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Abstract: One of the most important factors affecting photosynthesis and metabolism is light
absorbance by leaves and penetration through the canopy. The aim of this study was to evaluate the
influence of planting density and tree development stages on photosynthetic activity, photosynthetic
pigments, and carbohydrates in apple (Malus domestica Borkh.) trees in a combined way. The apple
tree, Auksis, was grafted on dwarfing rootstock P 22. Space between rows was 3 m, trees were
planted in 2001 in four distances: 0.25 m, 0.50 m, 0.75 m, and 1.00 m. Measurements and leaf samples
were taken in the end of May (leaves fully expanded BBCH 20–25), in the middle of July (beginning
of apple maturity BBCH 73–75) and at the end of August (harvest time BBCH 87–88) according
BBCH—growth stages. Photosynthetic rate was significantly the lowest in the spring and tended to
rise until fruit ripening, when it increased up to 19.4% compared to spring. Significantly the highest
chlorophyll b and carotene α and β contents were found at the BBCH 73–75. The lowest levels of
fructose and sorbitol in leaves were found at BBCH 73–75. The amount of starch accumulated in the
leaves increased three times in summer compared to spring. Reduced distance between trees to four
times (from 1 m to 0.25 m) showed clear competitive stress, as the decrease of photosynthetic rate
(up to 36.4–38.6%) and total starch (up to 37–53%) was observed. The photosynthetic behaviour of
apple trees was significantly affected by the development stage during the particular season which
is related with physiological changes of metabolites transport and their distribution during fruit
ripening and leaf senescence.
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1. Introduction

One of the most important factors affecting photosynthesis and metabolism is light absorbance by
leaves and penetration through the canopy. The composition of light changes during the day and as
well as during the season [1]. Studies have shown seasonal changes in photosynthetic processes and
pigments that are associated with leaf spring development and autumn aging [2,3]. Metabolic changes
associated with nutrient resorption underpin the temporal variation of respiratory and photosynthetic
rates once senescence starts. In mid-latitude regions with marked climate seasonality, changes in
photosynthetic processes and metabolism are due to concurrent changes in leaf age and environmental
conditions [4,5].

Leaf age affects light absorption and utilization, and protection systems against excess light.
Younger leaves are less prone to photoinhibition than older ones [6]. Leaf chlorophyll content varies in
response to environmental factors and natural aging stage. Each photosynthetic pigment has its own
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location in the cell, functions, and the range of absorbed light wavebands [7,8]. Chlorophylls are the
main absorbers of light, while carotenes not only absorb light that is not taken up by chlorophylls,
but also has a photoprotective function [7,9–11]. Alpha carotene is the main carotene; however,
in low light α-carotene can be replaced by β-carotene, but only then if both carries out the same
functions [9,12]. β-carotene exert a beneficial photoprotective action by quenching excited chlorophyll
molecules [13–15]. However, the main function of fruit β-carotene is an antioxidant [16,17]. During the
growth, in more sunlit leaves, the aging process begins earlier. The chlorophylls start to degrade,
but the carotenes remain stable and some of them are transported to fruits [3,17].

Carbohydrates are produced in the leaves of plants during photosynthetic processes, and the
end compounds provide energy enhancing plant growth and productivity. Abiotic stressors alter the
formation of soluble sugars (e.g., fructose, glucose, sucrose, and sorbitol), helping the identification
of plant stress [2,18]. Sucrose is the main end product of photosynthesis, which is synthesized in
green leaves and transported by sucrose transporters to the fruits and the rest of the plants as reserved
material [19]. However, in Rosaceae family species, sorbitol together with sucrose is a primary end
product of photosynthesis, and it is a major phloem-translocated carbohydrate, accounting 60–80% of the
photosynthates produced in apple (Malus domestica Borkh.) leaves [20–22]. Sorbitol is not only a source
of energy for plant growth, but it also can be as a signalling molecule involved in regulation of plant
growth, development, and environmental stress response. One of the reduced sorbitol biosynthesis
effects is to defective stamen development and inhibition of pollen tube growth in apple [23–25].
The synthesis of starch is highly dependent on sugar content in leaves. Higher amounts of sugars
stimulate the expression of the major starch synthesis enzyme ADP-glucose pyrophosphoryl (AGPase)
resulting more intensive starch synthesis [20]. Moreover, the total amount of starch in the leaves is
significantly influenced by day duration, over a longer photoperiod plants accumulate more starch [26].
Changes in the content of soluble carbohydrates and starch are mechanistically linked to transitions in
plant freezing tolerance. During spring, starch is re-synthesized and mobilized for renewed growth,
providing energy and building blocks before buds swelling [27]. Relationships between leaves indices
and carbohydrates accumulation appear at the beginning of fruit maturity when fruits become major
sink organs and carbohydrates are typically transported from leaves to fruits [28]. In a complex
process regulated by the rate of photosynthesis, phloem loading, long-distance transfer and unloading,
post-phloem transport, and metabolism, sugars synthesized in shell tissue are distributed to other
apple tissues such as fruits and seeds [29].

The rate of photosynthesis also depends on the photoperiod. According to researches, young
leaves become more photosynthetic during the long day, and the rate of photosynthesis decreases during
leave senescence [30,31]. Another factor that affects the rate of photosynthesis and other photosynthesis
indices is light. In many cases, the decreased light reduces the rate of photosynthesis [26,31–33].
On the other hand, other authors show, that too much sunlight begins to inhibit photosynthetic
processes, saving water, so shading nets or dense planting schemes helps to optimize the intensity
of photosynthesis [31–33]. However, due to the competition between the trees, the trunk diameter
decreases with decreasing distances between trees density. At the same time as the diameter of
the trunk decreases, its ability to supply water and nutrients to the crown also decreases [34–36].
There are few reasons of such tree behaviour. The lack of water closes the stomata, thus reducing water
loss through the leaves, resulting in decreased transpiration along with the decrease in the rate of
photosynthesis [37–39].

Apple growth, physiological activity and yields are influenced not only by environmental factors,
but also by rootstock. In the experiments performed in Lithuania main apple rootstocks were divided
into groups according to induced growth vigour: super dwarf (P 22, P 59), dwarf (P 60, B.396, M.9),
semi-dwarf (P.14, M.26), and semi-vigorous (B.118, MM.106) [40–42]. Super-dwarfing P 22 rootstock
resulted in the smallest yield and fruits [41].

The aim of this study was to evaluate the influence of apple development stage and planting
density on photosynthetic activity, photosynthetic pigments and carbohydrates in apple trees.



Agronomy 2020, 10, 1912 3 of 14

2. Materials and Methods

2.1. Plant Material and Growing Conditions

A trial was carried out in the experimental orchard in Lithuania, (55◦60′N, 23◦48′ E) in 2018–2019 in
a fully matured orchard. The apple (Malus domestica Borkh.) tree Auksis was grafted on super-dwarfing
rootstock P 22. Trees were planted in 2001, space between rows was 3 m, trees were planted in the row
at four distances: 0.25 m, 0.50 m, 0.75 m, and 1.00 m. Differences in apple height and crown diameter
depending on planting density are given in the Table 1. Three single trees in each planting distance
were fully randomized. Pest and disease management was carried out according to the integrated plant
protection practice, the orchard was not irrigated. Soil conditions of the experimental orchard were as
follows: clay loam, pH 7.3, humus 2.8%, P2O5 255 mg kg−1, K2O 230 mg kg−1. Measurements and leaf
samples were collected at the end of May (leaves fully expanded, BBCH 20–25), in the middle of July
(beginning of apple maturity, BBCH 73–75) and at the end of August (harvest time, BBCH 87–88).

Table 1. Apple tree height and crown (super spindle) radius depending on planting density. The mean
value (n = 15) ± standard deviation is presented.

Distances between trees 3 × 0.25 m 3 × 0.50 m 3 × 0.75 m 3 × 1.00 m

Tree high 2.5 ± 0.05 m 2.5 ± 0.05 m 2.5 ± 0.05 m 2.5 ± 0.05 m

Canopy high 2.3 ± 0.08 m 2.3 ± 0.08 m 2.3 ± 0.08 m 2.3 ± 0.08 m

Crown radius 0.50 ± 0.03 m 0.81 ± 0.04 m 0.94 ± 0.04 m 1.13 ± 0.06 m

2.2. Measurements

Photosynthetic rate (Pn (µmol CO2 m−2 s−1)), stomatal conductance (gs (mol H2O m−2 s−1)),
and transpiration rate (E (mmol H2O m−2 s−1)) was measured at 9:00–12:00 AM using a LI-6400XT
portable open flow gas exchange system (Li-COR Biosciences, Lincoln, NE, USA). The timing of the
measurements was chosen taking into account the dynamics and stability of photosynthesis during each
season. Reference air (CO2) (400 µmol mol−1), light intensity (1000 µmol m−2 s−1), block temperature
(21 ◦C), and the flow rate of gas pump (500 mmol s−1) were set. Measurements of photosynthesis were
performed on 3 trees selecting 3 leaves from 1.00–1.20 m above ground (Figure 1).
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2.3. Biochemical Analyses

2.3.1. Determination of Chlorophylls (a and b) and Carotenes (α and β) by High-Performance Liquid
Chromatography (HPLC)

Chlorophylls and carotenes were evaluated using HPLC method with diode array detection
(DAD) on Shimadzu 10A (Shimadzu, Kyoto, Japan). About 0.5 g of fresh plant tissue was ground
and diluted with 80% glacial acetone. The extraction was carried out for 24 h at +4 ◦C temperature.
Extract centrifugate at 10,000 rpm for 15 min. Then solution was filtered over a 0.22 µm PTPE syringe
filter (VWR International, Radnor, PA, USA). The sample separation was performed on Chromegabond
C30 3µ 120 Å, 15 cm × 2.1 mm column (ES Industries, West Berlin, NJ, USA). A 10 µm of sample was
injected; the column oven temperature was set at +20 ◦C. The pigments were eluted for 30 min with
gradient solvent systems A (Methanol:water, 1:4) and B (Ethyl acetate) at a flow rate of 0.2 mL min−1.
Initial conditions were 20% B for 2.5 min, followed by linear gradient to 30% B at 5 min, hold 30% B for
5 min, then elevated till 80% B in 2.5 min, till 87% B in 7.5 min and till 100% in 5 min, and again 20%
B until the end of run. Calibration method was used for chlorophylls and carotenes quantification
(mg g−1 in FW).

2.3.2. Determination of Soluble Sugars Byultra-Performance Liquid Chromatography (UPLC)

Soluble sugar (fructose, glucose, and sorbitol) contents were evaluated using HPLC method
with evaporative scattering detection (ELSD) on Shimadzu Nexera UPLC (SHIMADZU, Kyoto,
Japan) system [43]. About 0.5 g of fresh plant tissue was ground and diluted with deionized water.
The extraction was carried out for 4 h at room temperature, centrifuged at 14,000× g for 15 min.
A cleanup step, based on Brons and Olieman [44] was performed prior to the chromatographic analysis:
1 mL of the supernatant was mixed with 1 mL 0.01% (w:v) ammonium acetate in acetonitrile and
incubated for 30 min at +4 ◦C. After incubation, samples were centrifuged at 14,000× g for 15 min
and filtered through 0.22 µm PTPE syringe filter (VWR International, Radnor, PA, USA). Separation
was performed on a Supelcosil 250 × 4 mm NH2 column (Supelco, Bellefonte, PA, USA) using 77%
acetonitrile as the mobile phase at 1 mL min−1 flow rate. Calibration method was used for sugar
quantification (mg g−1 in FW).

2.3.3. Determination of Total Starch by Spectrophotometric Method

The total starch content was determined using the total starch Megazyme assay kit, a total starch
assay kit based on the use of thermostable a-amylase and amyloglucosidase (Megazyme International
Ireland Limited, Wicklow, Ireland), method of determination of starch in samples which also contains
D-glucose and/or maltodextrins.

2.4. Statistical Analysis

MS Excel Version 2010 and XLStat 2017 Data Analysis and Statistical Solution for Microsoft Excel
(Addinsoft, Paris, France) statistical software were used for data processing. The data are presented
as mean ± standard deviation (n = 3 replications). After performing a two-way ANOVA and not
establishing a substantial interaction between the factors (distance and stage of development), the data
were further processed by a one-way ANOVA. Analysis of variance (ANOVA) was carried out along
with Turkey multiple comparisons test for statistical analyses, p ≤ 0.05. Differences were considered
to be significant at p < 0.05. Multivariate principal component analysis (PCA) was performed. The
results are presented in PCA scatter plot that indicate distinct levels of photosynthetic indices, soluble
sugars, chlorophylls a and b, α and β carotenes.

The agglomerative hierarchical cluster (AHC) analysis was used to generate similarity cluster
diagrams based on season, density, metabolites similarity, and variables similarity.
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2.5. Meteorological Conditions

The meteorological data were collected from “iMetos” meteorological station at Institute of
Horticulture, LAMMC, Lithuania. Meteorological station stands in the experimental orchard.
The temperature was close to perennial regardless of the year (Table 2).

Table 2. Average monthly temperature (◦C) in 2018 and 2019 compared to multiannual (100-year average).

January February March April May June July August September October November December

Multiannual −5.1 −4.6 −0.7 5.4 11.9 15.4 16.7 16.2 11.9 7.2 2.0 −2.4

2018 −1.4 −6.5 −1.7 10.6 16.7 17.7 20.3 19.2 14.5 8.0 3.6 −1.0

2019 −4.6 1.8 5.2 9.1 12.5 17.8 17.4 21.0 11.7 8.2 3.4 1.6

In 2018, a dry, natural drought was announced in Lithuania (Lithuania, lat. 55◦ N, 2018).
Since apple trees are perennial plants, they had enough water and no signs of drought were found.
While 2019 had 14% more rainfall than perennial average, with particularly heavy rainfall, which fell
out in a few days, on harvest time in August (Table 3), but such conditions had no negative impact on
fruit tree development.

Table 3. Total monthly precipitation (mm) in 2018 and 2019 compared to multiannual (average of 100 years).

January February March April May June July August September October November December

Multiannual 52.0 30.0 37.0 42.0 52.0 68.0 79.0 76.0 68.0 60.0 65.0 56.0

2018 55.0 8.6 14.8 66.8 18.2 22.8 117.8 86.2 17.8 39.4 13.8 32.4

2019 40.0 50.8 45.8 4.6 43.4 37.0 121.2 207.2 89.6 85.4 24.4 30.4

3. Results

Reducing planting distances up to four times (from 1 m to 0.25 m) resulted in the tendency to
decreased values of photosynthetic indices. Depending on the season the rate of photosynthesis
decreased up to 36.4–38.6%, stomatal conductance up to 58–60%, and transpiration rate up to 37–55%
(Table S1). Stomatal conductance and transpiration rates were the highest in spring and were
significantly lower in mid-summer. As fruits matured, stomatal conductance and transpiration rates
increased significantly up to 27% and 23%, respectively, compared to the summer at BBCH 73–75
(Figure 2A,C). The photosynthetic rate was significantly the lowest in the spring and tended to rise
until fruit ripening up to 19.4% (Figure 2B).Agronomy 2020, 10, x FOR PEER REVIEW 6 of 14 
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Figure 2. Effect of seasonality regardless distances between trees on the stomatal conductance gs

(A), photosynthetic rate Pn (B), and transpiration rate E (C). The different letters in graphics indicate
significant differences. The data were processed using one-way analysis of variance (Anova), the Turkey
(HSD) test at the confidence level p = 0.05.

By evaluating the effect of planting distances, it was established that along increase of
planting distances the photosynthetic parameters—photosynthesis rate, stomatal conductance,
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and transpiration—increased significantly throughout the season (Figure 3). Increasing the distance
between trees by four times gs increased 2.5 times (Figure 3A), Pn–58% (Figure 2B), E–79% (Figure 3C).
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Pn (B), and transpiration rate E (C). The different letters in graphics indicate significant differences.
The data presented as an average of three measurements during the season. The data were processed
using analysis of variance (Anova), the Turkey (HSD) test at the confidence level p = 0.05.

The amount of photosynthetic pigments fluctuated throughout the year. In spring, content of
chlorophyll a and b differed, but no general trends were observed, while carotenes content was
significantly higher at 0.25–0.5 m distances compared to 0.5–1.0 m (Table S2). The same trends persisted
at the BBCH 73–75 and BBCH 87–88. The seasonality, regardless on the distance, resulted in a significant
decrease of the accumulation of chlorophylls and carotenes in spring (Figure 4A–C). Significantly the
highest accumulation of chlorophylls and carotenes was at BBCH 73–75 (Figure 4B,C).
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Regardless seasonality, no significant differences on photosynthetic pigments were found between
the distances (Figure 5A–C).
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The amount of soluble sugars in the leaves varied between treatments and seasons. Higher sugar
content in the leaves accumulates in the spring for the rapid growth of shoots, which stops during
the summer. The soluble sugars in apple (Malus domestica Borkh.) leaves were in order: sorbitol
(27.06–42.81 mg g−1 FW), glucose (14.48–23.25 mg g−1 FW), and fructose (3.79–5.89 mg g−1 FW)
(Table S3). The lowest levels of fructose (Figure 6A) and sorbitol (Figure 6C) in leaves were found
during the summer at BBCH 73–75. Meanwhile, glucose lowest level was found from spring till
summer, and increased at the harvest time. The amount of starch accumulated in the leaves increased
threefold at BBCH 73–75 and BBCH 87–88 compared to spring (Figure 6D).
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No significant differences were found in the amount of fructose and sorbitol depending on
distances between apple trees. The highest contents of glucose were found in apple tree leaves planted
at 0.75 m (Figure 7A–C). The decreased distance up to 4 times (from 1 m to 0.25 m) resulted the decrease
of total starch up to 37–53% (Figure 7D).
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sorbitol–Sor (C), and total starch (D). The different letters in graphics indicate significant differences.
The data were processed using analysis of variance (Anova), the Turkey (HSD) test at the confidence
level p = 0.05.

PCA results show the average coordinates of individual photosynthetic indices (stomatal
conductance, photosynthetic rate, transpiration rate), pigments (Chlorophyll a and b, carotene α

and β), soluble sugars (fructose, sorbitol, glucose), and total starch in response to different distances
between trees at different development stages during the season. The first two factors (F1 vs. F2) of the
PCA, as shown in the scatterplot (Figure 8), explained 79.08% of the total data variance. F1 explained
50.71% of the total variance, whereas F2 explained 28.37%) of the total variability. The PCA scatterplot
show significant differences between at different development stages during the season (Figure 8).
The photosynthetic response obtained in May significantly differs from July and August.
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on the planting distances.



Agronomy 2020, 10, 1912 9 of 14

The agglomerative hierarchical cluster (AHC) analysis was used to divide the distances between
apple trees and seasonality into groups of increasing dissimilarity. Three clusters were identified
in samples (Figure 9). This division correspond to different development stages during the season,
which belong to 3 different clusters. With regard to stomatal conductance, photosynthetic rate,
transpiration rate, photosynthetic pigments, soluble sugars, and total starch also three clusters were
identified. Group, which included May and July, was characterized by low photosynthetic rate and
low glucose concentration in C1, and low sorbitol concentrations in C3).
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4. Discussion

During the growing season, the rate of photosynthesis mostly depends on the photoperiod;
however, research showed that young leaves are more photosynthetically active during the long day,
and the rate of photosynthesis decreases as the leaves age [26,30]. Significant decrease of stomatal
conductance followed by transpiration rate in July and August was observed (Figure 2). According to
Green [45], fruit harvesting has no significant effect on the photosynthetic rate and it is the same from
fruit maturity beginning till harvest and after harvest. However, in contrast to previous statements,
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photosynthetic rate continued to increase till fruit harvesting (Figure 2). Photosynthetic indices
were influenced not only by seasonality but also by the distance between the trees. These changes
may be affected by the light penetration in the canopy (Table 1) and competition for nutrients and
water. The photosynthetic rate (Figure 3B), stomatal conductance (Figure 3A) and transpiration
rate (Figure 3C) increased with increasing distance between trees. A similar effect was obtained
by pruning trees [46,47]. Strongly sunny plants can be damaged by sunlight, too intense sun can
inhibit photosynthetic processes [26,33,48]. The distance of 1 m between fruit trees resulted the most
intensive photosynthesis activity. Nevertheless, the Pn decreased uniformly with decreased distance
between trees (Figure 3), but plant shedding to each other remained supporting the efficiency of
photosynthesis as no significant differences in photosynthetic pigments (Figure 4) and in fructose and
sorbitol (Figure 5A,B) contents were observed.

Photosynthetic activity depends on light energy receptor chlorophylls. In spring, young leaves
distinguished in the lowest chlorophyll content compared to all growing season. As the vegetation
remained active during fruit ripening, the aging processes of the leaves did not occur strongly and the
chlorophyll had not yet begun to decay (Figure 4). Charbonnier et al. [49] states that in case of too
much light chlorophyll content decreases, it can be increased by shading the plants, his research was
supported by other authors [50,51]. However, in our study, apple planting distances did not show
significant differences in the composition of photosynthetic pigments (Figure 5A,B).

According to Furze et al. [52] studies trees can accumulate reserves not only in the form of starch
but also in the form of sugars, in apples mostly sorbitol and sucrose. Studies of fructiferous trees have
shown that when the fruit begins to accumulate starch, decrease in the leaves is observed, and after
fruit ripening, the starch increases rapidly in the leaves [53]. In July, when the fruit maturity began,
in contrast to Fru, Glu, and Sor significant increase of starch in leaves was observed. During harvesting
the contents of soluble sugars increased (Figure 6). Sorbitol transported from the leaves to the
fruit is converted to fructose by sorbitol dehydrogenase [54,55], After harvesting, sorbitol is no
longer transported to the fruit, leading to a significant increase in its content in the leaves (Figure 6).
According to Li et al. [56] almost all of the sorbitol and half of the sucrose is converted to fructose in
fruits. In agreement with Oren et al. [57] plants with stronger sunlight accumulate more—another
reserve material—starch. Greater distances between trees resulted the significant increase of starch,
besides significantly more starch was accumulated in July and August (Figure 7C).

Dwarfing rootstocks not only significantly reduce tree size, facilitating an increase in planting
density, but also have a significant effect on photosynthesis rates, chlorophyll content, and other
photosynthetic parameters [58]. Apple trees on dwarf and super-dwarf rootstocks form smaller leaves
but are higher in soluble sugars and chlorophylls content [41,59]. Due to the smaller canopy and
smaller leaves, compared to the vigorous rootstocks, for apple trees on super-dwarf rootstock P 22,
the decreasing distance had no significant effect on the photosynthetic pigments and sugars in the
leaves (Figures 5 and 6).

According to the PCA scatterplot (Figure 6) and AHC (Figure 7) analysis, tested indices significantly
affected by development stages, but not by the distances between apples.

5. Conclusions

The photosynthetic indices of apples are most affected by development stages during the season
which is related with physiological changes of metabolites transport and distribution during fruit
ripening and leaf senescence. The photosynthetic rate from spring to harvest tended to increase,
the amount of starch accumulated in the leaves increased threefold during fruit maturity period
compared to spring, the sugar content in leaves increased significantly during harvest time, when it
was no longer transported to the fruit. The decreased distance between the apple trees increased
the competition for light, water, and nutrients, followed by reduction of the photosynthetic rate,
transpiration, and starch accumulation. The strongest competitive stress in apple tree cv. Auksis grafted
on P22 rootstock occurs in the spring and harvest time.
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