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Abstract: Optimizing nitrogen (N) management in rice is crucial for China’s food security and
sustainable agricultural development. Nondestructive crop growth monitoring based on remote
sensing technologies can accurately assess crop N status, which may be used to guide the
in-season site-specific N recommendations. The fixed-wing unmanned aerial vehicle (UAV)-based
remote sensing is a low-cost, easy-to-operate technology for collecting spectral reflectance imagery,
an important data source for precision N management. The relationships between many vegetation
indices (VIs) derived from spectral reflectance data and crop parameters are known to be nonlinear.
As a result, nonlinear machine learning methods have the potential to improve the estimation
accuracy. The objective of this study was to evaluate five different approaches for estimating rice
(Oryza sativa L.) aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) at
stem elongation (SE) and heading (HD) stages in Northeast China: (1) single VI (SVI); (2) stepwise
multiple linear regression (SMLR); (3) random forest (RF); (4) support vector machine (SVM); and (5)
artificial neural networks (ANN) regression. The results indicated that machine learning methods
improved the NNI estimation compared to VI-SLR and SMLR methods. The RF algorithm performed
the best for estimating NNI (R2 = 0.94 (SE) and 0.96 (HD) for calibration and 0.61 (SE) and 0.79
(HD) for validation). The root mean square errors (RMSEs) were 0.09, and the relative errors were
<10% in all the models. It is concluded that the RF machine learning regression can significantly
improve the estimation of rice N status using UAV remote sensing. The application machine learning
methods offers a new opportunity to better use remote sensing data for monitoring crop growth
conditions and guiding precision crop management. More studies are needed to further improve
these machine learning-based models by combining both remote sensing data and other related soil,
weather, and management information for applications in precision N and crop management.
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1. Introduction

Rice (Oryza sativa L.) is one of the most important crops in the world, consumed by more than
60% of China’s population as a staple food. Rice production in China is a major consumer of nitrogen
(N) fertilizers, but the N use efficiency (NUE) is less than 30% [1]. Uniform fertilizer application
across the fields according to experience or regional guidelines is the common practice and can lead to
over-application of N at low yielding areas. The over-application of N fertilizers can result in enhanced
reactive N losses to the environment, affecting human health, ecosystem services, biodiversity, climate
change, and sustainability [1,2]. Precision N management (PNM) has the potential to effectively
improve NUE, reduce soil and groundwater pollution, and increase farmers’ income [2]. Efficient
tools for rapid and in-season diagnosis of rice N status over large areas are essential for the practical
implementation of the PNM strategies.

When N fertilizers are applied in the fields, they need to be converted to plant available forms
(nitrate (NO3

−) or ammonium (NH4
+)) before they can be used by plants. The time they take for these

conversions depends on the fertilizer type, soil temperature, soil moisture, soil pH, and soil aeration,
etc. [3]. In rice production, N fertilizers are recommended to be applied in several splits to improve
NUE, including application before planting or transplanting (called basal N fertilizer), at tillering stage
(called tiller N fertilizer), at panicle initiation or stem elongation stage (called panicle N fertilizer),
and at heading stage (called grain N fertilizer). It is important to diagnose rice N status during the
growing season at different key N application stages, so topdressing N rates can be adjusted to better
meet crop N needs. N nutrition index (NNI) is a reliable N status indicator and is defined as the ratio of
plant N concentration (PNC) over critical N concentration (Nc), which is the minimum PNC that will
achieve maximum aboveground biomass (AGB) production [4–6]. NNI > 1 indicates surplus N supply,
while NNI < 1 indicates N deficiency, and NNI around 1 represents optimal N nutritional status [6].
However, NNI determination requires destructive sampling and chemical analysis, which limits its
application in PNM. Therefore, the interests in technologies allowing nondestructive estimation of
NNI over large areas are increasing.

Proximal and remote sensing technologies are commonly used for estimating crop N status
nondestructively and at low cost [7–11]. A number of studies have used proximal canopy sensors
to estimate NNI of various crops [12–17]. However, the usage of proximal sensors is not efficient
for large production fields and mounting the sensors on the ground vehicles is not suitable for rice
production. Satellite remote sensing has also been used for monitoring crop growth and N status
in large areas. The FORMOSAT-2 satellite images were used to estimate rice NNI and diagnose N
status and the results indicated that a practical approach was to use the satellite images to estimate
rice AGB and plant N uptake (PNU), which were then used to calculate Nc and NNI (R2 = 0.52) [2].
The potential of using FORMOSAT-2, RapidEye, and WorldView-2 satellite data to estimate rice NNI
were also evaluated and the results indicated that WorldView-2 satellite data performed the best [18].
However, in rice production areas, complete overcast weather conditions are very common, and it
is very challenging to obtain satellite image data at the growth stages needed for guiding in-season
topdressing N recommendations.

In recent years, unmanned aerial vehicle (UAV)-based remote sensing has developed rapidly,
due to its low cost, ease of operation, and wide field of view [19,20]. The advances in data processing
software have followed, allowing for automated development of image products [21]. A number of
studies have used UAV remote sensing for crop N status diagnosis in various crops [22–27]. Most of
these studies focused on identifying the optimum vegetation index (VI) and used linear regression
method to estimate NNI or other N status indicators. The research should advance towards including
more significant VIs and using nonlinear methods to improve the N status diagnosis with UAV
remote sensing.

Over the past decade, machine learning (ML) methods have been widely adopted in complex
and data-intensive areas such as medicine, astronomy, biology, and precision agriculture, due to their
capability to discover information hidden in the data [28]. One of the main advantages of ML is that
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they are capable of solving significant nonlinear problems using datasets from multiple sources [29].
Agricultural remote sensing inversion is a typical nonlinear problem, and ML has been applied to solve
it with satisfactory results [30,31]. For example, Han et al. used UAV remote sensing data and ML to
estimate maize (Zea mays L.) biomass (R2 = 0.70) [32]. Ali et al. developed a model for the estimation
of grassland biomass by using adaptive neuro-fuzzy inference system and multi-temporal remote
sensing (R2 = 0.85) [33]. Pantazi et al. developed an artificial neural network (ANN)-based wheat yield
prediction model using normalized difference VI (NDVI) derived from satellite imagery and eight
soil parameters [34]. Liu et al. estimated wheat leaf N content using a multilayer perceptron neural
network model and hyperspectral image data [35]. Zheng et al. compared different ML methods
for estimating winter wheat leaf N content using UAV multispectral images and found that the fast
processing random forest (RF) algorithm performed the best among the tested methods (R2 = 0.79,
RMSE = 0.33) [36].

The literature of using ML on the UAV-borne reflectance data for rice crop N status is limited.
Therefore, the objective of this study was to evaluate five different approaches for estimating rice
aboveground biomass (AGB), plant N uptake (PNU), and N nutrition index (NNI) at stem elongation
(SE) and heading (HD) stages in Northeast China: (1) single VI (SVI); (2) stepwise multiple linear
regression (SMLR); (3) random forest (RF); (4) support vector machine (SVM); and (5) artificial neural
networks (ANN) regression. Our hypothesis is that the machine learning methods can analyze both
linear and nonlinear relationships between a dependent variable and multiple independent variables
and can improve the prediction of rice N status indicators using multiple VIs than methods using
single VI or multiple linear regression method using multiple VIs. This paper is organized in the
following sections: Section 1 provides an introduction of the background and objective of this research.
Section 2 describes the field experiments, data collection and analysis methods. Section 3 presents the
results, and Section 4 discusses the results. Section 5 concludes this research.

2. Materials and Methods

2.1. Study Site

The study site is located at the Jiangsanjiang Experiment Station of the China Agricultural
University (47.2◦N, 132.6◦E) in the Sanjiang Plain of Heilongjiang Province, Northeast China (Figure 1).
Sanjiang Plain belongs to a typical cool-temperate sub-humid continental monsoon climate zone.
Japonica rice is the main planting crop in this cold region. The average sunshine hours are about
2300–2600 per year, the frost-free period is only about 110–135 days per year. The mean annual
temperature is about 2 ◦C, and the average daily temperature is 19.9 ◦C during the growing
season. The average rainfall is 500–600 mm per year, about 72% of which occurs between June
and September [4]. The primary soil type in the Sanjiang Plain is Albic soil, classified as Mollic
Planosols in the FAO-UNESCO system and Typical Argialbolls in Soil Taxonomy [37].

2.2. Experimental Setup

Ten plot experiments were conducted in 2017 and 2018 involving two Japonica rice cultivars
Longjing 31 (with 11 leaves) and Longjing 21 (with 12 leaves), five N rates (0, 40, 80, 120, and 160 kg
N ha−1), two different planting densities (27 and 33 hills m−2). All of the experiments adopted the
randomized complete block design with three replicates (Figure 1). The size of each plot was 7 × 9 m
and did not change during the study period. The N fertilizer was applied with three splits in the N
rate experiments: 40% as basal application before transplanting, 30% at the tillering stage, and 30% at
the stem elongation (SE) stage. Phosphorus and potassium fertilizers were applied uniformly across
the plot experiments at the rates of 50 kg P2O5 ha−1 and 105 kg K2O ha−1, respectively. Phosphorus
was applied in a single rate before transplanting and potassium was applied in two equal splits before
transplanting and at the SE growth stage.
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In addition to the plot experiments, three on-farm experiments were conducted in cooperation
with three selected farmers of Qixing Farm in 2017 and 2018 in order to compare different precision
rice management systems (Figure 1). The soil organic matter (OM) content was 30.2, 37.5, and 43.2 g
kg−1 for Fields 1, 2, and 3, respectively. Treatments in each experiment included (1) Farmer’s Practice
(FP); (2) Regional Optimal Management (ROM); (3) Precision Rice Management 1 (PRM1) with remote
sensing-based N recommendation at stem elongation stage; (4) PRM2; and (5) PRM3. PRM2 and 3 used
two different rates of controlled-release fertilizer as basal fertilizer. The plot size for each treatment
varied from 20 × 8 m to 30 × 10 m, depending on the farmer’s field situation. The rice cultivar was
Longjing 31 (an 11 leaf cultivar), and each treatment was performed in triplicate. The details of planting
density and N application rates are given in Table 1.

These plot and on-farm experiments were conducted for other objectives, but this study took
advantage of the variable N status in these experiments to evaluate different UAV remote sensing-based
N status estimation methods.
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Figure 1. The location of the study sites (left) and a Red Green Blue (RGB) image of the N rate
experimental plots (right).

Table 1. Fertilizer application rate and timing for different treatments in the on-farm experiments
conducted in 2017 and 2018 at Qixing Farm.

Treatment * Planting Density
(plants m−2)

Total N Rate
(kg ha−1)

Base N
(kg ha−1)

Tiller N
(kg ha−1)

Panicle N
(kg ha−1)

FP 24 120 79 21 20
ROM 27 120 79 21 20
PRM1 27 ? 71 21 ?
PRM2 27 ? 80 - ?
PRM3 27 ? 80 - ?

Note: * FP: Farmer’s Practice; ROM: Regional Optimum Management; PRM1–3: Precision Rice Management
Strategy 1, 2, and 3. To be determined by sensor-based in-season N recommendation algorithm.

2.3. Field Data Collection and NNI Parametrization

After spectral data collection at the SE and heading (HD) growth stages, three hills of rice plants
were randomly selected according to the average tillering numbers in each plot and removed with
roots. They were washed with clear water, and the roots were removed with scissors. The cleaned
samples were separated into leaves, stems, and panicles (at heading), put into the oven under 105 ◦C for
30 min to deactivate the enzymes, and then dried to a constant weight at about 80 ◦C to determine dry
AGB. N concentrations for leaves, stems, and panicles were determined using the standard Kjeldahl
method [38]. PNC was determined based on the weighted average of the N content of all rice organs.
The PNU was determined by multiplying PNC with AGB.
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The critical N dilution curve of rice in Northeast China developed by Huang et al. [8] shown in
Equation (1) was used in this research for AGB larger than 1 t ha−1:

Nc = 27.7W − 0.34, (1)

where Nc is the critical N concentration (%) in the AGB, and W is the shoot dry weight expressed in
t ha−1. For AGB less than 1 t ha−1, the Nc was set to a concentration of 2.77%.

The NNI was calculated using Equation (2)

NNI = Na/Nc, (2)

where Na is the measured N concentration.
The NNI was also alternatively calculated using PNU, as given in Equation (3)

NNI = PNU/(Nc × AGB), (3)

where PNU is plant N uptake (kg ha−1), and AGB is the aboveground biomass in t ha−1.

2.4. UAV Image Acquisition and Preprocessing

This study utilized the eBee SQ fixed-wing UAV system (SenseFly, Cheseaux-sur-Lausanne,
Switzerland) with Parrot Sequoia camera onboard. This camera includes a four-band multispectral
camera (1.2 MP, 1280 × 960 pixels) with a green band (550 + 20 nm), red band (660 + 20 nm), Red edge
band (735 + 5 nm), the near-infrared band (790 + 20 nm) and Red Green Blue (RGB) camera (16 MP,
4608 × 3456 pixels). The unit is equipped with the upwards-oriented irradiance sensor for automated
control of the integration time on the detectors. The camera system was referenced for the current
downwelling radiation before each flight mission using a white Spectralon® panel (Labsphere, Inc.,
North Sutton, NH, USA). The UAV missions were conducted between 10:00 and 14:00, under windless
and clear-sky conditions.

The UAV mission control and image acquisition were performed by the flight control software
eMotion Ag 3.5.0 (SenseFly, Cheseaux-sur-Lausanne, Switzerland). The flight altitude was 106 m,
the ground sampling distance was about 0.1 m per pixel and the images were taken with the forward
overlap and the side overlap of 85% and 75%, respectively [39]. After the data acquisition, the geotagged
images were mosaicked using Pix4Dmapper Ag software (Pix4D SA, Prilly, Switzerland) to obtain the
spectral reflectance image of the entire scene, covering the whole experimental area. The mosaic was
later orthorectified in ENVI 5.1 software (ENVI, Harris Geospatial Solutions, Inc., Boulder, Colorado,
USA), using the ground control points referenced by a survey-grade GNSS receiver (CHCNAV, LT500,
Shanghai, China) [39]. A total of four UAV reflectance orthoimages were obtained at the SE and
HD growth stages in 2017 and 2018. The plot boundaries were digitized and used as regions of
interest to select and average image pixels at a given sampling point in order to relate them to the
groundtruth data.

2.5. Data Analysis

In this study, the reflectance data from the four spectral bands were used to calculate 72 VIs
(Table A1) and both raw reflectance data of the three wavebands and VIs were used in the analyses.
The calculated VIs were ranked by R2 for their relationships with AGB, PNU, and NNI and the top
performing indices were further investigated.

The data collected in 2017 and 2018 were pulled together and then randomly divided into training
dataset (70%) and test dataset (30%). A total of 381 observations were obtained in 2017 and 2018,
266 of which were used as training dataset and 115 as test dataset (Table 2). Among the analyzed
crop properties, the AGB was the most variable parameter, with coefficient of variation (CV) being
37.54% for training and 42.37% for the test dataset, followed by PNU (CV% of 34.31% and 39.59%).
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PNC and NNI had similar variability, with CV of 6.03% and 16.42% in the training dataset and 15.47%
and 17.86% in the test dataset, respectively. NNI ranged from 0.57 to 1.28 in the training dataset,
and 0.58 to 1.21 in the test dataset. The data range of all training datasets encompassed the test dataset
range, which ensured that the test data would not exceed the scope of the trained models. The training
dataset was used to establish the simple regression models using linear, quadratic, power, exponential,
and logarithmic functions or SMLR models between the VIs and AGB, PNU, and NNI. Established
models were evaluated using the test dataset. The coefficient of determination (R2), root mean square
error (RMSE), and relative error (RE) were used to assess the models. The higher the R2 and the
lower the RMSE and RE, the higher was the precision and accuracy of the model for predicting the N
status indicators. The scikit-learn [40,41], a Python machine learning library, was used in this study to
establish models for estimation of AGB, PNU, and NNI using three conventional ML methods: RF,
SVM, and ANN regressions. Tenfold cross-verification and grid search were used to find the optimal
parameters during model development. The test dataset and R2, RMSE, RE were used to evaluate the
accuracy of the models.

Table 2. Descriptive statistics of rice aboveground biomass (AGB), plant nitrogen concentration (PNC),
plant nitrogen uptake (PNU), and nitrogen nutrition index (NNI) across nitrogen treatments, varieties,
and years.

Minimum Maximum Mean SD CV (%)

Training dataset (n = 266)

AGB (t ha−1) 0.98 10.86 5.28 1.98 37.54
PNC (g kg−1) 8.75 20.99 15.65 2.51 16.03

PNU (kg ha−1) 15.73 154.10 80.60 27.74 34.41
NNI 0.57 1.28 0.97 0.16 16.42

Test dataset (n = 115)

AGB (t ha−1) 1.51 10.45 5.25 2.22 42.37
PNC (g kg−1) 9.36 20.04 15.53 2.40 15.47

PNU (kg ha−1) 23.83 154.09 79.62 31.53 39.59
NNI 0.58 1.21 0.95 0.17 17.86

Note: SD: standard deviation of the mean; CV: coefficient of variation (%).

3. Results

3.1. Single Spectral Band Analysis

The coefficient of determination for the relationships between the reflectance of each of the four
wavebands and rice N status indicators at different growth stages are shown in Figure 2 for both
training and testing datasets. The NIR band consistently had the highest R2 for AGB and PNU,
while for PNC and NNI, the sensitivity of different wavebands changed with growth stages. In general,
the relationships between reflectance of different wavebands and PNC were weaker than other N
status indicators.
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stage; All, across stages) for both training and test datasets.

3.2. Vegetation Index Analysis

The three top performing VIs for estimating rice N status indicators based on the training dataset
are given in Table 3. At best, a single VI could explain 65%, 65%, and 74% of AGB variation at the
SE, HD, and across growth stages, respectively. The corresponding R2 was 0.61, 0.69, and 0.73 for
PNU at SE, HD, and across stages, respectively. For NNI, 43%, 63%, and 39% of the variabilities were
explained by the best VI at SE, HD, and across growth stages, respectively. All these relationships were
significant at p < 0.01.

The VIs with the highest R2 were selected to establish the regression models for prediction of
AGB, PNU, and NNI, which were validated using the test dataset and the results are shown in Figure 3.
The models performed worse for AGB and PNU at SE and HD stages compared with calibration
models, but slightly better across growth stages. For NNI, the models performed better with the test
dataset. The indirect estimation of NNI performed slightly better than the direct approach at SE and
HD stages, but somewhat worse across growth stages (Figure 4).
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Table 3. The top three performing vegetation indices for estimating rice AGB, PNU, and NNI. All the relationships were significant at p < 0.01.

AGB (t ha−1) PNU (kg ha−1) NNI

Index Model R2 RMSE RE (%) Index Model R2 RMSE RE (%) Index Model R2 RMSE RE (%)

Stem elongation stage
GOSAVI E 0.65 0.58 16 GOSAVI E 0.61 11.40 18 NNIR Q 0.43 0.10 11
GRDVI P 0.64 0.58 16 GRDVI P 0.60 11.63 18 GOSAVI E 0.42 0.10 11
GSAVI E 0.63 0.59 16 NNIR E 0.60 12.38 20 GRDVI P 0.42 0.10 11

Heading stage
NLI P 0.65 1.01 15 GOSAVI P 0.69 15.84 16 GNDVI P 0.63 0.11 12

WDRVI P 0.61 1.08 16 NDVI P 0.61 17.54 18 CIg Q 0.63 0.11 11
GSAVI P 0.59 1.03 15 WDRVI P 0.60 17.57 18 GRVI Q 0.63 0.11 11

Across growth stages
MGSAVI E 0.74 1.10 21 GOSAVI Q 0.73 14.95 19 CIg Q 0.39 0.13 13
GRDVI E 0.73 1.12 21 MGSAVI E 0.69 16.30 20 GRVI Q 0.38 0.13 13
GSAVI E 0.73 1.13 21 GRDVI E 0.69 16.48 21 GWDRVI Q 0.38 0.13 13

Note: E, P, and Q: the exponential, power, and quadratic fit. The vegetation index abbreviations are explained in Table A1.
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vegetation index approach within the test dataset at stem elongation (SE), heading (HD), and across
growth stages (ALL). The red line is the 1:1 line.
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3.3. Stepwise Multiple Linear Regression (SMLR) Analysis

The SMLR analysis results indicated that the models could explain 69%, 62%, and 68% of AGB
variation at SE, HD, and across stages using 2–4 VIs, respectively (Table 4). Similar results were
obtained for PNU. These models explained 54%, 75%, and 40% of the NNI variability at the SE, HD,
and across stages, respectively. These models performed better than models based on single VI in
terms of R2, RMSE, and RE.

The test results given in Table 5 indicate that the SMLR performed better at estimating AGB and NNI
than models using single VI, while for PNU estimation, the two modeling methods performed similarly.
Moreover, the results of indirect prediction of NNI were similar to the results of direct prediction.

Table 4. Stepwise multiple linear regression (SMLR) models based on unmanned aerial vehicle (UAV)
data for estimation of rice AGB, PNU, and NNI at SE, HD, and ALL with data from training the dataset.

Stage Regression Equation R2 RMSE RE (%)

AGB (kg ha−1)
SE −4.053 + 4.384*GNDVI + 0.211*RESR + 16.482*MTCAR/OSAVI 0.69 0.51 14
HD −5.475 + 8.159*MCARI3 + 1.106*MSR 0.62 0.97 14
All 7.906 + 81.541*MGSAVI − 90.222*GSAVI − 3.516*MCARI2*OSAVI 0.68 1.11 21

PNU (kg ha−1)
SE −198.601 + 353.387*GOSAVI + 132.397*MNDRE2 − 91.552*MCARI1 0.63 10.32 16
HD −267.115 + 579.684*GOSAVI − 206.772*RE 0.69 15.18 16

All 6.614 + 613.62*MGSAVI − 1711.01*SAVI + 248.331*REDVI +
1237.866*RDVI 0.73 14.38 18

NNI

SE −7.976 + 32.438*NNIR − 15.718*NNIRI + 16.493*RE −
7.852*MGSAVI + 0.038*SAVI*SR 0.54 0.09 9

HD −36.417 + 39.501*GNDVI + 103.241*NGI − 2.601*MNDI 0.75 0.09 9
All 0.983 + 0.776*MNDRE2 − 7.632*NGI + 7.384*R 0.40 0.13 13

Note: R, RE, are the red and red edge bands, respectively. The vegetation index abbreviations are explained in
Table A1.
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Table 5. Validation results of the SMLR models for estimating rice AGB, PNU, and NNI at SE, HD,
and ALL.

Parameter
SE HD ALL

R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%)

AGB (t ha−1) 0.61 0.51 14 0.52 1.09 16 0.77 1.05 20
PNU (kg ha−1) 0.60 11.60 19 0.65 16.96 18 0.80 13.76 17

NNI 0.52 0.10 10 0.74 0.09 10 0.53 0.11 12
NNI_Indirect 0.51 0.10 11 0.74 0.10 10 0.49 0.11 12

3.4. Performance of Machine Learning Models

For estimating AGB and PNU, the RF and ANN models consistently performed better than
the SVM models, while for NNI, the RF model consistently performed the best at different growth
stages, based on the calibration dataset (Table 6). The validation results indicated that the RF models
performed consistently the best among the tested methods, including the indirect estimation of NNI
(Table 7). Some models, especially those based on the ANN method, did not validate well with the test
dataset, indicating the problem of overfitting.

Table 6. The calibration result of random forest (RF), support vector machine (SVM), and artificial
neural networks (ANN) modeling algorithms at SE, HD, and ALL for rice AGB, PNU, and NNI.

Parameter
SE HD Subset ALL

R2 RMSE RE (%) R2 RMSE RE (%) R2 RMSE RE (%)

AGB
(t ha−1)

RF 0.87 0.33 9 0.85 0.6 9 0.92 0.54 10
SVM 0.74 0.47 13 0.62 0.79 11 0.88 0.69 17
ANN 0.88 0.32 9 0.77 0.74 11 0.97 0.31 19

PNU
(kg ha−1)

RF 0.93 4.59 7 0.93 7.05 7 0.90 8.59 16
SVM 0.65 10.05 16 0.70 15.07 15 0.73 14.38 18
ANN 0.71 9.1 14 0.73 13.53 14 0.95 6.47 8

NNI
RF 0.94 0.03 3 0.96 0.03 3 0.93 0.04 4

SVM 0.65 0.08 8 0.79 0.08 8.52% 0.75 0.08 8.08%
ANN 0.73 0.07 7 0.81 0.08 8.66% 0.55 0.11 10.61%

Table 7. The validation result of RF, SVM, and ANN model algorithms at SE, HD, and ALL for rice
AGB, PNU, and NNI.

Parameter
SE HD ALL

R2 RMSE RE (%) R2 RMSE RE [%] R2 RMSE RE (%)

AGB
(t ha−1)

RF 0.64 0.58 16 0.61 1.00 15 0.83 0.58 16
SVM 0.38 0.76 22 0.59 1.01 15 0.81 0.95 18
ANN 0.60 0.62 17 0.39 1.24 18 0.65 1.31 25

PNU
(kg ha−1)

RF 0.62 11.52 19 0.69 16.45 17 0.83 12.81 16
SVM 0.55 11.92 19 0.49 20.98 22 0.79 14.16 18
ANN 0.57 12.13 9 0.63 17.89 18 0.74 15.88 20

NNI
RF 0.58 0.09 10 0.79 0.09 9 0.72 0.09 9.34

SVM 0.46 0.10 11 0.70 0.11 11 0.62 0.11 11
ANN 0.56 0.10 10 0.79 0.09 9 0.61 0.11 11

NNI_Indirect
RF 0.54 0.10 10 0.64 0.10 10 0.64 0.10 11

SVM 0.37 0.11 12 0.49 0.15 16 0.50 0.12 13
ANN 0.34 0.17 18 0.58 0.14 15 0.46 0.15 16



Remote Sens. 2020, 12, 215 12 of 22

3.5. Random Forest Models Based on Selected Vegetation Indices

For practical applications, the RF models were optimized by removing VIs not important for
the performance of the model. This resulted in simpler models, yet with comparable performance
to the models based on all the tested VIs (Table 8). Models established at the SE stage, although
outperforming the models based on single VI or SMLR models, performed worse in comparison with
the models at the HD stage and across stages. The indirect NNI estimation approach gave worse
results than the direct approach, which was similar to the results obtained with SMLR analysis.

Depending on the analyzed subset, from 17 to 23 VIs were selected by the RF models at different
growth stages and the top five VIs are listed in Table 9. The relative importance of different VIs changed
with growth stages or dependent variables. Green Optimized Soil Adjusted Vegetation Index (GOSAVI)
was consistently selected among the top five indices at SE, HD, or across growth stages for both AGB
and NNI prediction, and at SE and HD stages for PNU prediction. Normalized near-infrared (NNIR)
and red edge difference vegetation index (REDVI) were among the top five indices for AGB and PNU
at the SE stage, and for NNI at both SE and HD stages.

Table 8. The calibration and validation results of RF models based on selected vegetation indices at SE,
HD, and ALL for rice AGB, PNU, and NNI.

Parameter
SE HD ALL

R2 RMSE RE R2 RMSE RE R2 RMSE RE

AGB
(t ha−1)

Calibration 0.91 0.28 7.66 0.95 0.35 5.06 0.97 0.36 6.90
Validation 0.66 0.58 16.45 0.69 0.88 13.15 0.83 0.92 17.54

PNU
(kg ha−1)

Calibration 0.94 4.11 6.52 0.96 5.32 5.46 0.94 7.35 9.12
Validation 0.66 11.13 18.10 0.69 16.39 16.94 0.85 12.37 15.55

NNI_direct
Calibration 0.94 0.03 3.33 0.96 0.04 3.65 0.93 0.04 4.45
Validation 0.61 0.09 9.98 0.79 0.09 9.06 0.74 0.09 8.72

NNI_indirect Validation 0.53 0.10 10.77 0.72 0.10 10.60 0.67 0.10 10.13

Table 9. The relative importance of top five vegetation indices selected by RF models at SE, HD, and
ALL for rice AGB, PNU, and NNI.

AGB (t ha−1) PNU (kg ha−1) NNI

SE N = 21 N = 21 N = 22
NNIR 0.09 NNIR 0.22 REDVI 0.21
REDVI 0.09 REDVI 0.20 NNIR 0.13
MSR_G 0.0 GOSAVI 0.12 MERIS 0.06
GOSAVI 0.07 NLI 0.05 MTCARI/OSAVI 0.05

CIg 0.06 REOSAVI 0.04 GOSAVI 0.05
HD N = 17 N = 20 N = 23

OSAVI 0.30 GOSAVI 0.49 GNDVI 0.53
MCARI3 0.23 GWDRVI 0.18 NNIR 0.09

VIopt 0.10 NRI2 0.04 GOSAVI 0.09
GOSAVI 0.07 NRI 0.04 NGI 0.04

MCARI1/MRETVI 0.05 Green 0.03 REDVI 0.02
ALL N = 19 N = 23 N = 23

GRDVI 0.37 GRDVI 0.49 CIg 0.24
GOSAVI 0.30 GRVI 0.14 GOSAVI 0.10

NLI 0.06 NNIR 0.05 Red 0.06
MNDRE 0.04 SAVI*SR 0.05 RETVI 0.05
OSAVI 0.04 GSAVI 0.04 MDD 0.04

Note: N—number of variables selected by the respective models. The vegetation index abbreviations are explained
in Table A1.
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3.6. Nitrogen Status Diagnosis at the Farm Scale

The N status diagnosis maps for the study area were created based on the predicted NNI using
the fixed wing UAV remote sensing images and the RF models at the SE (Figure 5) and HD (Figure 6)
stages in 2017. At the SE stage, the majority fields had optimal or surplus N status, with less N deficient
areas (Figure 3). At the HD stage, the majority fields had deficient or surplus N status, with less areas
having optimal N status (Figure 4). For the N plot experiments, most of the plots receiving less than
120 kg N ha−1 were classified as N deficient, while most plots receiving 160 kg N ha−1 were classified as
surplus N, whereas parts of these plots were also categorized as optimal N and parts of plots receiving
120 kg N ha−1 were also classified as N surplus.
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4. Discussion

4.1. Estimating Rice N Status Indicators Using Single Vegetation Index

Using UAV-based remote sensing for in-season crop N status diagnosis and guiding variable rate
N application is very attractive. The reflectance of single spectral bands can be used to estimate crop N
status, as indicated by the results of this study. However, this approach only uses the reflectance of only
one spectral band. A common approach to use reflectance information from more than one spectral
band is to develop VIs, which are mathematical combinations of reflectance from two or more spectral
bands. VIs are expected to perform better than single spectral wavebands. Many different factors
may influence the performance of VIs, including soil and water backgrounds, weeds, cover crops in
the interrow, the types of plants, and the growth stages of crops, etc. [42]. Growth stage can have
a strong influence on the sensitivity and performance of different wavelengths and VIs for estimating
crop parameters [43,44]. For rice, soil and water background can have a strong influence on canopy
reflectance at early growing season before rice canopy closure (e.g., tillering stage or SE stage). At later
growth stages with canopy closure (e.g., HD stage), some VIs like normalized difference vegetation
index (NDVI) can become saturated [44]. In addition, the emergence of panicles makes the canopy
reflectance more complicated, increasing the reflectance in visible spectral region but decreasing
reflectance in the NIR region [45]. As a result, many different VIs have been developed for different
applications [42]. It is necessary to evaluate the published VIs and identify the best performing VIs for
a particular application (e.g., estimation of rice N status indicators).

The results of this study indicated that GOSAVI, Nonlinear Index (NLI), and Modified Green
Soil Adjusted Vegetation Index (MGSAVI) performed best, explaining 65%, 65%, and 74% of rice
AGB variability at SE, HD, and across growth stages, respectively. The GOSAVI explained 61%, 69%,
and 73% of PNU variability at the SE, HD, and across growth stages, respectively. However, at best
63% of the NNI variability could be explained by Green Normalized Difference Vegetation Index
(GNDVI) at the HD stage, but only 43% and 39% of NNI variability could be explained at the SE and
across stages. The results of Cao et al. using active canopy sensor Crop Circle ACS-470 indicated that
54%–79%, 59%–83%, and 59%–77% of rice AGB, PNU, and NNI variabilities could be explained by the
best performing VIs, respectively [46]. This study gave similar results for AGB and PNU, however
the NNI estimations at SE and across growth stages were worse than the results obtained by Cao et
al. [46]. This may be due to the fact that the UAV image sampling included the entire areas of the
plots. The soil and water background may have more influence on the reflectance when compared
with handheld canopy sensor in the study of Cao et al. [46]. As a result, using UAV remote sensing and
VI-based approach could not achieve acceptable NNI estimation at the SE stage before canopy closure.
In a similar research with winter wheat across smallholder farmer fields, Chen et al. explained 72%,
64%, and 46% variation in winter wheat (Triticum aestivum L.) AGB, PNU, and NNI at the SE stage
using single VI-based approach with eBee SQ UAV remote sensing [39]. Their results were comparable
to our results, with AGB and PNU being better predicted than NNI.

4.2. The Performance of Different Machine Learning Modeling Methods

In addition to single VI, SMLR and three different ML algorithms were applied to predict rice N
status indicators in this study. The SMLR model performed significantly better than models based
on single VI. Our results are consistent with the results of previous studies with winter wheat [47].
SMLR models use more VIs with spectral information related to the variables of interest and are flexible
and easy to perform [48–51].

The SMLR models can only model linear combination of predictors [52], while the ML models can
also model nonlinear relationships. The RF regression algorithm is an ensemble-learning algorithm that
combines a broad set of regression trees. A regression tree represents a set of conditions or restrictions
that are hierarchically organized and successively applied from a root to a leaf of the tree [53–55].
The SVM algorithm is based on statistical learning theory and can be regarded as the same type of
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network, can also be used for both classification and regression problems [56]. ANN regression is
based on the gradient learning method. It is a nonparametric nonlinear model that uses neural network
spreading between layers and simulates human brain receivers and information processing [57,58].
All three ML models performed better than models based on single VI. The three ML models all
achieved better results than SMLR models in calibration, but in the validation analysis, only the RF
models performed consistently better than SMLR. The possible reason for such results is that ML
modeling often results in an over-fitting phenomenon, and the robustness and generalization ability of
RF are stronger than the other ML methods [31,36,58–60].

The results of NNI indirect estimation approach were generally worse than the direct estimation
approach. This is possibly due to the estimation of AGB and PNU in the indirect estimation approach
that led to the accumulation of errors.

In summary, the results of this study indicated that the RF algorithm could be used to predict NNI
directly at different growth stages. It performed better than other evaluated approaches. The NNIR
and REDVI indices were the most important predictors at the SE stage, GNDVI and NNIR were most
important at the HD stage, while green chlorophyll index (CIg) and GOSAVI were the most important
predictors across growth stages. The relative importance of different VIs varied with growth stages and
N status indicators. NNIR, REDVI, and other VIs containing red edge and near-infrared bands were
more important for NNI estimation. Some of the VIs were significantly correlated. When the model
needs to select input parameters, if the correlation between two VIs is very high, the RF model tends to
select only one VI and abandons the other. Many of the VIs with small weights were selected in the
models, because these algorithms need to use more dimensions to explain the variation of the data.

4.3. Challenges and Future Research Needs

In this study, multispectral data and VIs were obtained using fixed-wing UAV remote sensing,
and the rice NNI distribution maps at different growth stages were created based on RF model
prediction. The NNI map at the SE stage can be used to guide farmers to apply N fertilizers at the
variable rates. The use of fixed-wing UAV remote sensing can effectively overcome the limitations
of satellite remote sensing and proximal crop canopy sensing, and provide a reliable data source for
diagnosis of the rice N nutritional status and in-season variable rate recommendation.

At present, most UAVs for remote sensing are powered with batteries, and the operation time is
still quite short. For example, the eBee SQ system can only fly about 40 min, which limits the data
acquisition ability of a single UAV operator. If UAVs adopt larger battery capacities and more effective
battery charging in the future, effectively solving the problem of insufficient power, it will greatly
increase the operational efficiency and the area monitored by a single unit. In addition, the field
preparation for setting up ground control points, reflectance panels, and flight design is also very time
consuming. The advances in technology have made it possible to achieve similar precision without the
use of ground control points, to get rid of ground reflectance panels by using incident light sensors
and greatly simplify flight design [61]. UAV remote sensing is also significantly affected by weather
conditions, like winds, rain, or clouds [61,62]. Mounting active canopy sensors on UAV may provide
a practical solution to such weather limitations [63].

In this study, UAV image-based rice crop reflectance was the single data source used in the ML
models. This alone showed that nonlinear ML models improved NNI estimation compared to the simple
VI-based methods. In addition to the commonly used red, green, blue, red edge, and near-infrared
bands, other spectral regions should be studied for N status diagnosis, like shortwave infrared
(SWIR)-based indices [45,64] or using hyperspectral cameras [62]. Studies found that a combination
of multispectral and thermal images using relevance vector machines improved the estimation of
plant chlorophyll concentration [65] and has the potential to simultaneously identify N and water
stress. In the future, meteorological data, soil data, terrain attributes, and the information about crop
management can be used together with remote sensing data to improve the performance of the ML
models and NNI estimation [66].
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5. Conclusions

In this study, eBee SQ UAV images were used to evaluate the VI, SMLR, and three ML algorithms
(RF, SVM, and ANN) to estimate rice AGB, PNU, and NNI at the SE, HD, and across stages, and the
NNI maps were created to diagnose N nutritional status of rice fields at the study site in Northeast
China. The results indicated that ML methods could significantly improve the estimation of rice NNI
compared to single VI and SMLR models, especially using an optimized RF algorithm, with 94%
and 96% of the NNI variability being explained for the calibration dataset at the SE and HD stages,
respectively, and 61% and 79% of NNI variability being explained for the test dataset at the SE and
HD stages, respectively. The RMSE was 0.09, and RE was less than 10%. It is concluded that the RF
modeling method can significantly improve the prediction of rice NNI using UAV remote sensing.
The application machine learning methods offers a new opportunity to better use remote sensing data
for monitoring crop growth conditions and guiding precision crop management. More studies are
needed to further improve these machine learning-based models by combining both remote sensing
data and other related soil, weather, and management information for applications in precision N and
crop management.
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Appendix A

Table A1. The vegetation indices evaluated in this study. G, R, RE, and NIR indicate green red, red edge,
and near infrared band reflectance.

Index Formula Reference

Green Ratio Vegetation Index (GRVI) NIR/G [67]
Green Difference Vegetation Index (GDVI) NIR − G [68]

Green Normalized Difference Vegetation Index (GNDVI) (NIR − G)/(NIR + G) [69]
Green Wide Dynamic Range Vegetation Index (GWDRVI) (a*NIR − G)/(a*NIR + G) (a = 0.12) [46]

Green Chlorophyll Index (CIg) NIR/G − 1 [70]
Modified Green Simple Ratio (MSR_G) (NIR/G − 1)/SQRT(NIR/G + 1) [46]

Green Soil Adjusted Vegetation Index (GSAVI) 1.5*[(NIR − G)/(NIR + G + 0.5)] [71]

Modified Soil Adjusted Vegetation Index (MSAVI) 0.5*[2*NIR + 1 − SQRT((2*NIR + 1)2 −
8*(NIR − G))] [72]

Green Optimal Soil Adjusted Vegetation Index (GOSAVI) (1 + 0.16)(NIR − G)/(NIR + G + 0.16) [73]
Green Re-normalized Different Vegetation Index (GRDVI) (NIR − G)/SQRT(NIR + G) [46]

Normalized Green Index (NGI) G/(NIR + RE + G) [71]
Normalized Red Edge Index (NREI) RE/(NIR + RE + G) [46]

Normalized Red Index (NRI) R/(NIR + RE + R) [14]
Normalized NIR Index (NNIR) NIR/(NIR + RE + G) [71]

Modified Double Difference Index (MDD) (NIR − RE) − (RE − G) [14]
Modified Normalized Difference Index (MNDI) (NIR − RE)/(NIR − G) [46]

Modified Enhanced Vegetation Index (MEVI) 2.5*(NIR − RE)/(NIR + 6*RE − 7.5*G + 1) [46]
Modified Normalized Difference Red Edge (MNDRE) [NIR − (RE − 2*G)]/[NIR + (RE − 2*G)] [46]

Modified Chlorophyll Absorption In Reflectance Index1 (MCARI1) [(NIR − RE) − 0.2*(NIR − R)](NIR/RE) [46]
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Table A1. Cont.

Index Formula Reference

Modified Chlorophyll Absorption In Reflectance Index 2 (MCARI2)
1.5[2.5(NIR−R)−1.3(NIR−RE)]√
(2NIR+1)2

−(6NIR−5
√

R)−0.5
[14]

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) [74]
Ratio Vegetation Index( RVI) NIR/R [75]

Difference Vegetation Index (DVI) NIR − R [68]
Renormalized Difference Vegetation Index (RDVI) (NIR − R)/SQRT(NIR + R) [76]
Wide Dynamic Range Vegetation Index (WDRVI) (a*NIR − R)/(a*NIR + R) (a = 0.12) [77]

Soil-Adjusted Vegetation Index (SAVI) 1.5*(NIR − R)/(NIR + R + 0.5) [78]
Optimized SAVI (OSAVI) (1 + 0.16)*(NIR − R)/(NIR + R + 0.16) [73]

Modified Soil-adjusted Vegetation Index (MSAVI) 0.5*[2*NIR + 1 − SQRT((2*NIR + 1)2 −
8*(NIR − R))] [72]

Transformed Normalized Vegetation Index (TNDVI) SQRT((NIR − R)/(NIR + R) + 0.5) [79]
Modified Simple Ratio (MSR) (NIR/R − 1)/SQRT(NIR/R + 1) [80]

Optimal Vegetation Index (VIopt) 1.45*((NIR2 + 1)/(R + 0.45)) [81]
MERIS Terrestrial Chlorophyll Index (MTCI) (NIR − RE)/(RE − R) [82]

Nonlinear Index (NLI) (NIR2
− R)/(NIR2 + R) [83]

Modified Nonlinear Index (MNLI) 1.5*(NIR2
− R)/(NIR2 + R + 0.5) [84]

NDVI*RVI (NIR2
− R)/(NIR + R2) [84]

SAVI*SR (NIR2
− R)/[(NIR + R + 0.5)*R] [84]

Normalized Difference Red Edge (NDRE) (NIR − RE)/(NIR + RE) [85]
Red Edge Ratio Vegetation Index (RERVI) NIR/RE [86]

Red Edge Difference Vegetation Index (REDVI) NIR − RE [46]
Red Edge Re-normalized Different Vegetation Index (RERDVI) (NIR − RE)/SQRT(NIR + RE) [46]
Red Edge Wide Dynamic Range Vegetation Index (REWDRVI) (a*NIR − RE)/(a*NIR + RE) (a = 0.12) [46]

Red Edge Soil Adjusted Vegetation Index (RESAVI) 1.5*[(NIR − RE)/(NIR + RE + 0.5)] [46]
Red Edge Optimal Soil Adjusted Vegetation Index (REOSAVI) (1 + 0.16)(NIR − RE)/(NIR + RE + 0.16) [46]

Modified Red Edge Soil Adjusted Vegetation Index (MRESAVI) 0.5*[2*NIR + 1 − SQRT((2*NIR + 1)2 −
8*(NIR − RE))] [46]

Optimized Red Edge Vegetation Index (REVIopt) 100*(lnNIR − lnRE) [87]
Red Edge Chlorophyll Index (CIre) NIR/RE − 1 [88]

Modified Red Edge Simple Ratio (MSR_RE) (NIR/RE − 1)/SQRT(NIR/RE + 1) [14]
Red Edge Normalized Difference Vegetation Index (RENDVI) (RE − R)/(RE + R) [89]

Red Edge Simple Ratio (RESR) RE/R [90]
Modified Red Edge Difference Vegetation Index (MREDVI) RE − R [46]

MERIS Terrestrial Chlorophyll Index (MTCI) (NIR − RE)/(RE − R) [82]
DATT Index (DATT) (NIR − RE)/(NIR − R) [91]

Normalized Near Infrared Index (NNIRI) NIR/(NIR + RE + R) [14]
Normalized Red Edge Index (NREI) RE/(NIR + RE + R) [14]

Normalized Red Index (NRI) R/(NIR + RE + R) [14]
Modified Double Difference Index (MDD) (NIR − RE) − (RE − R) [14]
Modified Red Edge Simple Ratio (MRESR) (NIR − R)/(RE − R) [14]

Modified Normalized Difference Index (MNDI) (NIR − RE)/(NIR + RE − 2R) [14]
Modified Enhanced Vegetation Index (MEVI) 2.5*(NIR − R)/(NIR + 6*R − 7.5*RE + 1) [14]

Modified Normalized Difference Red Edge (MNDRE2) (NIR − RE + 2*R)/(NIR + RE − 2*R) [14]
Red Edge Transformed Vegetation Index (RETVI) 0.5*[120*(NIR − R) − 200*(RE − R)] [14]

Modified Chlorophyll Absorption In Reflectance Index 3 (MCARI3) [(NIR − RE) − 0.2*(NIR − R)](NIR/RE) [14]

Modified Chlorophyll Absorption In Reflectance Index 4 (MCARI4)
1.5[2.5(NIR−G)−1.3(NIR−RE)]√
(2NIR+1)2

−(6NIR−5
√

G)−0.5
[14]

Modified Transformed Chlorophyll Absorption In Reflectance Index
(MTCARI) 3*[(NIR − RE) − 0.2*(NIR − R)(NIR/RE)] [14]

Modified Red Edge Transformed Vegetation Index (MRETVI) 1.2*[1.2*(NIR − R) − 2.5*(RE − R)] [14]
Modified Canopy Chlorophyll Content Index (MCCCI) NDRE/NDVI [92]

MCARI1/OSAVI MCARI1/OSAVI [14]
MCARI2/OSAVI MCARI2/OSAVI [14]
MTCARI/OSAVI MTCARI/OSAVI [14]

MCARI1/MRETVI MCARI1/MRETVI [14]
MTCARI/MRETVI MTCARI/MRETVI [14]
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