 6–7 times (8 times for the stock solution), equally spaced over the several days it

took to measure all liquid samples. The HPLC was controlled and analyte peak areas were cal-

culated using the Chromeleon software (Thermo Fisher Scientific, Waltham, MA, USA). The

borders of each peak were automatically assigned by the software, but all chromatograms were
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subsequently visually inspected and borders were corrected if deemed necessary. The average

peak area of the multiple measurements on the liquid from a specific replicate was taken as the

characteristic value for that replicate. In general, the repeated HPLC measurements showed a

low variation in the calculated peak area with a coefficient of variation of 0.5% on average

(max. 1.7%, min. 0.1%). Based on the change in peak area, i.e. concentration, between the ini-

tial state and after conditioning wood specimens, the cell wall moisture content, ucw (g g-1) was

determined as

ucw ¼
mws � mdry � msol

cinit
c1
� 1

� �

mdry
ð4Þ

wheremws (g) is the specimen mass in water-saturated state,mdry (g) is the specimen dry mass,

msol (g) is the mass of the solution added, cinit (g L-1) is the initial concentration (peak area) of

probe molecules in the solution, and c1 (g L-1) is the concentration (peak area) of probe mole-

cules after equilibrium has been attained. In the statistical analysis, the results obtained with

the different PEG probe molecules in the SET method are treated as three sub-methods.

Statistical analysis

Owing to the sampling design, where each repetition of measurements for a given tree species

and method was taken from a single piece of wood, we expected probes taken from the same

sample to be correlated. Consequently, the effect of the applied experimental method on the

measured cell wall water content was analysed using a mixed linear model

y ¼ Xβþ uþ ε; where u � Nð0;GÞ and ε � Nð0; s2Þ ð5Þ

where y is the cell wall moisture content, X is the design matrix, β is a vector of fixed effects, u

is a vector of random effects and ε is the random error. The mixed linear model was used for

both analyses of the overall methods (LFNMR, DSC, and SET) and the various sub-methods

using procedure MIXED in SAS v. 9.4 (SAS Institute, Cary, NC, USA). Multiple comparisons

of individual molecular weights were analysed using Tukey-Kramer multiple comparisons

procedure.

Results and discussion

The density varied by more than one order of magnitude between the species with the highest

(ironwood) and lowest (balsa) density, see Table 1. Of the nine wood species, the chemical

composition of ironwood, oak, and Douglas fir differed from the rest in terms of a higher lig-

nin content and lower cellulose content (Fig 1).

The statistical analysis of the different methods on cell wall water content measurement

first showed excess variance heterogeneity (Fig 2), i.e. the data variance differed excessively

between the three methods. The reason was a very large variation of the SET measurements

caused by extremely high cell wall water contents determined for balsa and abachi (Table 2).

Moreover, for ironwood, the SET method yielded negative cell wall moisture contents for

nearly all probe solutions. Possible reasons for this are discussed below. Further statistical anal-

ysis was therefore performed without balsa, abachi and ironwood.

In general, DSC and SET gave higher cell wall moisture contents than LFNMR, although

the three sub-methods of SET and the two sub-methods of LFNMR differed. Statistical analysis

of the three methods with the general linear model showed that LFNMR gave significantly

lower (P< 0.001) cell wall moisture contents of about 0.1 g g-1 than DSC and SET. These latter

two methods were, on other hand, not significantly different (P = 0.8675). However, the sub-
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methods produced significant different cell wall moisture contents for both the LFNMR

(P< 0.01) and SET (P< 0.05) methods. In the previous, LFNMR-discrete yielded about 0.01 g

g-1 lower values than LFNMR-multi, whereas the PEG108k yielded about 0.02 g g-1 and 0.08 g

g-1 higher moisture contents than the PEG40k and PEG6k molecules, respectively. Of these lat-

ter two molecules, PEG40k resulted in cell wall moisture contents about 0.06 g g-1 higher than

that found with PEG6k. In the DSC method, the first temperature cycle was found to give

about 0.003 g g-1 lower cell wall moisture contents than the second cycle, however, this
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(SET). The central dot (.) indicates the median, the bottom and top edges of the box show 25th and 75th percentiles,

respectively, and the whiskers extend to the extreme data points, while possible outliers are indicated by +. For SET,

the results for abachi, balsa and ironwood are excluded from this plot because of excessive values determined for these

species, see text for explanation.

https://doi.org/10.1371/journal.pone.0238319.g002
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difference was not statistically significant. Further details and results concerning the statistical

analysis can be found in S5–S12 Tables in S1 Appendix.

Assumptions, uncertainties and biases of the experimental techniques

For successful use of the triangulation approach to determine the maximum cell wall moisture

content, it is important to evaluate the underlying assumptions, uncertainties and potential

biases of each of the experimental techniques. The uncertainties discussed relate to the

assumptions of each method that may cause systematic errors (bias) in obtained data. An over-

view of the different methods with their assumptions, uncertainties and biases is given in

Table 3.

LFNMR relaxometry

Calculation of the cell wall moisture content from measurements with LFNMR is based on the

assumption that the exponential decay analysis provides the relative distribution of moisture

in different environments within the material. One uncertainty with this method is, however,

that water molecules may exchange between the different water populations during the decay

of the LFNMR signal in the experiment. This changes the distribution of relaxation times,

since these water molecules will have relaxation times intermediate of water in those environ-

ments between which they are exchanging [37]. For instance, Beck et al. [14] used the 1D

CPMG pulse sequence in both LFNMR measurements at 22˚C and in cryo-conditions at

-18˚C to determine the cell wall moisture content. Beck et al. [14] found that the values

obtained at 22˚C were lower than the ones obtained at -18˚C where the water in cell lumina is

frozen and the exchange between cell walls and lumina is limited. The under-estimation at

22˚C was 0.013–0.071 g g-1. In addition, data presented by Telkki et al. [32] indicates that cell

wall moisture contents calculated from measurements at 14˚C are lower than cell wall mois-

ture contents calculated from measurements at -3˚C. Furthermore, Valckenborg et al. [38]

found that the pore size distribution of mortar derived from LFNMR measurements differed

from that found by cryo-porosimetry; for the former, the total volume of the smaller pore sizes

was under-estimated. Whether this was caused by exchanging water populations is not known.

However, based on the above-mentioned results from literature it appears that the LFNMR

performed above 0˚C has a tendency to under-estimate the amount of water found in the

smaller pore sizes, e.g. in the present study, water within the cell walls of wood.

Table 2. Mean cell wall moisture contents determined with the three experimental techniques: Low-field NMR

relaxometry (LFNMR), differential scanning calorimetry (DSC), and the solute exclusion technique (SET).

Maximum cell wall moisture content (g g-1)

Wood species LFNMR DSC SET

Balsa 0.266 (0.026) 0.337 (0.083) 5.367 (0.714)

Abachi 0.222 (0.014) 0.325 (0.046) 1.379 (0.242)

Poplar 0.262 (0.011) 0.386 (0.028) 0.308 (0.085)

Spruce 0.349 (0.007) 0.410 (0.030) 0.412 (0.083)

Douglas-fir 0.297 (0.005) 0.345 (0.026) 0.329 (0.039)

Beech 0.305 (0.004) 0.433 (0.015) 0.421 (0.029)

Ash 0.303 (0.010) 0.443 (0.010) 0.509 (0.074)

Oak 0.341 (0.021) 0.420 (0.024) 0.486 (0.056)

Ironwood 0.282 (0.006) 0.310 (0.007) -0.050 (0.067)

Standard deviations are given in brackets.

https://doi.org/10.1371/journal.pone.0238319.t002
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The two types of exponential decay analysis did show differences in the determined cell

wall moisture content of about 0.01 g g-1. Although this difference is statistically significant,

the difference is small and indicates that the choice of analysis method of the LFNMR data

only has a modest effect on the determined cell wall moisture content. However, potential dif-

ferences between methods regarding the peaks representing water outside of cell walls were

not evaluated in the present study. Agreements between discrete and multi exponential decay

analysis methods have also been seen in previous studies of water in wood [12, 14].

Differential scanning calorimetry. Using DSC to determine the maximum cell wall

moisture content relies on the assumption that the amounts of non-freezable and freezable

water can be directly translated into cell wall water and capillary water, respectively. The pres-

ence of either freezable cell wall water or non-freezable capillary water would thus introduce

an error in the determined cell wall moisture content. For the first case, if part of the cell wall

water is freezable in the temperature range employed in the DSC measurement, the energy

required to melt this will be recorded and be assigned to capillary water. Hereby, freezable cell

wall water would cause an under-estimation of the cell wall moisture content. Since cell wall

water is situated in very small cell wall pores of the order of 2 nm [39–41], it is expected to

have a lower phase change (freezing/melting) temperature than liquid water [42, 43]. Although

biopolymeric materials like extracted cellulose and lignin have been found to contain water

which freezes well below the normal freezing point of liquid water [44, 45], this water is pre-

sumably found as clusters around strongly polar groups [46, 47]. No freezable cell wall water

has, however, been found within solid wood samples [48, 49]. Therefore, the under-estimation

in cell wall moisture content from freezable cell wall water is considered negligible.

Table 3. Descriptions, underlying assumptions and biased factors along with their potential effect, the probability, and the magnitude of error introduced in the

determined cell wall moisture contents for the three methods used.

Method Description Assumptions Bias Probability and

error

Low-field NMR

relaxometry

• Measurement of a decaying low-field

NMR signal

• Signal data is fitted with a range of

exponentials, where those with short

relaxation time (~1 ms) represent cell

wall water

• The characteristic pre-exponential

coefficients derived by exponential decay

analysis reflects the relative distribution of

water in different environments

• Potential exchange of water

molecules between environments

during the measurement (under-

estimation)

• Probability: High

Error magnitude:

Medium-Large

Differential

scanning

calorimetry

• Measurement of the heat flow during

melting of ice in a frozen, water-

saturated sample

• Heat flow data is integrated in a range

around 0˚C to give the total energy

required to melt the ice

• Cell wall water does not freeze/melt

around 0˚C

• Energy for melting of the freezable water

around 0˚C represents capillary water

• Presence of non-freezable

capillary water (over-estimation)

• Presence of freezable cell wall

water (under-estimation)

• Non-saturation during

measurement caused by

temperature variation (under-

estimation)

• Probability: High

Error magnitude:

Small

• Probability:

Negligible

Error magnitude:-

• Probability: Low

Error magnitude:

Small

Solute exclusion • Measurement of the concentration

change in a solution of probe molecules

after soaking a water-saturated sample

• Concentration data is collected with

chromatography as the integral over the

peak corresponding to a specific probe

molecule

• All probe molecules are in solution

• Probe molecules do not enter cell walls

• At equilibrium, the concentration of probe

molecules in solution within the wood

structure is similar to that in the

surrounding bulk solution

• Adsorption of probe molecules to

solid material (under-estimation)

• Penetration of cell walls by probe

molecules (under-estimation)

• Lower concentration within

small voids than in the

surrounding bulk solution (over-

estimation)

• Probability:

Medium

Error magnitude:

Medium-Large

• Probability:

Negligible

Error magnitude: -

• Probability: High

Error magnitude:

Small-Medium

The magnitude of error is categorised as being either small (< 0.01 g g-1), medium (0.01–0.05 g g-1), or large (> 0.05 g g-1). For further details about the error

estimations please refer to the text.

https://doi.org/10.1371/journal.pone.0238319.t003
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Regarding the presence of non-freezable capillary water in the temperature range employed

in the DSC measurement, such water would be assigned to cell wall water, hereby causing an

over-estimation of the cell wall moisture content. Water close to solid surfaces can be

restrained from freezing [50]. However, this layer of non-freezable water is typically in the

range of 0.3–1 nm [51, 52], i.e. up to three water molecules thick. Yao and Ma [53] found that

the visible internal surface area of loblolly pine determined by microscopy was around 9000

m2 per m3 wood for both early- and latewood tissue, despite the significant difference in den-

sity. A non-freezable water layer of 1 nm over this area corresponds with 90 cm3 water (i.e.

about 90 g) per m3 wood. As the density varies between the investigated wood species, the

resulting over-estimation is in the range 0.0001–0.001 g g-1 with an average value of 0.003 g g-1

for the wood species investigated. The internal surface area was also determined by Stamm

and Millett [54] using both an adsorption method in a non-swelling solvent and microscopy.

The two methods gave quite similar results in the range 0.22–0.25 m2 per gram wood. This

results in a water volume of a 1 nm thick non-freezable layer of 0.0002 cm3 g-1, corresponding

with a moisture content of 0.0002 g g-1. Even if the area estimations by Yao and Ma [53] and

Stamm and Millett [54] are one order of magnitude too low, the over-estimation caused by the

non-freezable capillary water is still less than 0.003 g g-1.

Another source of uncertainty in DSC measurements is the temperature changes occurring

during the measurement itself which might change the maximum cell wall moisture content.

It is well-known that the moisture content of wood depends on temperature, where an increas-

ing temperature causes lower moisture contents in the hygroscopic range [55, 56]. However,

very little data have been published regarding the temperature dependence of the cell wall

moisture content near or at saturation. Stamm and Loughborough [57] showed that the fibre

saturation point (FSP) decreases by 0.001 g g-1 per 1˚C with increasing temperature. It is

unclear how these FSP values were derived, but presumably they were based on extrapolation

of sorption isotherm data. The FSP is, however, not the maximum cell wall moisture content

[1], and these two parameters might not be similarly affected by temperature. For example,

studies on cotton show that the temperature dependence of the sorption isotherm is different

at low and high humidity levels; at low humidity levels, the moisture content decreased with

increasing temperature, but at high temperatures, the opposite was seen [58]. Such behaviour

would not be captured from extrapolation of sorption isotherms measured at low humidity

levels. Only a single published study reports the maximum cell wall moisture content as func-

tion of temperature, although this was done on thermo-mechanically isolated pulp fibres [59].

Using solute exclusion with a dextran of high molecular mass, Eriksson et al. [59] found that

the maximum cell wall moisture content increased steadily by 0.005 g g-1 per 1˚C in the tem-

perature range 20–70˚C. Above 70˚C, temperature had a more pronounced effect on the maxi-

mum cell wall moisture content which increased 0.014 g g-1 per 1˚C as a result of lignin

softening [59]. On the other hand, the maximum cell wall moisture content in lignin free fibres

of cotton linters and holocellulose showed no temperature dependence. Although all these

materials have a maximum cell wall moisture content considerably higher than that found for

solid wood cell walls in this study, it appears likely that the maximum cell wall moisture con-

tent of wood is either constant or increases with increasing temperature.

For the DSC measurements, the wood is conditioned at 20˚C, but is predominantly exposed

to temperature beneath this value in the measurement itself. If considering only the 5 minutes

at isothermal conditions and the temperature increase from -20˚C to 20˚C, the average tem-

perature in the DSC measurement is -4˚C. If moisture equilibrium was reached at this temper-

ature and the maximum cell wall moisture content increased with 0.005 g g-1 per 1˚C with

increasing temperature, the DSC method would be expected to under-estimate the maximum

cell wall moisture content at 20˚C by 0.12 g g-1. However, it is necessary to consider the
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duration of the changes in temperature in order to estimate their effect on the maximum cell

wall moisture content determined by the DSC method. Increasing the temperature from

-20˚C to 20˚C takes 20 minutes, however, quenching the temperature the other way is more

rapid as it takes about 3 minutes of which some time goes to stabilising the temperature at

-20˚C before the 5 minutes at isothermal conditions begin. During loading of the sample pan

the temperature is 40˚C for about 20–30 seconds before quenching commences. It is expected

that the water kinetics slows down with decreasing temperature and is more or less locked

below the freezing point, in particular for the frozen capillary water. In the worst case, the dis-

tribution between cell wall moisture and capillary water can shift for less than 2 minutes before

the capillary water is frozen. However, during the temperature increase to 20˚C the wood

experiences 10 minutes above the freezing point. It is possible that some moisture redistribu-

tion occurs in the less than in total 12 minutes above 0˚C. This redistribution can be evaluated

by using two consecutive temperature cycles as in this study and comparing the obtained heat

flow curves. In the present study, these two temperature cycles resulted in a difference in cell

wall moisture content of 0.003 g g-1 on average, see S11 Table in S1 Appendix. Given the vari-

ability of the data, the difference is not found to be statistically significant, which indicates that

the moisture distribution within specimens was not changed appreciably by quenching and re-

heating on the time scale of the DSC experiment. The highest average difference in determined

cell wall moisture content between the two temperature cycles was found for ash to 0.009 g g-1.

Therefore, the under-estimation due to the changing temperature during the measurements is

considered to be less than 0.01 g g-1.

Solute exclusion technique. Determination of the maximum cell wall moisture content

by the SET method is based on the following assumptions:

1. after equilibrium is obtained all probe molecules are solubilised

2. probe molecules are only found in the void structure within the wood

3. there is an even concentration of probe molecules in the entire water volume accessible to

them

Assumption 1 above would not be valid if the probe molecules fall out of solution, e.g. are

adsorbed to the wood polymers lining the voids penetrated by the probes [9]. The equilibrium

between the probe molecule solution inside the void structure and the solution surrounding

the bulk specimen then changes. Since the concentration of probe molecules within the void

structure will be decreased, more probe molecules will diffuse into the void structure. As a

result, the change in solute concentration after exposure to water-saturated specimens is larger,

which will result in the determined cell wall moisture content to be under-estimated.

Assumption 2 above is not valid if there are differences in penetration of various probe mol-

ecules into the material structure, e.g. if probe molecules are small enough to penetrate cell

walls. This would result in various degrees of dilution of probe molecules penetrating cell walls

and those exclusively penetrating the void structure. If probe molecules penetrate cell walls,

the determined cell wall moisture content is under-estimated.

Lastly, assumption 3 above requires that the probe concentration in the solution surrounding

the specimen is the same as the concentration within the accessible water volume in the wood.

This assumption is not valid if the size of the accessible void or cell wall pore gets close to the size

of the probe molecule [60–62]. For instance, if the probe molecules are half the size of the void

they are penetrating, the probe concentration is only around 30% of that in the surrounding solu-

tion [60], and it diminishes further as the sizes of probe molecules and void get even closer. The

result is that the probe solution is diluted less than if the concentration was even in the entire

accessible water volume. This effect will therefore over-estimate the cell wall moisture content.
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The probe molecules used in this study are PEG molecules of various sizes. They were chosen

based on their relatively narrow size distribution. However, PEG molecules have a tendency to

adhere to lignin [63] which is problematic due to assumption 1 above. This might be the reason

why negative cell wall moisture contents were observed for ironwood for all sizes of PEGs, since

ironwood has significantly higher lignin content than the rest of the wood species investigated,

see Fig 1 and S1 Table in S1 Appendix. This indicates that the potential under-estimation caused

by probe molecule adsorption can be large, since the LFNMR and DSC yield cell wall moisture

contents that are 0.332–0.360 g g-1 higher than found with SET for ironwood.

The three different PEG molecules did not yield similar maximum cell wall moisture con-

tents as seen in Fig 3. In fact, statistical analysis of possible differences in cell wall water content

measurements between the three PEGs showed significant differences (P<0.05), see S12

Table in S1 Appendix. The analysis furthermore showed that the measured cell wall moisture

content increased with increasing molecular size. The size of the smallest PEG molecule used

in the present study, PEG6k (d = 6.4 nm) is, however, well beyond the maximum pore size in

water-swollen cell walls often reported to around 2–4 nm [39]. The largest PEG capable of pen-

etrating cell walls appears to have a molecular weight of 3000–4000 g mol-1 [64, 65]. However,

some studies report that even PEG20k penetrates the cell walls [66, 67], but this could be

explained by the PEGs having broad distributions of molecular weights as shown by [65].

Since the PEG6k employed in this study was of analytical standard, it has a relatively narrow

distribution of molecular weights spanning 5400–6600 g mol-1 according to the PEG6k mate-

rial safety data sheet (USP, Rockville, MD, USA). Therefore, it seems unlikely that the differ-

ences in measured cell wall moisture contents with the various PEGs are caused by penetration

of molecules on the lower tail of the size distribution for each PEG. The magnitude of error of

this under-estimation is therefore considered negligible.

The probe molecules of this study range from a diameter of 6.4 nm to 30.5 nm, while the

void structure of wood is on the micrometer scale. Even voids with a size of 1 μm are still 33–

156 times larger than these probe molecules. Nonetheless, this size difference will cause a con-

centration in the void that is 1–6% lower than in the bulk solution, assuming a cylindrical

geometry of the voids, see S4 Table in S1 Appendix. The LFNMR spectra provide a clue to how

much water is confined in small macro voids. Thus, examination of the contributions from
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water with a T2 relaxation time around 10 ms gives an estimate of the fraction of water in small

voids relative to the total water outside cell walls. This fraction varies markedly between the

nine wood species; from 3.7% in poplar to 74.5% in ash (disregarding the data for abachi,

balsa, and ironwood), see S3 Table in S1 Appendix. If the entire water volume described by

this fraction is assumed conservatively to be confined to cylindrical pores of 1 μm diameter,

the over-estimation can be calculated based on the partitioning coefficient K for the three

probe molecules, see S1 Appendix. The results show that the over-estimation under these

assumptions is 0.010 g g-1 (standard deviation 0.008 g g-1). The two species with the highest

calculated over-estimations are ash and oak, which also contain the largest fraction of water in

small voids outside cell walls of 74.5% and 58.4%, respectively. For these species the calculated

over-estimation is 0.020 g g-1 for ash and 0.013 g g-1 for oak. At the same time, these two spe-

cies are the only ones in which a significantly higher cell wall moisture content is found with

SET than DSC. This indicates that the lower probe molecule concentration in small pores than

in the bulk liquid may contribute to over-estimation in SET for some species with a large frac-

tion of small macro voids, but is otherwise a modest effect.

A final source of bias in SET that is not related to the assumption given in Table 3 is a potential

transport of water from the cell walls into the macro voids by osmosis. The concentration of

probe molecules in the initial solution was 0.6% w/w for all probes, meaning that the smallest mol-

ecule has the highest molar concentration. This is the PEG6k probes with a molar concentration

of 0.001 mol L-1 giving rise to an osmotic pressure of 2.3 mPa as calculated by the van’t Hoff for-

mula. However, this small osmotic pressure essentially corresponds to a water activity of 1 and the

osmosis effect for such low concentrations of relatively large molecules is thus negligible.

The variability in the obtained cell wall moisture content with different probe molecules

highlights the importance of using multiple probe molecules with a size large enough to be

excluded from the water-swollen cell wall porosity. Additionally, probe molecules with lower

affinity for lignin could be used, e.g. dextrans [59, 68–70]. The extremely high cell wall mois-

ture contents and large spread observed for balsa and abachi could likely derive from their low

density and hence low specimen mass (0.12–0.38 g) since the same volume of material was

used for all wood species. Thus, SET might not be suitable for species of very low density

because of too low cell wall mass to void water volume.

Conclusion

Statistical analysis of the obtained data showed that LFNMR gave lower cell wall moisture con-

tents than those obtained with DSC and SET. It seems as if LFNMR measurements above 0˚C

leads to an under-estimation of the measured value, possibly due to an exchange between dif-

ferent pools of water. However, both DSC and SET include factors that either under-estimates

or over-estimates the measured cell wall moisture content and these errors are potentially

smaller than the underestimation obtained by LFNMR. In addition, these two methods are

based on different principles of measurement, but still gave similar results. It is therefore likely

that these methods provide realistic values of the cell wall moisture content in the water-satu-

rated state. However, for SET, there are some limitations in terms of which wood species the

method is suitable for.

Supporting information

S1 Data. DSC data Part 1. Heat flow data from Differential scanning calorimetry for abachi,

ash, balsa, beech and Douglas fir.

(XLSX)
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S2 Data. DSC data Part 2. Heat flow data from Differential scanning calorimetry for iron-

wood, Norway spruce, oak, poplar, and water controls.

(XLSX)

S3 Data. DSC data Part 3. Sample masses, evaluated moisture contents etc. for all samples

included in the Differential Scanning calorimetry experiments.

(XLSX)

S4 Data. LFNMR data. Data from Low field nuclear magnetic resonance measurements.

(XLSX)

S5 Data. SET data. Data from measurements with the Solute exclusion technique.

(XLSX)

S1 Appendix. Additional details on evaluation and experimental procedures. Further infor-

mation on differences between different evaluation procedures and choices made in experi-

mental and evaluation procedures.

(PDF)
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