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Abstract
Forest structural properties largely govern surface fluxes of moisture, energy, and momen-
tum that strongly affect regional climate and hydrology. Forest structural properties are
greatly shaped by forest management activities, especially in the Fennoscandia (Norway,
Sweden, and Finland). Insight into transient developments in forest structure in response to
management intervention is therefore essential to understanding the role of forest manage-
ment in mitigating regional climate change. The aim of this study is to present a simple grid-
based framework – the Fennoscandic Forest State Simulator (F2S2) – for predicting time-
dependent forest structural trajectories in a manner compatible with land models employed
in offline or asynchronously coupled climate and hydrological research. F2S2 enables the
prescription of future regional forest structure as a function of: i) exogenously defined
scenarios of forest harvest intensity; ii) forest management intensity; iii) climate forcing. We
demonstrate its application when applied as a stand-alone tool for forecasting three alterna-
tive future forest states in Norway that differ with respect to background climate forcing,
forest harvest intensity (linked to two Shared Socio-economic Pathways (SSPs)), and forest
management intensity. F2S2 captures impacts of climate forcing and forest management on
general trends in forest structural development over time, and while climate is the main
driver of longer-term forest structural dynamics, the role of harvests and other management-
driven effects cannot be overlooked. To our knowledge this is the first paper presenting a
method to map forest structure in space and time in a way that is compatible with land
surface or hydrological models employing sub-grid tiling.
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1 Introduction

The heightened role of forest management to mitigate regional climate change necessitates a
deeper understanding of how forest harvest and management affects regional surface energy
and hydrological budgets through modifications to forest composition and structure. This is
particularly true in forest-rich regions like Fennoscandia (Norway, Sweden, and Finland)
where most forests are secondary and in a state of transiency (FAO 2019). Insight into the
future state of regional forest structure is needed to robustly quantify the 21st century regional
climate impact that is attributable to past and future forest management decisions.

Many land model components of climate models dynamically simulate interannual trajec-
tories of forest structure following disturbance. Most land models are area- or grid-cell based,
where disturbances are implemented at the level of the grid-cell. In recent years, various
approaches have been developed allowing disturbances to be implemented at the sub-grid-cell
level, permitting a more detailed accounting of within-forest differences in forest structure, and
hence improved modeling of successional dynamics in managed forest environments. This is
typically done by increasing the number of sub-grid components in the model. For example,
Shevliakova et al. (2009) used the model LM3 that included twelve possible land tiles for all
plant functional types (PFTs), employing similarity-based merging to constrain the actual
number of tiles. Yue et al. (2018) presented six tiles per PFT, with tile-merging taking place
after exceeding pre-defined biomass boundaries. In ORCHIDEE-CAN, three tiles per PFT
have been used, with tile merging following the exceedance of predefined diameter thresholds
(Naudts et al. 2015). The drawback of such approaches is that the sub-grid information is lost
as soon as tile units are merged, which must be done to constrain the number of age or
structural classes to save computation costs. To overcome information loss, some have
developed separate forest management “modules” to track sub-grid forest structural informa-
tion outside of the land model (e.g. Organizing Carbon and Hydrology in Dynamic Ecosys-
tEms (ORCHIDEE) FMM by Bellassen et al. (2010) and Community Atmosphere Biosphere
Land Exchange (CABLE) by Haverd et al. (2018)).

The advancements described above were motivated by the need to improve the represen-
tation of forest management actions within the dynamic global vegetation modeling (DGVM)
framework. In regional climate and hydrological modeling, however, a DGVM is not required,
and computational constraints limiting the number of sub-grid tiles or necessitating tile
merging are of less concern. Further, the need to internally resolve trajectories in biomass
accumulation (and hence carbon stocks) is non-existent in regional modeling contexts where
the research foci are on biogeophysically driven impacts (i.e. those mediated by perturbations
to surface energy and moisture fluxes). As such, there appears to be room for the soft-coupling
of simplified forest dynamic modeling frameworks to land models in ways that allow the
prescription and tracking of sub-grid forest structures through time. Such frameworks do not
necessarily need to be process-driven, opening-up the possibility to utilize empirical models
calibrated on local observational data – such as that derived from national forest inventories
(NFIs).

The aim of this study is to present a simple grid-based framework – the Fennoscandic
Forest State Simulator (F2S2) – that can be applied to update surface data in land models
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employed in regional climate or hydrological research in Fennoscandia (Norway, Sweden, and
Finland). F2S2 builds off of the classification scheme of Majasalmi et al. (2018) which
characterizes between- and within-species variation in aboveground forest structure. For each
forest class, F2S2 estimates a residence time as a function of user-defined forest management
(regeneration) intensity and the local climate. The latter may stem from an independent source
or from a regional climate model whose underlying land model is asynchronously coupled to
F2S2. In addition to the class-dependent models predicting residence times, F2S2 comprises a
method for initializing class disturbance legacies, a set of rules governing class transitions, and
a method for prescribing final harvests on the landscape.

In Section 2 we describe the workflow underlying the development of F2S2, including the
simulating of long-term stand-level development and fitting of simplified forest dynamic
models for estimating class residence times, methods for initializing class disturbance legacies,
rules governing class transitions, and the spatial allocation of harvests. In Section 3, we
demonstrate F2S2’s application by simulating future forest states in Norway as a function of
two climate forcing scenarios (i.e. Representative Concentration Pathways (RCPs)) and two
harvest intensity scenarios linked to two Shared Socio-economic Pathways (SSPs), and further
evaluate the relative importance of model and climate on future forests dynamics. In Section 4
we discuss the merits and limitations of F2S2.

2 Materials and methods

2.1 Simple forest dynamics model development

F2S2 comprises a set of class-dependent simple forest dynamic (SFD) models and methods
governing their application. SFD models in F2S2 were developed to add the temporal
dimension to the Fennoscandic forest classification scheme of Majasalmi et al. (2018) –
henceforth “M18”. Briefly, the hybrid forest cover-structure classification of M18 was devel-
oped using a four-dimensional k-means clustering of regional forest inventory data. The four
dimensions were maximum leaf area index (LAI, m2/m2), Lorey’s height (m), tree crown
length (m), and volume density (m3/ha). Three main tree species groups (spruce, pine, and
deciduous) and four forest development classes (1 to 4, 4 being a developed forest character-
ized by high leaf area, high Lorey’s height, and high volume density) comprise a total of
twelve forest classes, and a corresponding Look-Up Table (LUT) provides the median
structural properties for each forest class. Multi-source National Forest Inventory (MS-NFI)
data from 2015 was used to re-map forest cover in the European Space Agency’s CCI Land
Cover product (Poulter et al. 2015) into the M18 classification at 0.0028° × 0.0028° (i.e. ~300
m) spatial resolution. The fractional area of the twelve forest classes within the M18 product
grid-cells are preserved (i.e., termed “percentage layers” in M18 which is analogous to sub-
grid tiles used in LSM. For clarity, later on we use ‘fractional area’ of forest class to refer these
data). The non-forest grid-cells are taken from CCI LC-product, and assumed here invariant.

The SFD workflow is described succinctly as follows. For each forest class of each M18
grid-cell we estimate the residence time as a function of local climate (described in
Section 2.1.2). The residence time is the number of years that will take a fractional area of a
M18 grid-cell to move to the next class (e.g. from class spruce 1 to class spruce 2). The
residence time can vary at each time step, since local climate can change at any time step. To
estimate when the fractional area of each M18 grid-cell will move to the next class, the relative
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developmental stage (RDS) is calculated for each class within the M18 grid-cell at each time
step. The RDS is defined as a value from 0 to 1 that indicates how far the class is from the next
class (0 being the farthest and 1 being the closest). The RDS is calculated at each time step (t)
for each class (n) of each species (i) and M18 grid cell (j) as:

RDSt;n;i; j ¼ RDS t−1ð Þ;n;i; j þ L=RTt;n;i; j ð1Þ
Where L is the simulation period length (e.g. 5 years) and RT is the residence time at time step
t calculated with Eq. 2 (described in Section 2.1.2). When RDSij reaches 1, the pixel will move
to the next class.

We used results from forest growth simulations to fit models for residence time (the SFD
model, see Section 2.1.2) that depend on local climate and management intensity. We used the
single tree simulator SiTree (Antón-Fernández and Astrup 2019) to simulate the development
in forest structure (starting from a newly clear-cut state) at 5-year time steps over a period of
200 years. The growth functions used in SiTree were fitted to the Norwegian National Forest
Inventory (NNFI), and are, thus, representative of the Norwegian forest. We simulated all plots
of the NNFI from bare land (no initial trees) for 200 years and classified every NNFI plot at
each time step according to M18. Two simulations were carried out applying two sets of
management rules governing stand regeneration to describe variation in the intensity of forest
regeneration practices (Section 2.1.1).

2.1.1 Long-term stand development simulations with SiTree

We simulated the development of all plots in the latest Norwegian NFI (2013-2017) using
the open source single tree simulator SiTree (Antón-Fernández and Astrup 2019). All plots
were empty at the beginning of the simulations, and growth and recruitment were simulated
according to main species (i.e. spruce, pine or deciduous) productivity and management
intensity following rules governing regeneration (i.e. establishment + planting), recruitment,
and mortality. Simulations were carried out for two rule sets describing a business-as-usual
(BAU) and more intensive (H) level of management (Table 1). No harvests (e.g. no thinning
or final felling) were implemented over the simulations, and growth, mortality and ingrowth
were imputed using data from the last three full NFI inventories. Management intensity
scenarios were classified as either BAU or H (essential difference being the planting density

Table 1 Number of trees per hectare used to initiate stands in forecasting National Forest Inventory (NFI) plots
by species and management intensity: H= ’high’ management intensity and BAU= business-as-usual manage-
ment intensity. Note, for deciduous species only one management option was used

Species Management Number of trees per hectare

Productive Unproductive

Spruce H 2000-3000 1000
BAU 1200-1800 1000

Pine H 1800-2200 1000
BAU 1200-1500 1000

Deciduous 1000-2000 1000
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after clear-cut harvest, see Table 1) except deciduous forest, which has only one management
category (i.e. deciduous broadleaved forests are not considered a commercial species in
Norway). Both productive and unproductive forests were included in all management
scenarios.

2.1.2 SFD model development

Results from both BAU and H stand-level simulations formed the basis of the SFD model
development. Regression equations were fit to predict residence times (RT) of a given species
in development classes 1-3 (i.e. c1, c2, or c3) of the M18 classification. The equation form was
chosen to allow flexibility to simulate different climate change scenarios by including different
climatic variables. For our domain, where growth is limited more by temperature than by
precipitation, the final model form (i.e. regression equation) included a parameter to modify
the mean RT as a function of mean growing season near-surface air temperature. The equation
has the form:

RTi;n; j ¼ β0RTi;n þ β1RTi;n T i;n; j−T
� �

ð2Þ

where i is the species (spruce, pine or deciduous), n is the class number (i.e. c1, c2, or c3), j is
the NFI plot, Ti, n, j is the plot specific or local mean growing season air temperature (mean of

months May – September), and T is the mean growing season air temperature over all NFI
plots. The intercept parameter, β0RTi;n , is defined as the mean RT for a given species and

development class (i.e. c1, c2, or c3) at the mean growing season temperature T . In this
exercise, we decided to use growing season (i.e. May-September) monthly mean air temper-

ature, instead of annual temperature, as T has a higher correlation with forest productivity (i.e.

potential winter-time related artifacts in the data are avoided). The T was determined to be 11.2
0C based on all NFI plot estimates in the fitting data set.

Equation (2) was fitted separately for each management intensity (Table 1), species
and forest class, yielding 18 unique sets of parameter estimates. In each independent
fit, parameter estimates were obtained using ordinary least squares regression which
minimizes the sum of squared differences between the observed and predicted values.
In all cases, model fitting was performed within the open source statistical software R
(R Core Team 2017). Resulting parameter estimates and fit statistics are presented in
Section 3.1.

2.2 Model application

2.2.1 Overview

The SFD models described above can now be applied to update forest state information in
a land or hydrological model given user defined harvest volumes and climate. The climate
– or in our case, the May-September monthly mean near surface air temperature – can be
based on outputs from a climate model simulation performed elsewhere, or, alternatively,
from a regional climate model coupled asynchronously to the SFD models run in iteration,
as illustrated in Fig. 1.
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2.2.2 Class transitions

In F2S2, classes are only allowed to increase (natural disturbances are implicitly represented in
simulations forming the basis of model fitting), and classes remain in the most developed class
4 (i.e. c4) until a harvest is prescribed.

For any given fractional area of a grid-cell of species i at time step t, the class transitions are
governed by the relative developmental stage (RDS) (Eq. 1). When RDS reaches 1 the
fractional area of the grid-cell will move to the next forest development class unless a harvest
is prescribed:

n tð Þ ¼
nþ 1→RDSt;i; j≥1
n→RDSt;i; j < 1
1→t−1 ¼ harvest

8<
: ð3Þ

where the development class n at time step t increases by one class when RDS equals or
exceeds unity, remains unchanged when RDS is less than unity, or equals 1 when a harvest is
prescribed in the previous time step.

2.2.3 Initialization

Prior to SFD model application, an initialization procedure was conducted to assign legacies
(an initial value RDS, RDS0,n,i,j) to the present day (‘pd’) forest state for classes 1-4 in the M18

SFD models

Harvest

Land model

Atmosphere model

Map of forest

cover and structure

(Majasalmi et al. 

2018)

RCM

Iteration 0

(Initial condition) Iteration 1 Iteration 2

- AREAPFT

- VOLPFT

- T2m

- AREAPFT

- LAIMAX

- HTOP

- HBOTTOM

- VOLPFT

- AREAPFT

- LAIMAX

- HTOP

- HBOTTOM

- VOLPFT

GCM/ESMRCP

SSP

GCM/ESM

RCM

GLM/IAM GLM/IAM

SFD models

Harvest

Land model

Atmosphere model

- AREAPFT

- VOLPFT

- T2m

Fig. 1 Schematic illustrating the application F2S2’s simple forest dynamic (SFD) models in asynchronously
coupled regional climate modeling research. Abbreviations: AREAPFT= area dominated by plant functional type
(PFT) development class, LAIMAX= Maximum growing season leaf area index, HTOP= tree height,
HBOTTOM=canopy height, VOLPFT= stem volume density, GCM= General Circulation Model, ESM= Earth
System Model, RCM= Regional Climate Model, GLM= Global Land Model, IAM= Integrated Assessment
Model, RCP= Representative Concentration Pathway, SSP= Shared Socio-economic Pathway
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product (Note, class 4 remains in class 4 until final harvest). The initialization is done through
a random draw that assigns a factor between 0 and 0.99 signifying a distance-to-class transition
that occurs at unity (Eq. 3).

2.2.4 Allocation of harvests

Information on the fractional area of the 12 forest classes within the M18 product grid-cells
(i.e., termed “percentage layers” in M18; analogous to sub-grid tiles) is used to allocate
harvests on the landscape. Harvests are prescribed at the grid-cell level, meaning that all
forests within the grid-cell are harvested irrespective of their sub-grid-cell species composi-
tions and class development stages. Given that most final harvests in the study region are
carried out by clear-felling, and that harvested stands typically contain a mix of species, this
methodological decision mimics the conventional management practice. Harvests are allocated
on the landscape in the following manner:

First, pixels are ranked by species based on area-weighted volume density (AWVD, m3

m-2) computed as:

AWVDi;s ¼ ∑4
c¼1 VDs;c � PLi;s;c

� �� �
=∑3

s¼1∑
4
c¼1PLi;s;c ð4Þ

where VD is the volume density (m3 m-2) from the M18 LUT for species s and class c (four
development classes per species) PL is the percentage layer value for pixel i, species s, and
class c, and where the term in the denominator represents the total forest area percentage in
pixel i. Because total forest area need not necessarily sum to 100% of the grid cell area,
weighting by volume density rather than the actual pixel volume reduces bias associated with
larger-area grid cells (since we are working with a non-equal area grid).

Following ranking, the top-ranked pixels are selected for harvest (H) until the net total
volume harvested approximately equals the target volume (TV; m3) of the exogenously-
defined harvest intensity scenario. This is done in three iterations, starting first with deciduous
broadleaf, then pine, then spruce:

HI ¼ ∑
n

i¼1
Vi;Decid: þ ∑

n

i¼1
ρi;Pine þ ∑

n

i¼1
ρi;Spruce→ ∑

n

i¼1
Vi;Decid:≈TVDecid

HII ¼ ∑
n

i¼1
Vi;Pine þ ∑

n

i¼1
ρi;Decid: þ ∑

n

i¼1
ρi;Spruce→ ∑

n

i¼1
Vi;Pine≈TVPine− ∑

n

i¼1
ρi;Pine HI� �

HIII ¼ ∑
n

i¼1
Vi;Spruce þ ∑

n

i¼1
ρi;Decid: þ ∑

n

i¼1
ρi;Pine→ ∑

n

i¼1
Vi;Spruce≈TVSpruce− ∑

n

i¼1
ρi;Spruce HII� �

− ∑
n

i¼1
ρi;Spruce HI� �

ð5Þ

where the total volume harvested in the first iteration (HI) equals the sum of deciduous pixels
i➔n from a sorted list of deciduous pixels ranked by total volume VDecid. which approximately
equals the target volume for deciduous (TVDecid) plus the sum of all pine and spruce residuals
(i.e., ρi, Spruce and ρi, Pine) that is harvested alongside deciduous. In other words, the number of
pixels harvested n in the first harvest iteration (HI) is determined by the number of ranked
pixels whose total volume (ΣVDecid.; m3) approximately equals the target volume (TVDecid) for
deciduous. In the second iteration (HII), the top-ranked pine pixels are harvested until the total
pine volume (ΣVPine.; m3) reaches the target volume for pine species, less the total volume of
pine residuals harvested in the first iteration. In the third iteration (HIII), the top-ranked spruce
pixels are harvested until the total spruce volume (ΣVSpruce.; m3) reaches the target volume for
spruce species, less the total volume of spruce residuals harvested in the first and second
iterations.

2145Climatic Change (2020) 162:2139–2155



The total volume harvested in each pixel i for a given species s is computed as:

Vi;s ¼ ∑4
c¼1 VDs;c � PLi;s;c � Ai

� � ð6Þ

where A is the total area (m2) of pixel i.
The rationale for the species ordering (i.e. decid, pine, spruce) of the harvest iterations was

to minimize the overharvesting of species with lower target volumes (TV), where for our
application region (Norway) TVDecid. < TVPine < TVSpruce. Every single sub-grid unit remains as
its own unit across time, which means that they are never merged as they are in e.g.
ORCHIDEE (Naudts et al. 2015). In addition, the harvesting routine (Eq. 5) which is applied
to the fractional areas of M18 product grid cell ensures that species time-slice specific harvest
targets are approximately met in time step except for spruce, for which slight overharvesting
may be expected.

2.2.5 Example application in Norway

To illustrate model behavior, we applied our models for whole Norway to simulate 21st

century forest dynamics using prescribed harvest volumes linked to two SSPs and prescribed
climate forcing linked to two RCPs. RCPs quantify radiative forcing levels relative to pre-
industrial values by the end of the 21st century associated with various future greenhouse gas
emission scenarios. Near-surface temperature (T2m) corresponding to RCPs 4.5 (moderate
mitigation) and 8.5 (no mitigation) are based on bias-corrected multi-model means from
EURO-CORDEX (2017) regional climate model simulations downscaled over Norway
(Hanssen-Bauer et al. 2009). A 30 m digital elevation model and an environmental lapse rate
of 0.65 °C per 100 m were used for the downscaling T2m to a modeling grid matching the
Majasalmi et al. (2017) map product (i.e. 0.0028° × 0.0028°). Multi-model means are based on
the ten regional climate models: CNRM-CM5_CCLM, CNRM-CM5_SMHI-RCA4, EC-
EARTH_CCLM, EC-EARTH_DMI-HIRHAM5, EC-EARTH_KNMI-RACMO, EC-
EARTH_SMHI-RCA4, HADGEM2_SMHI-RCA4, IPSL-CM5A_SMHI-RCA4,
MPI_CCLM, and MPISMHI-RCA4 for RCP4.5 and RCP8.5. The monthly mean of May-
September (i.e. ‘growing season’) T2m (°C) for the ensemble mean RCP4.5 and RCP8.5
scenarios were averaged for 5-yr time-slices. The present-day (‘pd’) climate is represented
using the ensemble mean RCP4.5 scenarios for the 2016-2020 period.

Species-dependent harvest scenarios for Norway were obtained by statistical downscaling
of demographic themes underlying global SSPs (Hu et al. 2018). The SSP framework enables
production of hypothetical scenarios that results from combined effects of climate projections,
socioeconomic state and political decisions, and facilitates assessments of climate change
mitigation and adaptation actions. We used SSP1 ‘taking the green road’, and SSP5 ‘Fossil-
fueled development – taking the highway’ which can be combined with RCP 4.5 and 8.5
scenarios. These two scenarios were selected because they present extremes in terms of socio-
economic challenges for mitigation ('sustainability' versus 'highway') while sharing the same
adaptation challenges, and as aforementioned scenario combinations allow linking to Special
Report Emission Scenarios (SRES) scenarios B1 (scenario 1) and A1F1 (scenario 2) (Van
Vuuren and Carter 2014). As stem volume estimates provide by Hu are underbark (instead of
overbark) estimates, the volumes were multiplied with a correction factor (1.15 for conifers
and 1.18 for deciduous), before the time-slice specific harvest targets were calculated (Fig. 2).
In SSP1 scenario harvest demand will increase >35 mill. m3, and in SSP5 harvest scenario >73
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mill. m3 per 5-yr time-slice. For the present-day (‘pd’) harvest demand scenario, the harvest
demand was set to be 10.1 mill. m3 per year (i.e. 50.5 mill. m3 per time-slice), with fixed
species shares (70% spruce, 20% pine, and 10% deciduous species).

Two plausible Norwegian RCP-SSP futures were evaluated and compared to a present-day
baseline, and three additional scenarios were created to isolate the effects of climate, harvest
and management intensity on forest structural development (Table 2).

To extract the climate effect, a scenario combining a pd climate with SSP5 harvest demand
and high management intensity (i.e. ‘pd_ssp5_H’) was compiled, and climate effect extracted as:

climate effect ¼ ‘rcp85 ssp5 H’– ‘pd ssp5 H’ð Þ
rcp85 ssp5 H

� �
� 100% ð7Þ

To extract the harvest intensity effect, an assemble scenario combination of RCP8.5, SSP1
based harvest demand and high management intensity (i.e. ‘rcp85_ssp5_H’) was gathered, and
harvest effect extracted as:

harvest effect ¼ ‘rcp85 ssp5 H’–‘rcp85 ssp1 H’ð Þ
rcp85 ssp5 H

� �
� 100% ð8Þ

The management effect was extracted using scenario combination with RCP8.5, SSP5 based
harvest demand, and assuming BAU management intensity (i.e. ‘rcp85_ssp5_BAU’):
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Fig. 2 Time-slice specific harvest targets for spruce, pine and deciduous species following two Shared Socio-
economic Pathways (i.e. SSP1 and SSP5). For the present-day (‘pd’) harvest demand scenario, estimates for 2015
were used

Table 2 Alternative plausible future scenarios (type=baseline) and scenario combinations (type=effect) used to
extract climate, harvest and forest management effects for Norway. Abbreviations: pd= present-day, RCP=
Representative Concentration Pathway, and SSP= Shared Socio-economic Pathway (SSP). Note, for deciduous
species only one management option was used.

type climate harvest management scenario name

baseline pd pd BAU pd_pd_BAU
plausible future RCP4.5 SSP1 BAU rcp45_ssp1_BAU
plausible future RCP8.5 SSP5 H rcp85_ssp5_H
effect pd SSP5 H pd_ssp5_H
effect RCP8.5 SSP5 BAU rcp85_ssp5_BAU
effect RCP8.5 SSP1 H rcp85_ssp1_H
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management effect ¼ ‘rcp85 ssp5 H’–‘rcp85 ssp5 BAU’ð Þ
‘rcp85 ssp5 H’

� �
� 100% ð9Þ

3 Results

3.1 Simple Forest Dynamics models

All SFD models were found significant with p < 0.005 and R2 values varied between 0.24 and
0.01 with a mean of 0.1 (Table 3). The forest management effect on class residence time
depended only on growing season temperatures, the slope and intercept being fit separately for
each species and management combination. For example, for spruce c1 has a residence time of

45.21 years if the mean growing season temperature equals T (was determined to be 11.2 0C).
For each degree increase in the mean growing season temperature over the mean, the residence
time decreases by 7.16 years. For spruce, the difference between H and BAU management
scenarios is larger than for pines.

3.2 Plausible future scenarios

At the beginning of the simulation, most of the Norwegian forest areas are dominated by
spruce or pine belonging to more-developed class c3 (Fig. 3). Around 2040 these forest areas
have moved into most-developed class (c4). For deciduous species, in 2015 most of its area
resides in class c2, and the general trend is that the areas dominated by intermediate classes c2
and c3 decrease steadily towards the end of the century as transitions from class c3 into most-
developed class c4 proceeds. Noteworthy is that, in the baseline ‘pd_pd_BAU’ scenario the
area belonging to least-developed deciduous class (c1) decreases steadily towards the end of

Table 3 Simple Forest Dynamics (SFD) model coefficients, model significance (p) and coefficient of determi-
nation (R2). Parameter units are years

Species group Development class β0 β1 p-value R2

'business-as-usual' management intensity
Spruce c1 45.21 -7.16 0.00 0.15

c2 15.06 -3.28 0.00 0.22
c3 19.78 -4.25 0.00 0.24

Pine c1 69.07 -4.36 0.00 0.03
c2 15.83 -1.69 0.00 0.06
c3 18.62 -1.53 0.00 0.06

Deciduous c1 90.24 -1.04 0.00 0.01
c2 50.07 -2.38 0.00 0.03
c3 38.70 -2.00 0.00 0.07

'high' management intensity
Spruce c1 43.35 -6.97 0.00 0.13

c2 15.54 -3.30 0.00 0.13
c3 18.47 -3.62 0.00 0.22

Pine c1 66.43 -3.98 0.00 0.02
c2 14.67 -1.24 0.00 0.03
c3 16.71 -0.82 0.00 0.02
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the century, whereas in the two climate change scenarios, the abundance of the least-developed
class increases for deciduous species.

For spruce, in all scenarios the area belonging to the most-developed class (c4) increases
until around 2040-2050 then decreases throughout the latter half of the century. The abundance
of the least-developed spruce class c1 stays either increasing or at the same level at the case of
baseline scenario, but begins to decrease in the other two plausible future scenarios (Fig. 3dg).
For spruce the abundance of intermediate development classes c2 and c3 remains low but
slowly increases towards the end of the century.

For pine, there is a similar trend as for spruce, including a fast transition from class c3 into
most-developed class c4. However, unlike in spruce, pine least-developed class c1 continues to

Fig. 3 Simulated development of species classes in Norway following three climate + harvest + management
scenarios: a,b,c) show baseline scenarios following present-day (pd) climate and harvest intensity and assumes
business-as-usual (BAU) forest management intensity i.e. ‘pd_pd_BAU’. d, e, f) show a plausible future scenario
following RCP4.5 with SSP1 based harvest demand and assumes BAU forest management intensity i.e.
‘rcp45_ssp1_BAU’. g, h, i) show a plausible future scenario following RCP8.5 with SSP5 based harvest demand
and assumes ‘high’ forest management intensity i.e. ‘rcp85_ssp5_H’
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show a positive trend in all scenarios. The abundance of intermediate classes c2 and c3
remains low, similar with spruce.

3.3 Effects scenarios

The isolation and analysis of the effects of climate, harvest and management intensity on the
temporal development of forests reveals that climate has the strongest influence on structural
development (Fig. 4). The climate effect of increasing temperature is most apparent in spruce
dominated areas but less so for areas dominated by pine and deciduous species. Higher
harvesting intensity exclusively decreases the area of c4 class across all species.

In spruce dominated areas, warming will result in increases to forest growth indicating
faster development class transitions. For spruce, the warming climate may be expected to
decrease the relative abundance of the least-developed class c1, and respectively, to increase
the relative abundance of most-developed class c4 between 2060 and 2100. Between 2040-
2060 class c3’s relative abundance will decrease, but as the transition from class c2 to class c3

Fig. 4 Attribution of climate, harvest and management intensity effects on structural development class changes.
The temporal development of: a,b,c) Climate effects (Eq. 7), d,e,f) harvest effects (Eq. 8) and g,h) management
intensity effects (Eq. 9) on percentage change in abundance of development class areas
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increases, the c3 class will become more abundant again. After 2080, c3’s relative abundance
will sharply decrease due to faster class transitions from c3 to c4.

In pine dominated areas, the climate effect will start to appear only after 2080 (Fig. 4b)
where transition speeds from least-developed class c1 to class c2 begin to accelerate, slightly
increasing the relative abundance of classes c3 and c4. For deciduous species, the climate
warming will slightly increase the relative transition speed from more-developed class c3 to
most-developed class c4 during the second half of the century. However, the increasing
temperature will be expected to decrease the relative abundance of deciduous intermediate
classes c2 and c3.

The harvest effect remains linear for pine and deciduous species but for spruce, some
differences between the two SSPs start to emerge around 2065. The larger amount of
harvesting in the case of SSP5 than in SSP1 increases the area of least-developed classes.
For spruce, the relative abundance of class c2 will start to increase after 2065, followed by
relative increase in class c3 ten years later, after which the relative abundance of class c1 will
clearly increase. For pine, the increasing harvest amount will decrease most-developed class
c4’s abundance, with a slight increase in intermediate classes (c2 and c3) relative abundance.
For deciduous species the intensity of harvest does not seem to have an appreciable effect on
intermediate class c2 and c3 abundances.

The management effect has a larger influence on class transitions in pine dominated areas
than in spruce dominated areas (Fig. 4gh). Under high management for pine, the relative
abundance of class c2 first decreases (due to transition to c3), and shortly thereafter
transitioning from c3 to c4 leads to a decrease in c3 relative abundance. For spruce, the
management effect results in smooth temporal transitions on relative class abundances

In both plausible future scenarios, the national mean forest LAI increases only until 2050
whereas in the baseline scenario, the LAI continues to increase until the end of the century
(Fig. 5). For rcp8.5_ssp5_H the maximum LAI is reached around 2050, whereas for
rcp4.5_ssp1_BAU the maximum LAI is reached slightly later ~2060. The effect scenarios
built around RCP8.5 and SSP5 show that, if RCP8.5 climate is replaced with current climate,
the expected decline in LAI is very steep after 2040 (i.e. rcp8.5_ssp5_H versus pd_ssp5_H).

Fig. 5 Simulated development of
the mean maximum Leaf Area
Index (LAI, m2/m2) in Norwegian
forests under six scenarios
representing different
combinations of climate forcing,
management intensity, and harvest
intensity
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Comparing the effect scenarios, if the rcp85_ssp5_H harvest rate is reduced to a SSP1-level
(‘rcp85_ssp5_H’ versus ‘rcp85_ssp1_H’) the LAI will stay leveled after 2060 until the end of
the century. In addition, the results show that the change in management (‘rcp85_ssp5_H’
versus ‘rcp85_ssp5_BAU’) has a small effect on the forest LAI. Noteworthy is that the
LAIMAX values fall within the range of measured and modeled values reported for the three
boreal tree species (e.g. Majasalmi et al. 2013), and thus all the LAIMAX scenarios are realistic
in all scenario combinations.

4 Discussion

In this study, we presented a simple grid-based framework – the Fennoscandic Forest State
Simulator – F2S2 – for simulating changes in forest structure in time connected to regional
scenarios of future forest management. F2S2 adds the temporal dimension to the hybrid forest
cover-structure map product of Majasalmi et al. (2017, 2018) in which forested areas are
classified by species and development stage, with each class having a corresponding LUT
providing key structural attributes needed to prepare surface data for a land surface or
hydrological model. F2S2 comprises a set of simple forest dynamic (SFD) models, calibrated
with regional NFI and climate data, along with a set of rules for prescribing final harvests on
the landscape and for initializing the current state of transiency in forests (i.e., the accrued
residence time since class transition). F2S2 is transparent and flexible, allowing the inclusion
of other types of forest management intervention such as tree species change and the
implementation of pre-commercial thinning. Tree species change can be implemented by
assigning clear-cut harvested pixel areas into other species groups, and pre-commercial
thinning can be included by lengthening the residence time of a given class e.g. by zeroing
the pixel distance-to-class transition value. In addition, using localized harvest targets, instead
of national, might be used to improve spatial allocation of harvests.

The simple growth models presented in this paper model residence time (i.e. growth) as the
average residence time for a given class as a function of temperature. Our basic assumption is
that temperature is a proxy for site productivity; thus, we assume that productivity increases
with higher temperatures therefore giving lower residence times. In Norwegian latitudes, site
productivity generally increases with temperature (Antón-Fernández et al. 2016). However
other factors, such as soil quality, genetic material of the trees, other climatic factors (e.g. soil
moisture, precipitation, frost), and microsite variations are important in explaining variations in
site productivity. In forestry, site productivity is traditionally estimated through site index (i.e.
the average height of dominant and co-dominant trees within a stand at certain age). Attempts
to model site productivity/site index for similar species (Antón-Fernández et al. 2016; Albert
and Schmidt 2010) have proved challenging. These site productivity models have R2 of 0.39-
0.56 for Norway spruce, 0.33 for Scots pine, and 0.50 for deciduous species, and include soil
quality variables as well as, in some cases, latitude and soil moisture. Thus, it is not surprising
that our models, which rely exclusively on temperature as proxy for site productivity, have R2

that range from 0.15 to 0.24 for spruce, 0.03 to 0.06 for pine, and 0.01 to 0.07 for deciduous
species. Given that the variables leading to better growth predictions (like soil quality) are
difficult to obtain across large spatial domains (i.e., at climate modeling scales), and often not
provided as climate model output (for when F2S2 is asynchronously coupled) - we believe our
models represent the best compromise for climate modeling applications that do not simulate
forest growth dynamics internally within the land model.
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Simulations for Norway in effort to demonstrate F2S2’s application and analyze its
behavior showed that climate has the largest effect on future forest dynamics, followed by
the future harvest demand – both of which were to be expected. The impact of forest
management intensity has a lesser, but clear effect on forest structural dynamics. Based on
the alternative plausible future scenarios for Norway, the present-day situation dominated by
intermediate classes c2 and c3 may be expected to change to the youngest and oldest classes
(i.e. c1 and c4) by the synergy of forest dynamics and management actions, which highlights
the important role of forest management as a tool for shaping forest structures. Based on the
three scenario combinations, one can speculate on two things happening: i) the growing stock
is reaching its ‘maturity’. i.e. forests are aging and further increases in growing stock would
require increasing land area occupied by forest (or increasing the number of within PFT
development classes to allow finer structural differentiation), and ii) larger harvest demand of
both SSP scenario combinations results that after 2040 the increasing growth cannot compen-
sate for an increasing demand for forest products. Implications could be to increase area
occupied by forests and develop possible strategies to allow more flexibility in species harvest
demands (e.g. increase deciduous species harvest).

Comparing predicted future trends in LAI with those of previous works is extremely
difficult since few (if any) previous studies have explicitly isolated the effects of climate/
environment from forest management on the long-term LAI development in a boreal forest
region. We showed the LAI is highly sensitive to both the effects of climate/environment and
forest management (i.e. demonstrated in Fig. 5). Although, we suspect that part of the large
Climate Modeling Intercomparison Projection (CMIP5) model spread in the predicted future
long-term LAI, reported in Mahowald et al. (2016), likely reflects differences in how the
underlying land models implement management effects, as much as differences in how LAI is
estimated in the model, we nevertheless find that our results generally fall within the ranges
reported in Mahowald et al. (2016) for both RCP8.5 and RCP4.5 over all 21st century time
slices, and that LAI exhibits a positive relationship with temperature. Noteworthy, is also that
not only the selection of RCP scenario influence the projected LAI trajectories, but also the
initial mapping of LAI. For example, the recent paper by Majasalmi et al. (2018) (in Figure 6)
showed how LAI in Fennoscandia varies spatially within forest PFTs and that ignoring this
within-PFT forest structural variation results in almost constant LAI throughout Fennoscandia
(Majasalmi et al. 2018). Our framework targets the core of this problem – management
impacts on long-term LAI are unknown at present because the models we currently rely on
(i.e., CMIP5 models) do not sufficiently account for the effects of management. Due to the
importance of LAI for biophysical and biogeochemical interactions, there is ongoing need for
improvements for the model mechanisms responsible for the simulations of LAI.

The merits of our framework over those currently applied in climate modeling, are that: i) the
initial mapping if forest structure is based on high resolution (i.e. pixel resolution of ~ 30m)MS-
NFI data, ii) the 0.0028° resolution of our map product allows spatial allocation of forest
management actions (e.g. for 61.1° N and 10.5° E in Norway, pixel size of our product is
4.7 ha whereas using 0.5° map products commonly applied in LSMs, the respective pixel size
would be 14,939 ha), iii) the use of simplified forest dynamics models (SFD), which combine the
effects of forest management and temperature, are quick to adapt to new regions and classifica-
tions, as they can be calibrated using data simulated from NFI inputs. The main limitation of our
framework is that it cannot be used in regions without established NFI inventories due to the
need for regional calibration. Thus, we do not expect our framework to be applicable for global
modeling studies, as it is developed to fit the needs of regional climate modeling studies allowing
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flexible scaling between different spatial resolutions (i.e. using percentage layers or sub-grid
areas) to accommodate different exogenously defined climate and harvest data. Although our
framework must be soft-coupled to LSMs, we believe it provides more accurate initial mapping
than ageless conifer-deciduous classification and generation of trajectories of forest structural
development under plausible futures (as a combination of input climate forcing data, and harvest
demand and forest management scenarios), which can be directly digested by LSMs.

5 Conclusions

This paper presented a simple modeling framework to capture the general trends in future
Fennoscandian forest structure as a function of: climate change, and exogenously defined
scenarios of harvest intensity, and forest management intensity. To our knowledge this is the
first paper presenting a method to dynamically link forest structural mapping in space and time
in a way that is directly applicable to climate modeling studies prescribing land cover
transitions. The approach allows regional calibration according to local management practice
(i.e. harvest, thinning, management) and climate.
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