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Prediction of forest canopy fuel parameters in managed boreal forests using 
multispectral and unispectral airborne laser scanning data and aerial images
Matti Maltamoa, J. Rätyb, L. Korhonena, E. Kotivuoria, M. Kukkonena, H. Peltolaa, J. Kangasa and P. Packalena

aSchool of Forest Sciences, University of Eastern Finland, Joensuu, Finland; bDivision of Forest and Forest Resources, National Forest 
Inventory, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway

ABSTRACT
This study evaluated the suitability of different airborne laser scanning (ALS) datasets for the 
prediction of forest canopy fuel parameters in managed boreal forests in Finland. The ALS data 
alternatives were leaf-off and leaf-on unispectral and leaf-on multispectral data, alone and 
combined with aerial images. Canopy fuel weight, canopy base height, biomass of living and 
dead trees, and height and biomass of the understory tree layer were predicted using regres
sion analysis. The considered categorical forest parameters were dominant tree species, site 
fertility and vertical forest structure layers. The canopy fuel weight was modeled based on 
crown biomass with an RMSE% value of 20–30%. The canopy base heights were predicted 
separately for pine and spruce stands with satisfactory results the RMSE% values being 9–10% 
and 15–17%, respectively. Following the initial classification of the existence of an understory 
layer (with kappa-values of 0.47–0.53), the prediction of understory height performed well 
(RMSE% 20–25%) but the understory biomass was predicted with larger RMSE% values (about 
60–70%). Site fertility was classified with kappa-values of 0.5–0.6. The most accurate results 
were obtained using multispectral ALS data, although the differences between the datasets 
were minor.
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Introduction

Forest fires are one of the greatest natural hazards 
faced by boreal forests. However, fire is also a natural 
phenomenon and is an important factor in maintain
ing biodiversity and in natural regeneration (Esseen 
et al., 1997; Koutsias & Karteris, 2003). In Nordic 
countries, such as Finland, approximately 1000 forest 
fires occur, on average, each year (Lehtonen et al., 
2016). During 2015, the annual damaged forest area 
by forest fires in Central-East and South-West Europe 
was 374,200 and 234,400 hectares, respectively, 
whereas the corresponding area in North-Europe 
was only 2 000 hectares (Forest Europe, 2015). The 
area burnt in Finland is relatively small because of 
active fire suppression, and the heterogeneity of 
forested areas with numerous lakes and swamps, and 
a dense forest road network, which create natural 
obstacles to fire spread (Lehtonen et al., 2014). In 
contrast, large wildfires are common along the south
ern edge of boreal forests in Russia, for example. 
Nonetheless, in August 2014, a large forest fire of 
approximately 150,000 hectares occurred and rapidly 
spread in Västmanland, Sweden (Bohlin et al., 2017). 
Similarly, during a hot dry period in the summer of 
2018, several substantial forest fires occurred in 
Sweden and in Finland, providing further evidence 
of the increasing susceptibility of managed boreal for
ests to fire. The risk of forest fires is also expected to 

increase in Finland and elsewhere in the boreal zone 
under a warming climate, due to increased frequency 
of drought periods (Lehtonen et al., 2014, 2016; 
Ruosteenoja et al., 2018).

The factors that affect forest fire risk include 
weather, topography and fuels, i.e. materials that can 
burn during a fire (Holsinger et al., 2016; Moritz et al., 
2011). Remote sensing has been widely used to char
acterize forest fire risks, as it is an ideal tool for pre
dicting fuel availability, monitoring fires, mapping 
burnt areas and for the monitoring of regeneration 
after fire (Jones & Vaughan, 2012). In particular, opti
cal satellite images usually cover large areas, provide 
spatial representation of vegetation, and are available 
multi-temporally. However, a disadvantage of optical 
satellite images is that they are not usually able to 
characterize the vertical forest structure, i.e. properties 
related to height (e.g. Arroyo et al., 2008; Chirici et al., 
2013). These limitations can be overcome by using 3D 
airborne laser scanning (ALS) data in a forest fuel 
context (Andersen et al., 2005; Chirici et al., 2013; 
see also text book chapter by Gajardo et al., 2014), 
either at an individual tree-level or at the area (plot/ 
cell/stand) level, depending on the properties of the 
data and information needs of the application. In 
addition, ALS data provide accurate and detailed 
information on topography. Therefore, ALS informa
tion can be effectively used to map fuel types and to 
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estimate canopy fuel parameters (Andersen et al., 
2005; Arroyo et al., 2008; Mutlu et al., 2008; Riaño 
et al., 2003).

Fuel type mapping is critical for spatial modeling of 
forest fire behavior (Chirici et al., 2013). Forest fire 
behavior is predicted in different forest fire simulators 
where canopy fuel parameters are used as input vari
ables (e.g. Andersen et al., 2005). In general, fuel type 
mapping can be understood as the classification of an 
area of interest according to vegetation species, form, 
size, arrangement and continuity of fuels (Gajardo 
et al., 2014; see also Merrill & Alexander, 1987). 
Trees, understory, shrub, grass, brush and litter are 
considered as different fuel types (Jones & Vaughan, 
2012). Fuel type mapping is also a type of forest area 
stratification as segmentation to different-sized 
objects, such as trees, tree groups or stands, in 
a forest inventory. ALS data stratifies the area of inter
est by considering the horizontal and vertical struc
tures of the forest as pre-processing steps, before fuel 
type mapping with ALS features is then conducted 
(Mutlu et al., 2008; Seielstad & Queen, 2003).

The most often considered canopy fuel parameter is 
canopy bulk density (CBD), which can be defined as 
the mass of available canopy fuel (canopy fuel weight) 
per defined chosen unit canopy volume (Gajardo et al., 
2014). This attribute is an input variable in many fire 
behavior models. When the canopy fuel weight is 
calculated, only foliage biomass, or both foliage and 
branches, are considered. There are different ways to 
utilize ALS data to predict CBD. For example, Riaño 
et al. (2003) predicted foliage biomass by means of 
ALS data and calculated canopy volume from an ALS 
point cloud. They derived CBD by dividing the bio
mass estimate by the canopy volume estimate. 
Similarly, Andersen et al. (2005) separately predicted 
canopy fuel weight (biomass) and CBD. Moreover, 
ALS height distribution can be assigned to height 
bins to achieve a 3D presentation of CBD. Numerous 
studies have employed ALS to predict foliage biomass 
for purposes other than fuel parameters, such as bioe
nergy, (e.g. Hauglin et al., 2012; Kotamaa et al., 2010; 
Lim & Treitz, 2004). Usually the accuracy of these 
predictions has been found suitable for the operational 
use.

Another important canopy fuel parameter is 
canopy base height (CBH). In a forest fire context, 
this attribute is the lowest point in the canopy where 
there is sufficient canopy fuel to cause vertical fire 
spread. However, there are many different definitions 
for CBH, e.g. the vertical distance from the ground to 
the live crown base (Finney, 1998), or some minimum 
limit in vertical CBD distribution (Andersen et al., 
2005). CBH can be estimated rather accurately accord
ing to the vertical point cloud properties of ALS data 
(e.g. Maltamo et al., 2010, 2018; Morsdorf et al., 2004; 
Riaño et al., 2003; Vauhkonen, 2010) or by regression 

analysis (Næsset & Økland, 2002; Andersen et al., 
2005; Maltamo et al., 2018). As with canopy foliage, 
many different applications exist for ALS-based CBH 
estimates, such as forest biomass prediction, growth 
and yield models, and timber quality (Repola, 2009; 
Salminen et al., 2005; Wall et al., 2004).

The third most important forest fuel parameter is 
the surface canopy height (SCH) (e.g. Andersen et al., 
2005; Gajardo et al., 2014; Mutlu et al., 2008). This 
parameter can be defined as the height of the fuel layer 
below the canopy but above ground level. Usually this 
layer consists of shrubs and understory trees beneath 
the dominant layer. In some cases, the layer can be 
directly discriminated from ALS data (Estornell et al., 
2011; Riaño et al., 2007), although this usually leads to 
underestimation of the surface height. It is also possi
ble to initially detect the existence of the understory 
layer from the properties of the vertical distribution of 
ALS echoes (Hill & Broughton, 2009; Sumnall et al., 
2016), and to then predict the attributes of interest 
(Maltamo et al., 2005). The variation in vertical forest 
structure described by ALS has also been widely exam
ined from a biodiversity point of a view (Miura & 
Jones, 2010; Valbuena et al., 2016).

In many studies, discrete return ALS data have been 
combined with spectral data to improve the prediction 
accuracy of forest fuel parameters (Erdody & Moskal, 
2010; Mutlu et al., 2008). However, the improvement 
associated with the prediction errors is usually minor. 
In addition, full waveform ALS data have been applied 
(Peterson et al., 2007). Recently, commercial airborne 
multispectral ALS systems, which are capable of pro
viding a reflective metric (echo intensity) over several 
wavelengths, have been introduced and tested to dis
criminate between tree species at the tree- or plot-level 
(Axelsson et al., 2018; Budei et al., 2018; Kukkonen 
et al., 2019a; Yu et al., 2017).

The aim of this study was to evaluate the suitability 
of different ALS datasets and aerial images for the 
prediction of forest canopy fuel-related parameters at 
the plot-level in managed middle-aged and mature 
boreal forests. Canopy fuel weight, CBH, biomass of 
living and dead trees, and height and biomass of the 
understory tree layer were predicted using regression 
analysis. The considered categorical forest parameters 
were dominant tree species, site fertility and vertical 
forest structure layers. All predictions and classifica
tions were cross-validated using relative root-mean- 
square error (RMSE%) and kappa-values.

Material and methods

Study area

The study area (43,200 hectares) is located in eastern 
Finland (Figure 1). It extends over the regions of 
North Karelia and Southern Savonia and includes the 
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municipalities of Heinävesi, Liperi, Outokumpu and 
Savonlinna. The study area includes managed boreal 
forests dominated by coniferous tree species (Räty 
et al., 2019). The main tree species in the area are 
Norway spruce (Picea abies [L.] Karst.), Scots pine 
(Pinus sylvestris [L.]), silver birch (Betula pendula 
Roth) and downy birch (B. pubescens Ehrh.). Other 
deciduous tree species, such as grey alder (Alnus 
incana [L.] Moench) and aspen (Populus tremula 
[L.]) grow in the lower canopy layers. The majority 
of the plots were located in middle-aged forests (74%) 
and the remainder in mature forests.

Field data

We used 179 fixed radius sample plots of 9 m in this 
study (see Figure 1). The plot measurements were 
conducted between June and September 2016. Plot 
locations were selected using systematic cluster sam
pling with random start. The distance between clusters 
was 1200 m. The cluster was quare-shaped with a side 
length of 300 m. Sample plots were placed in the 
corners of clusters. Finally, a subset of clusters was 
selected to the sample and measured. Plots located in 
seedling and sapling stands were excluded. Plot loca
tions were positioned by means of a global navigation 
satellite system (GNSS). The GNSS data were cor
rected afterwards using reference stations. Diameter 
at breast height (DBH), crown base height and tree 
height were measured from all trees having DBH ≥ 

5 cm. Trees species were also determined from mea
sured trees. Most important plot attributes are shown 
in Table 1. Categorical variables site fertility class and 
existence of understory layer were determined at the 
plot-level. Site fertility was classified as grove (Oxalis- 
Maianthemum type, OMaT), fertile (Oxalis-Myrtillus 
type, OMT), moderate (Vaccinium-Myrtillus type, 
MT) or poor (Vaccinium vitis idaea type, VT) types, 
according to the classification by Cajander (1926). In 
the case of an existing understory layer, dominant 
species, height and number of stems were recorded 
at the plot-level.

Field data preprocessing

Different biomass characteristics were calculated at the 
tree-level. Deciduous species were assigned to a single 
group, as a biomass model only exists for birch. Thus, 

Figure 1. Location of the study area and sample plots in eastern Finland.

Table 1. Mean, minimum, maximum and standard deviation 
(sd) of the main forest attributes. AGB denotes aboveground 
biomass.

Attribute Mean Sd Min Max

AGB, living trees, Mg∙ha−1 110.7 47.9 27.4 410.0
AGB, dead trees, Mg∙ha−1 1.0 2.7 0.0 22.5
Needle biomass, Mg∙ha−1 7.2 3.8 1.9 19.3
Crown biomass, Mg∙ha−1 24.7 11.4 7.1 66.9
Canopy base height (pine), m 9.9 2.6 4.4 18.9
Canopy base height (spruce), m 6.5 2.1 1.4 10.6
Height of understory, dm 21.2 6.6 7.0 40.0
AGB of understory, Mg∙ha−1 1.3 1.0 0.2 5.3
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three tree species groups were established: pine, 
spruce, and deciduous. DBH and height measure
ments were used to calculate the total aboveground 
biomass (AGB) for living and dead trees (Repola, 
2008, 2009). In addition to DBH and height, crown 
base height was used as a predictor variable when 
calculating crown (foliage and branches) biomass. 
Finally, the following attributes were computed at 
the plot-level per hectare: AGB for both living and 
dead trees, foliage (needles) biomass, crown biomass, 
basal area-weighted CBH and AGB of the understory 
layer. Biomass for the understory layer was approxi
mated using species, height/DBH and stand density 
information using the models described by Repola 
(2008, 2009)).

Considered fuel parameters were as follows: (1) site 
fertility in two classes: rich, n = 28 (OMAT and OMT 
types) and dry, n = 151 (MT and VT types); (2) the 
existence of SCH in two classes: present, n = 54 or 
absent, n = 125; (3) the foliage (needles) and crown 
(foliage and branches) biomass as estimates of canopy 
fuel weight; and (4) CBH was considered separately in 
pine (n = 91) and spruce (n = 77) dominated stands 
since this attribute differed considerably between 
stands (see Table 1). Thus, additional classification 
was required to separate pine and spruce dominated 
stands. In our calculations, deciduous stands were 
combined with the pine dominated stand, since the 
CBH values of the deciduous stands were similar to 
the values observed in pine stands. Furthermore, (5) 
height and (6) AGB of existing SCH, (7) AGB of living 
(AGBl) and (8) AGB of dead trees (AGBd) were 
considered.

ALS datasets

Multispectral ALS data was collected at an altitude of 
850 m above ground level with a Teledyne Optech 
Titan device (Geo3d.hr 2018). The data was collected 
in June 2016 under leaf-on conditions. The Teledyne 
Optech Titan measures up to four range and intensity 
measurements per pulse using the wavelengths 
1550 nm, 1064 nm, and 532 nm for the first, second 
and third channel, respectively. The overlap of strips 
was 55% so most targets on the ground were scanned 
from two flight lines. In an average, the pulse density 
per flight line was 4.8 pulses per square meter for 
channels 1 and 2, and 3.7 for channel 3. We also 
used data from the second channel independently in 
our analysis. We call it as unispectral leaf-on ALS data 
onward.

Unispectral ALS data were collected under leaf-off 
conditions on 30 April–3 May 2016 with a Leica 
ALS60 device. The flying altitude was 2400 m above 
ground level and strip overlap was 20%. This config
uration provided the pulse density of 0.8 pulses per 
square meter. The Leica ALS60 captures up to four 

echoes, including range and intensity measurements, 
for each emitted pulse. The ALS60 ALS system uses 
the 1064 nm wavelength.

The ALS echo heights were normalized to above 
ground level by subtracting the terrain level from the 
orthometric heights. This was done separately with 
multispectral (Optech Titan) and unispectral (Leica 
ALS60) ALS data. First ground echoes were filtered 
as explained in Axelsson (2000). Then ground echoes 
and Delaunay triangulation were used to interpolate 
a digital terrain model. This terrain model was sub
tracted from the initial orthometric heights. The lidar 
intensity values were range corrected as documented 
in Korpela et al. (2010). In corresponding forest area 
Kukkonen et al. (2019a) found that intensity correc
tion had only very minor influence on the predictions.

Aerial imagery

Aerial images were acquired under leaf-on conditions 
on May 23–24, 2016. The aerial images were captured 
with a DMC Z/I Intergraph (01–0128) digital aerial 
camera. The images were taken from an altitude of 
4100 m. This resulted in a ground sample distance of 
approximately 1.5 m. A lateral overlap was 30% and 
longitudinal overlap was 80%. The DMC Z/I has four 
multispectral bands (red, green, blue and nir) that 
have the resolution of 1920 × 3456 pixels. Bundle 
block adjustment with ground and tie points were 
used to determine external orientations in a standard 
manner. Images were not pansharpened or orthorec
tified, because DN values of aerial images were linked 
to ALS echoes and image features were computed 
from these, as explained in the section 2.4.

ALS and aerial image features

Three echo categories were formed from the original 
three echo categories: first = first of many + only 
echoes, and last = last of many + only echoes. In addi
tion, intermediate echoes were used in the analysis, 
such as the one echo category. A set of features was 
computed for each field plot from the leaf-on multi
spectral ALS, leaf-on and leaf-off unispectral ALS, and 
aerial image datasets (Table 2). We used feature cate
gories (I) channel-wise, (II) multicloud, (III) multi
ratio, and (IV) aerial image (Kukkonen et al., 2019a, 
2019b). Channel-wise features included the height 
distribution and intensity features calculated sepa
rately from first (f), last (l) and intermediate (int) 
echoes by channel. Multicloud features included the 
above-mentioned features computed from the com
bined set of echoes from two or three channels. 
Multiratio features included the ratios of features cal
culated for the individual channels.

The features extracted from the aerial images were 
computed by the spectral bands: red, green, blue and 
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near-infrared. The digital number (DN) values were 
fetched from the pixels of aerial images for each first 
ALS echo. The DN values were determined by project
ing the first ALS echoes over the aerial images using 
the collinearity equations from photogrammetry. The 
mean DN value was first computed for each echo by 
iterating through all the overlapping images where an 
echo was visible. Aerial image features were calculated 
separately for each ALS dataset.

We established six feature groups that were separately 
used in the analyses. The groups were (1) unispectral 
leaf-on ALS (i.e. the second channel of multispectral ALS 
data), (2) the combination of unispectral leaf-on ALS and 
aerial images, (3) unispectral leaf-off ALS, (4) the combi
nation of unispectral leaf-off ALS and aerial images, (5) 
multispectral leaf on ALS, and (6) multispectral leaf-on 
ALS and aerial images (Table 3).

Modelling and validation of fuel parameters

Linear discriminant analysis (LDA) was used to clas
sify site fertility, the existence of SCH, and the main 
tree species. The LDA was carried out with equal prior 
probabilities of the class memberships using the LDA 
function in the MASS package (Venables & Ripley, 
2002) in the R environment (R Core Team, 2019). 
Predictor variables of the classification models were 

selected using a simulated annealing (Kirkpatrick 
et al., 1983) optimization algorithm. The optimization 
commenced with a random set of predictor variable 
candidates. The set of predictor variables was modified 
during the optimization process by replacing some of 
the predictor variables in the current set. The number 
of predictor variables to be replaced with new variables 
decreased during the optimization. The aim of the 
optimization was to minimize the loss function that 
was an inversed kappa-value. The number of predictor 
variables in the models was five.

In the parametric modelling approach, the relation
ship between remote sensing features and fuel para
meters (CBH, needle and crown biomass, AGBl and 
AGBd, height and AGB of SCH) was characterized by 
means of linear regression (LR) modelling. The para
meters of the LR models were estimated using the 
ordinary least squares method. The models were fit 
in the R environment using the STATS package (R 
Core Team, 2019). The predictor variables extracted 
from the ALS data and aerial images, three for each 
model, were selected by comparing all possible model 
candidates and then selecting the model with the 
smallest RMSE value.

The predictive performances associated with the 
LDA and LR models were assessed using leave-one- 
out cross-validation (LOOCV). The LDA and LR 
models were constructed separately for the six predic
tor variable groups, according to Table 3. 
Classifications were validated using overall accuracy 
(OA) and kappa-values. Corresponding regression 
estimates were evaluated in terms of RMSE% values, 
which were calculated by dividing the estimate by the 
observed mean, and then multiplying by 100. In the 
case of the LR models, the standard residual error (Se) 
and coefficient of determination (R2) were reported.

Table 2. Features extracted from airborne laser scanning (ALS) data and aerial images. Abbreviations: h = height; i = intensity; 
ai = aerial image; R = red; G = green; B = blue; N = near infra-red; DN = digital number. Abbreviations f, l and int (not shown in 
Table) denote variables computed from first, last and intermediate echo classes, respectively. Subscripts for the channels of the 
multispectral ALS data are 1550, 1064 and 532 for the first, second and third channel, respectively.

Feature Description

I – Channel-wise
hP10, hP20, . . ., hP90 Height percentiles
iP10, iP20, . . ., iP90 Intensity percentiles
hD1, hD2, hD5, hD10, hD15, hD20 Density at a fixed height
iMax, hMax Maximum
iMin, hMin Minimum
iStd, hStd Standard deviation
iMed, hMed Median
iMean, hMean Mean
iSkew, hSkew Skewness
iKurt, hKurt Kurtosis
Prop Echo class proportion
II – Multicloud
I1550 + 1064; I1550 + 532; I1064 + 532; I1550 + 1064 + 532 Channel-wise Features (I) computed from combined set of echoes from different channels
III – Multiratio
I1550/I1064; I1550/I532; I1064/I532, Ratios of channel-wise features (I)
IV – Aerial image
aiMax (B;G;R;N) Maximum DN
aiMin (B;G;R;N) Minimum DN
aiStd (B;G;R;N) Standard deviation of DNs
aiMean (B;G;R;N) Mean DN

Table 3. Feature groups used in the variable selection. For the 
feature codes, please refer to Table 2.

Feature group Features

Unispectral leaf-on ALS I
Unispectral leaf-on ALS and aerial images I and IV
Unispectral leaf-off ALS I
Unispectral leaf-off ALS and aerial images I and IV
Multispectral leaf-on ALS I, II and III
Multispectral leaf-on ALS and aerial images I, II, III and IV
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Results

The predictor variables in the LDA and LR models are 
shown in Tables 4 and 5, respectively. The role of ALS 
intensity features was emphasized in the classifications and 
they were selected by the heuristic feature selection in each 
case (Table 4). In addition, aerial image features were often 
used in the classification of main tree species. Otherwise, 
they were useful when combined with leaf-off unispectral 
ALS features in the classification of site fertility and the 
existence of an understory. In the classifications based on 
the leaf-on multispectral ALS data, multicloud and multi
ratio features were used more often than unispectral fea
tures. Density features were not selected as predictor 
variables in the models based on leaf-on unispectral ALS 
data. Instead, density features were used in the models that 
were fitted using leaf-off unispectral ALS and leaf-on multi
spectral ALS data for the classification of site fertility and the 
existence of an understory.

In the LR models, height, density and the intensity 
features extracted from the ALS datasets were used as 
predictor variables (Table 5). Height-related features 
were used most often but density and intensity variables 
were emphasized in the estimation of understory fuel 
parameters, i.e. the height and AGB of existing SCH. 
Multicloud and multiratio features were used more 
often than unispectral metrics in the models based on 
leaf-on multispectral ALS data. The different channels 
were all used rather evenly. In contrast, first pulse fea
tures were applied more often than last pulse features.

The role of aerial image features was very minor 
and, in the case of leaf-off unispectral and leaf-on 
multispectral ALS data, they were not used at all. 
The modeling of CBH in the pine stands was based 
on features extracted from one channel of the leaf-on 
ALS data. Thus, the models that used leaf-on multi
spectral and leaf-on unispectral ALS data are identical. 
On the other hand, the CBH model in the pine stands 
is based on canopy height and density features, 
whereas intensity features are included in all model 
alternatives in the spruce stands

The observed OA and kappa values associated 
with the classified fuel parameters are presented in 
Table 6. Site fertility and the existence of an unders
tory layer were classified most accurately by leaf-on 
multispectral ALS data without aerial images the OA 
values being 0.62 and 0.58, respectively. For the main 
tree species, leaf-off unispectral ALS features com
bined with aerial image features resulted the greatest 
kappa-value (0.88). In regard to the classification of 
the main tree species, aerial images improved the 
classification accuracy in all ALS datasets. 
Otherwise, the usage of aerial image features 
improved the classification accuracy only in the mod
els that used leaf-off unispectral ALS features as pre
dictor variables. All in all, the main tree species was 
classified with high OA (0.90–0.93) and kappa-values 
(0.81–0.88), whereas site fertility (OA 0.86–0.89; 
kappa-values 0.47–0.62) and the existence of an 
understory (OA 0.80–0.84; kappa-values 0.47–0.58) 
were classified with moderate success.

The performance statistics (Se, R2, and cross-validated 
RMSE%) associated with the predictions of fuel para
meters are presented in Table 7. Most of the fuel para
meters were predicted with smallest RMSE% values 
when leaf-on multispectral ALS data features were 
used. As an exception, the AGB of the understory layer 
was predicted more accurately when leaf-off unispectral 
ALS features (RMSE% 57.93) were used rather than leaf- 
on multispectral ALS features (RMSE% 63.25). For pine 
stand CBH and crown biomass, the reliability was similar 
regardless of whether unipectral leaf-on ALS or the 
multi-spectral leaf-on ALS dataset was used. In general, 
the differences in cross-validated accuracies were usually 
minor (in maximum about four percentage units except 
in the case of the AGB of the dead trees and the AGB of 
the understory) between the different datasets. Aerial 
image features improved the accuracy in only one case: 
the prediction of AGB of the understory layer using 
unispectral leaf-on ALS features. Aerial image features 
were not able to improve the accuracy of the predictions, 
which were based on leaf-off unispectral ALS data or 

Table 4. Airborne laser scanning (ALS) and aerial image-based features, which were used as the predictor variables in the 
classification of fuel parameters. The classification was carried out using linear discriminant analysis (LDA). For the abbreviations, 
please refer to Table 2.

Remote sensing data Fuel parameter

Main tree species Site fertility Existence of 
understory

Unispectral leaf-on ALS f_hp801064, f_hp951064, l_hSkew1064,  
l_iKurt1064, l_iP951064

f_hP201064, l_hP501064, f_iP101064,  
f_iP201064, l_iP501064

l_hStd1064, l_iStd1064, l_iP301064,  
l_iP601064, l_iP801064

Unispectral leaf-on ALS 
and aerial images

l_iMed1064, l_iP801064, aiMeanR, aiMaxG,  
aiMeanN

� �

Unispectral leaf-off ALS f_hMean, l_hMean, l_hP90, f_iP40, f_iP90 f_hP30, l_hP60, l_hP90, l_D20, 
l_iP90

f_hP70, f_D5, l_D2, f_iP10, f_iP20

Unispectral leaf-off ALS 
and aerial images

f_hP70, l_hStd, l_iMean, aiMeanR, aiMaxN f_iMean, f_iSkew, l_iP90, aiMinN,  
aiMeanN

f_D2, l_D0.5, f_iP10, f_iP30, aiStdN

Multispectral leaf-on 
ALS

l_iP201550, l_iP201550/1064, f_iStd1064+532,  
l_iMean1550+1064+532, l_iP801550+1064+532

l_hP601064, l_iP201064, f_D15532,  
f_iP201550/1064, l_iP201550+1064

f_D201550, f_iP201550+532,  
int_hStd1064+532, l_iP701064+532,  

l_iP601064/532

Multispectral leaf-on 
ALS and aerial images

l_iP601064/532, l_iP901550+1064+532, aiMeanR,  
aiStdG, aiMeanN

� �
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leaf-on multispectral ALS data. The most challenging 
fuel parameters to be predicted were the AGB of the 
dead trees and the AGB of the understory layer. Total 
living AGB (RMSE% 17.17) and CBH by tree species 
(RMSE% pine 8.78 and spruce 15.18%) were the most 
accurately predicted parameters.

An example of wall-to-wall canopy fuel parameter 
prediction and classification is shown in Figure 2. The 
considered area also includes low stocked stands and 
roads. It can be seen that increasing crown biomass 
estimates (a) follow the corresponding trend in canopy 
height surface (c). Some (within stand) variation can 
still be observed. The existence of understory (b) does 
not follow the same trend. For example, there are areas 
with high canopy height where understory does not 
exist and vice versa. This is most probably due to the 
silvicultural history and site fertility.

Discussion

This study considers the prediction of forest canopy fuel 
parameters in managed middle-aged and mature boreal 
forests by applying remotely sensed data. Remote sen
sing-based predictions of canopy fuel parameters is not 
novel and such studies have also been conducted pre
viously in boreal forest conditions (Bohlin et al., 2017; 
Morsdorf et al., 2004). However, our study concentrated 
on managed boreal forests with stand characteristics that 
are common in forested Nordic countries. Growing 
stock stem density in these forests is usually rather sparse 
due to forest management (frequent thinning) and, typi
cally, they are not prone to fire. There has also been 
relatively effective fire control in Nordic countries, and 
forest fires, therefore, do not typically cause devastating 
damage. However, there have been large forest fires in 
Nordic countries during the latter half of the 2010s, and 
the risk of forest fires is expected to increase in the boreal 
forests of Nordic countries due to climate change 
(Lehtonen et al., 2014, 2016).

Another aspect in this study is the combined use of 
various remotely sensed datasets. The combination of 
low-density unispectral ALS data and aerial images has 
been the basic setup in Finnish operational remote 

sensing-based forest inventories. Aerial images are 
used jointly with ALS data because of the need for 
species-specific estimation of stand attributes 
(Maltamo & Packalen, 2014). In our study, the low- 
density ALS dataset was acquired under leaf-off condi
tions. Here, we separately applied multispectral ALS 
data and the second channel of the multispectral ALS 
dataset. The features extracted from the ALS datasets 
were also combined with aerial image features. The use 
of multispectral ALS data is still rare in the character
ization of forest structures (see Dalponte et al., 2018).

The forest fuel-related parameters considered here 
include those that are often used in fuel behavior models, 
i.e. variables that describe CBD, CBH and canopy surface 
height. In addition, we consider site fertility and the 
biomass of both living and dead trees. As a proxy approx
imate for CBD, we modeled canopy fuel weight that 
included only needles, and needle and branch biomass. 
These predicted values can be converted to an estimate of 
CBD using canopy volume, which can be calculated from 
ALS data. Correspondingly, canopy surface height was 
described by the existence of an understory and by height 
and biomass of the understory.

The results pertaining to the constructed LR models 
were logical, and the accuracies achieved were compar
able to earlier studies, for example, crown heights and 
biomass of living and dead trees (see Dean et al., 2009; 
Maltamo et al., 2014; Montagnoli et al., 2015; Næsset & 
Økland, 2002; Zolkos et al., 2013). Living tree biomass 
and crown heights were accurately predicted, whereas 
prediction of dead tree biomass and the understory was 
problematic with ALS data. Dead tree AGB cannot be 
considered as primary fuel parameter but biomass of 
understory is often needed in forest fire simulators as 
input parameter. Although the RMSE% values were over 
50 for understory AGB it should be remembered that by 
absolute means the amount of understory AGB is very 
small (between 0.2–5.3 Mg∙ha−1). Thus, high relative 
errors may not prevent the operational use of the pre
dictions of this parameter. Crown biomass (RMSE% 
21.56–22-54) was predicted with smaller errors than 
needle biomass (RMSE% 26.88–30.96). In regard to the 
applied remote sensing data, multispectral ALS provided 

Table 6. Overall accuracy (OA) and kappa values associated with the classification of fuel parameters. If aerial image features did 
not improve the classification accuracy, the result is the same as when airborne laser scanning (ALS) data alone was used.

Remote sensing data Accuracy measure Fuel parameter

Main tree species Site fertility Existence of understory
Unispectral leaf-on ALS OA 0.90 0.86 0.82

Kappa 0.81 0.49 0.54
Unispectral leaf-on ALS and aerial images OA 0.92 � �

Kappa 0.86
Unispectral leaf-off ALS OA 0.91 0.86 0.80

Kappa 0.84 0.47 0.47
Unispectral leaf-off ALS and aerial images OA 0.93 0.87 0.81

Kappa 0.88 0.52 0.50
Multispectral leaf-on ALS OA 0.92 0.89 0.84

Kappa 0.85 0.62 0.58
Multispectral leaf-on ALS and aerial images OA 0.93 � �

Kappa 0.87
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slightly more accurate (less than about four percentage 
units in RMSE%) results than the other alternatives in 
most cases. This is partly contrary to previous studies 
where species-specific attributes were not predicted as 
accurately by multispectral data as by the combination of 
ALS and aerial images (e.g. Kukkonen et al., 2019a).

In our study, the role of aerial image features was 
minor. Still, the differences between the various ALS 
options were not large. On the other hand, Dalponte 
et al. (2018) predicted aboveground biomass per hec
tare and the number of trees per hectare by means of 
multispectral ALS data (Optech Titan). They reported 
that multispectral ALS data outperforms unispectral 
ALS data in terms of predictive performance, which is 
in line with our results.

The classification of dominant tree species was suc
cessful. The obtained kappa-values were always 
greater than 0.8. Also, this result is in agreement 
with earlier studies (Kukkonen et al., 2019b; Räty 
et al., 2019), which showed that the inclusion of aerial 
image features improves classification (0.04–0.08 dif
ference in kappa-value) and prediction accuracy (0.4– 
9.5 percentage units) for different forest variables. It is 
also notable that multispectral data was not the most 
accurate alternative in this case, as the use of unispec
tral leaf-off ALS data in combination with aerial 
images achieved higher classification accuracy. In the 
context of forest fuel parameters, dominant tree 

species information is not of primary interest but is 
needed to separate pine and spruce dominated stands 
in crown base height predictions. The other classifica
tions – site fertility and the existence of an unders
tory – were classified with kappa-values between 0.47– 
0.62 and, in these cases, multispectral ALS data again 
achieved a higher classification accuracy than the uni
spectral ALS datasets. It should be noted that we only 
applied two classes for site fertility in this study: fire- 
prone dry forests and less fire-prone, more fertile 
forests, which clearly improved the classification pro
blem, in comparison to earlier studies (Vehmas et al., 
2011).

Our models contained a large number of candidate 
predictor variables. One aspect here is the type of 
multispectral features that were applied. It would 
seem that the ratio features between the different 
channels of the multispectral ALS data were frequently 
used as predictor variables in models that predicted 
understory parameters. Ratio features were also com
mon in the models that we used to classify the main 
tree species and site fertility. Features that combined 
different channels were more frequently applied in 
almost all models and classifications. The role of inten
sity features was more important in the classification 
of categorical parameters than in the prediction of 
continuous forest parameters. For continuous forest 
parameters, the intensity features were only applied in 

Figure 2. An example of the wall-to-wall canopy fuel parameter prediction and classification using a cell size of 16 ×16 m and 
multispectral ALS data. The layers are (a) the crown biomass (Mg∙ha−1) and (b) the existence of understory (yes-no). The canopy 
height above ground level using a pixel size of 1 m is also presented from the same area (c).
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the prediction of the understory and in the crown base 
height models. The intensity features were also more 
frequently used in the classification of categorical 
parameters than in the prediction of continuous forest 
parameters with datasets other than multispec
tral ALS.

Conclusions

We studied the prediction of fuel-related forest para
meters using different ALS datasets and aerial ima
gery. The findings showed that multispectral ALS data 
outperformed the unispectral ALS data in the predic
tion of forest fuel parameters. This indicates the use
fulness of multispectral ALS data for the prediction of 
forest structure parameters.

Of the considered fuel-related variables, the most 
important forest fuel parameters, i.e. CBD (canopy 
weight), CBH and canopy surface height attributes, 
were successfully predicted, with the exception of the 
understory biomass. The classification of forest ferti
lity classes was also successful.

To conclude, the prediction of the most critical fuel 
parameters was generally successful and the obtained 
accuracies are adequate for operational use. Our find
ings can also be directly utilized in the applications of 
forest fuel models, particularly in Finland, but also in 
other Nordic countries.
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