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Drone data for decision making in regeneration
forests: from raw data to actionable insights1

Stefano Puliti and Aksel Granhus

Abstract: In this study, we aim at developing ways to directly translate raw drone data into
actionable insights, thus enabling us to make management decisions directly from drone
data. Drone photogrammetric data and data analytics were used to model stand-level
immediate tending need and cost in regeneration forests. Field reference data were used
to train and validate a logistic model for the binary classification of immediate tending need
and a multiple linear regression model to predict the cost to perform the tending operation.
The performance of the models derived from drone data was compared to models utilizing
the following alternative data sources: airborne laser scanning data (ALS), prior information
from forest management plans (Prior) and the combination of drone+Prior and ALS+Prior.
The use of drone data and prior information outperformed the remaining alternatives in
terms of classification of tending needs, whereas drone data alone resulted in the most
accurate cost models. Our results are encouraging for further use of drones in the opera-
tional management of regeneration forests and show that drone data and data analytics
are useful for deriving actionable insights.

Key words: UAV, DAP, forest inventory, photogrammetry, precommercial thinning, airborne laser
scanning.

Résumé : Dans cette étude, nous cherchons à développer des moyens d’utiliser directement
les données brutes de drones en tant qu’informations exploitables, nous permettant ainsi
de prendre des décisions de gestion directement à partir de données provenant de drones.
Les données photogrammétriques et l’analyse de données de drones ont été utilisées dans
le but de modéliser les besoins immédiats et les coûts de régénération des forêts. Les
données de référence sur le terrain ont été utilisées pour former et valider un modèle logis-
tique pour la classification binaire du besoin en soins sylvicoles immédiat et un modèle de
régression linéaire multiple pour prédire le coût d’exécution de soins sylvicoles. La perfor-
mance des modèles dérivés des données de drones a été comparée à celle des modèles uti-
lisant diverses sources de données comme suit : données de balayage laser aéroporté
(BLA), données antérieures de plans de gestion forestière (« Prior »), et la combinaison de
drone + Prior et de drone + BLA. L’utilisation de données de drones et de données
antérieures a surpassé les autres diverses solutions en termes de classification des soins
sylvicoles, tandis que les données de drones à elles seules ont permis d’obtenir les
modèles de coûts les plus précis. Nos résultats sont encourageants en matière d’utilisation
ultérieure de drones dans la gestion opérationnelle des forêts de régénération et montrent
que les données de drones et l’analyse des données sont utiles pour obtenir des informa-
tions exploitables. [Traduit par la Rédaction]
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Mots-clés : véhicule aérien sans pilote (UAV), photogrammétrie aérienne numérique (« DAP »),
inventaire forestier, photogrammétrie, éclaircie précommerciale, balayage laser aéroporté (BLA).

Introduction

Drone data have proven valuable in modeling and providing accurate data analytics on
key forest biophysical variables (Puliti et al. 2015; Guerra-Hernández et al. 2017; Iglhaut et al.
2019; Mulverhill et al. 2020). However, there is still a gap between the quantitative
knowledge of forest biophysical variables and the possibility to make silvicultural
decisions. This gap reflects an increasing need for evaluating the quality of drone data
based on the quality of the decisions that these data enable rather than only on the accu-
racy of predictions of biophysical variables. At the core of any operational future use of
drones in forestry lies the advantage of reducing the human input in gathering information
for decision-making. Thus, drone data must provide actionable insights or information that
allows decision-making without the need for performing a costly field visit. Therefore,
there is a need to develop methods to summarize raw drone data (e.g., an orthomosaic or
a digital surface model) into data analytics (e.g., predictions of tree density) and finally in
actionable insights intended as a decision on whether to perform stand-specific silvicul-
tural treatments (Fig. 1).

Amongst the many drone applications in forestry, their use for regeneration forest
surveys has been suggested as a promising niche application (Goodbody et al. 2017). Puliti
et al. (2019) demonstrated that using drones in regeneration forest surveys could reduce
the costs compared with field surveys by half while maintaining high accuracy levels. In
addition to being costly, field surveys in regeneration forests are also potentially biased
due to the difficult navigation and poor visibility in the dense vegetation. Thus, manage-
ment decisions may vary based on the path that the surveyor walks and terrain-related
variables (e.g., slope and ruggedness). On the contrary, drone surveys provide a birds-eye
view of the forest stand of interest, potentially allowing for more informed, comprehen-
sive, and objective decisions. To date, an increasing body of literature has demonstrated
that drone data can be used to accurately model regeneration forest biophysical variables
and produce drone data analytics in the form of maps of tree density, canopy height, and
tree species (Goodbody et al. 2017; Feduck et al. 2018; Fromm et al. 2019; Imangholiloo et al.
2019; Puliti et al. 2019; Castilla et al. 2020; Pearse et al. 2020). Although the results of these
were encouraging for the production of accurate data analytics, the possibility to make
decisions based on these data remains unknown.

An important decision to be made for regeneration forest stands concerns whether
precommercial thinning, hereafter referred to as “tending” for simplicity, is needed or
not. Such treatment aims to facilitate the growth of the most commercially valuable trees
in the stand by removing undesired stems that compete with the future crop trees for light,
water, and nutrients.

Tending consists of reducing the tree density in areas with high competition to facilitate
the growth of the most commercially valuable tree species. In boreal forests in Norway,
such tending consists of the removal of deciduous species in favor of the more economically
valuable coniferous species such as Norway spruce (Picea abies (L.) Karst) and Scots pine
(Pinus sylvestris L.), while at the same time considering an even spacing of the trees that will
make up the future stand. After clear-cutting, fast-growing deciduous species like birches
(Betula spp.), aspen (Populus tremula L.), willow (Salix caprea L.), and alder (Alnus spp.) often
establish dense thickets, especially in fertile sites, that may severely retard the growth of
the planted coniferous saplings (Braathe 1988; Brække and Granhus 2001). In naturally
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regenerated stands of low to medium site fertility, the deciduous species’ competition is
often less severe. Still, a tending is often needed to obtain the desired density of future crop
trees and to create an even spacing in the stand. In this respect, tending operations are
critical to maintaining future timber supply and assortment quality (Korhonen et al.
2013). Despite the long tradition of airborne laser scanning (ALS)-based forest inventories
in Scandinavian countries (Næsset et al. 2004; Kangas et al. 2018), the accuracy obtainable
for predicting regeneration forest biophysical variables (e.g., tree density) or tending need
has been unsatisfactory for operational application (Korpela et al. 2008; Korhonen et al.
2013; Ørka et al. 2016). In Scandinavia, ALS forest management inventories are carried out
infrequently at intervals of 10–20 years. Hence, because of the rapid growth in regeneration
forests, the information is rapidly outdated and thus unreliable for decision-making. In
Norway, forest managers often have access to prior inventory information derived either
from aerial photo interpretation or from field visits. The use of prior information is known
to be beneficial for forest inventories based on remotely sensed data (Kangas et al. 2020).
However, there is no specific understanding of the importance of these data for decision-
making in the regeneration forest.

During the 10 years 2010–2019, the annual tended area of forest land in Norway was on
average 27 000 ha (Statistics Norway 2020). The current operational standard includes field vis-
its to each of the stands to assess the tending needs and costs through eyeball estimates of
stand density, species composition, and canopy height. The considerable cost savings and
increase in predictive accuracy when using drones in regeneration forests compared to alter-
native remotely sensed data (Puliti et al. 2019) could provide forestmanagers with an attractive
alternative solution to field surveys. Nevertheless, drones’ future operational use for assessing
the tending needs relies on the quality of the decisions that drone data enable.

This study aimed at using drone photogrammetric data and derived data analytics to
predict the two variables that represent the current information need for managing regen-
eration forests, i.e., stand-level tending needs and costs. To contextualize the study in the
current information panorama for regeneration forests, we tested five different scenarios
in terms of auxiliary data availability: drone, ALS, prior information from forest manage-
ment plans (Prior), and their combination (i.e., drone+ Prior and ALS+ Prior).

Materials

Study area
The study area is located within the 35 000 ha property of Romeal and Stange

Almenninger (RASA), in the Stange municipality in southeastern Norway (approximately

Fig. 1. Schematic representation of the hierarchical structure of information obtainable from drone.
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60.63°N; 11.41°E). The terrain is hilly with altitudes ranging from 250 m above sea level
(a.s.l.) to 600 m a.s.l., and the climate is moderately continental. The forests in this area
are dominated by Norway spruce and Scots pine and are actively managed for timber pro-
duction. Soils are mostly podzolic, and the majority of the stands are of intermediate site
productivity, except for some areas in the lowermost parts of the property where higher
site indices occur.

Field data
According to operational practices, we initially selected all forest stands that required

information on the need for tending, i.e., from a list of stands belonging to maturity class
2 (see definitions in Breidenbach et al. 2020) provided by RASA. Out of the entire set of
stands, we purposively sampled 27 stands to cover a range of site productivity, species
composition, and stand size. For further details, we refer the reader to the study by Puliti
et al. (2019), where the same data as in this study was used.

According to current operational standards, the local forest owner’s association
collected the field data, consisting of visiting each stand and subjectively assessing the need
for tending. For each stand, the variables recorded consisted of eyeball estimates of tree den-
sity (n trees ha−1), mean height (m), and the number of future crop trees (n trees ha−1). Based
on these values and forestry personnel’s expertise from RASA, a decision was made on
whether a tending operation was immediately needed. Out of 27 stands, six were identified
as having an immediate tending need. Furthermore, the costs (NOK ha−1) for performing
the tending operation were estimated according to the forest owners’ association’s opera-
tional conditions. The costs were converted to Euros based on the exchange rate at the experi-
ment’s time (1 EUR= 9.5 NOK). On average, the estimated cost for stands with immediate
tending needs was 186 EUR ha−1. For some stands, even though they were not classified as
having immediate tending needs, a cost estimate was still provided. The average estimated
cost when including these stands was 94 EUR ha−1. The variables mentioned above summa-
rize the current information needs in Norway’s operational forestry for regeneration forests’
decision-making. Furthermore, the time required to perform each field check was recorded
and subdivided into (i) time to approach the stand from the roadside (total of 5.1 h) and
(ii) time required to assess the described variables for the stand (total of 10 h).

Although this study does not directly use field plot data, it is important to keep in mind
that field plot data were used to fit the models by Puliti et al. (2019). To avoid confusion, we
refer the reader to Puliti et al. (2019) for further details on the field plot data used to model
the regeneration forest biophysical variables.

Prior inventory information
Information from previous inventories herein referred to as prior is frequently available

in areas characterized by forest management tradition. In Norway, such information is
obtained either through manual photo interpretation or updates based on field visits. The
former is an integral part of current operational forest management inventories (Næsset
et al. 2004) and is used to stratify the area according to different forest developmental
stages, tree species, and site indices. Forest management inventories are typically updated
at intervals of around 10–15 years, and for selected stands, the information can be updated
by the local forest owners upon field visits. Thus, it is clear that these data are characterized
by a degree of subjectivity, and concerning their applicability for decision making in regen-
eration forests, the data quality can be highly heterogeneous.

The explanatory variables from the prior information (see Table 1) included information
on site index, tree species composition, volume, tree density, mean height, and indications
for planned future harvest activities.
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Drone data
We acquired the drone data during August 2018, using a DJI Phantom 4 PRO (DJI 2018)

integrated with a 1 in. 20 megapixels red, green, and blue (RGB) sensor with a mechanical
shutter and focal length of 8.8 mm. As for the field data, we recorded the time required to
walk from the roadside to the drone take-off and landing point (total of 2.5 h) and to
execute the flight (total of 5.3 h). The drone images were processed using Agisoft
Photoscan version 1.4.1 (Agisoft 2018), and we generated three raw data products for each
stand: (i) an orthomosaic with a pixel size of 3 cm × 3 cm, (ii) a point cloud with a point den-
sity of approximately 300 points m−2 classified into ground and nonground points, and
(iii) a digital surface model (DSM) with a pixel size of 6 cm × 6 cm.

The entire stand area was tessellated into 50 m2 square grid cells, and the 92 drone
predictor variables described by Puliti et al. (2019) were computed for the area correspond-
ing to each field plot and each grid cell. The drone predictor variables were grouped into
three main categories: (i) spectral variables (i.e., RGB band values, band ratios, and textural
variables), (ii) DTM-independent variables (DSM summary statistics, topographic variables,
and textural variables), and (iii) normalized point cloud variables (height percentiles,
density variables, and local maxima counts). In addition to these variables, we now included
an additional one, Hartigan’s dip statistic, as preliminary tests suggested this is an impor-
tant variable for regeneration forests. This statistic is obtained by performing the
Hartigan’s dip test for unimodality (Hartigan and Hartigan 1985) on the points height’s
distribution within a plot or a grid cell. A value of one was assigned to each grid cell for
which the null hypothesis was confirmed (i.e., unimodal distribution) and a value of two
on the contrary case (i.e., multi-modal distribution). The test was performed using the
diptest R package (Maechler 2016). The rationale behind this variable is that it is meant to
discriminate between uniformly distributed areas (i.e., open ground or uniform forest
cover) and more heterogeneous forest structures.

The drone-derived predictor variables were then used by Puliti et al. (2019) to fit random
forest models for mean tree height (Hm; m) and tree density (N; trees ha−1) using 580 plots of
50 m2 each with in-situ measurements of the dependent variables. A summary of the mod-
els’ performance in terms of predictive accuracy (i.e., root-mean square error; RMSE) and
systematic errors (mean difference; MD) is presented in Table 2. A thorough evaluation of

Table 1. Description of the variables available in the prior inventory information.

Variable Description Range values

SIh40 Height site index or height (m) at 40 years of age 6, 8, 11, 14, 17, 20, 23
SIspecies Site index according to tree species (spruce, pine, and deciduous) (1–2)
AGE Age of the forest (years) 10–20
V_HA Timber volume per hectare (m3 ha−1) (0–140)
V_SPRUCE% % of spruce volume (0–80)
V_PINE% % of pine volume (0–100)
V_DECIDUOUS% % of deciduous volume (0–70)
Nbefore Tree density before tending (n ha−1) (1300–5000)
N%crop % of the Nbefore remaining as crop trees —

N%_PINEcrop % number of future-crop pine trees (0–100)
N%_DECIDUOUScrop % tree density of future-crop deciduous trees (0–20)
N%_SPRUCEbefore % tree density spruce before tending (0–100)
N%_PINEbefore % tree density pine before tending (0–70)
N%_DECIDUOUSbefore % tree density deciduous before tending (0–50)
Hconifer Mean height coniferous (m) (0.5–7)
Hdeciduous Mean height deciduous (m) (0–6)
POT_PROD Stand potential productivity (m3) (0–52)
HARVEST_TYPE Planned logging form (full, partial, or no harvest) 1, 2, 3
YEAR_HARVEST Year of harvest maturity (year) (2086–2116)
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the models and the drone predictor variables is provided by Puliti et al. (2019). According to
an area-based approach, the models for Hm and N were applied to each grid cell to predict
Hm and N. The grid-level drone predictor variables, as well as the data analytics in the form
of model predictions, were then aggregated at stand-level by calculating the arithmetic
mean and the standard deviation for each of the variables within all of the grids included
in a stand.

ALS data
Airborne laser scanning (ALS) data with an average point density of 5 points m−2 were

collected in June 2016 using an Optech ALTM Titan MV. In this study, ALS data were used
compared with current state-of-the-art drone results. Similar to the drone data, a set of
explanatory ALS variables were used together with the field plot data to fit random forest
models for Hm and N. The model’s performances are reported in Table 2. The models were
then applied to the population of grid cells with ALS explanatory variables in the same
way as with the models derived with drone data. The grid-cell explanatory variables and
the predicted Hm and N values were then aggregated to the stand-level by computing the
mean and the standard deviation of each variable.

Methods

The statistical analysis consisted of modeling and validating the tending need and costs
using a logistic and regression model. The adoption of parametric approaches was deemed
suitable due to the lack of an extensive training data set and because previous experience
has shown logistic models to be suitable for modeling tending needs (Korhonen et al.
2013). The models for tending need and costs were fitted separately for the different
scenarios in terms of data availability: drone, ALS, drone+ Prior, ALS+ Prior, and Prior.

Tending need
The logistic model was formulated as

π =
1

1 + e−ðβ0 +β1x1 + · · · +βpxpÞ(1)

where π is the probability of the need for tending, x1 to xn are the predictor variables, β0 is
the intercept, and β1 to βn are parameters to be estimated or regression coefficients.

The explanatory variables were selected using the variable importance in terms of mean
decreased Gini coefficient reported by the Random Forests model (Breiman 2001; Liaw and
Wiener 2002). Such an ad-hoc method was implemented after a preliminary analysis had
revealed that it resulted in the selection of the most accurate models compared with alter-
native variable selection methods (e.g., step-wise or branch-and-bound selection). To
account for randomization in the random forests, we selected the three most important

Table 2. Summary of the models devised by Puliti et al. (2019) for mean
height (dHm) and tree density (N̂) in terms of predictive accuracy (RMSE and
RMSE%) and presence of systematic errors (MD and MD%) and using either
drone or airborne laser scanning (ALS) data as auxiliary data.

Predicted variable Auxiliary data RMSE RMSE% MD MD%

dHm (m) Drone 0.56 23.6 0.1 3.7
ALS 0.76 31.6 0.3 12.5

N̂ (n trees ha−1) Drone 1175 21.8 −62 −1.1
ALS 2355 43.7 −481.5 −8.9
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variables over 200 iterations. Furthermore, we tested for the presence of multicollinearity
by only accepting models that had a variance inflation factor<5.

The logistic model was validated through a leave-one-out cross-validation. Each stand
was removed iteratively from the training data pool for a newly fitted logistic regression
and used only to validate the model’s predictions. The classifier’s performance was evalu-
ated using the summary information from the confusion matrices consisting of overall
accuracy, and the class-wise user’s accuracy, and producer’s accuracy confusion matrix.

Tending cost
To model the tending cost, we opted for a multiple linear regression model. The

regression model was formulated as

Y = β0 + β1x1+ · · · +βnxn + ε(2)

where Y is the stand tending cost, and ε is the residual error.
The variable selection consisted of a branch-and-bound search for the best subset and

model selection based on the Bayesian information criterion (Puliti et al. 2015).
Furthermore, to ensure the absence of multicollinearity, the models with a variance infla-
tion factor>5 were discarded. The models’ performances were evaluated in terms of model
fit (Adj. R2), predictive accuracy (RMSE), and the presence of systematic errors (MD), and
their respective values were compared with the average field-estimated tending cost for
stands in need of immediate tending (RMSE% and MD%). The Adj. R2, RMSE, RMSE%, MD,
and MD% were calculated.

Results and discussion

Tending need
The overall comparison between the selected drone and ALS variables for classifying

tending needs revealed that, in general, drone variables were more strongly correlated
(Pearson’s correlation coefficient in the range 0.38–0.59) with the tending need and cost
(Fig. 2) than ALS (Pearson’s correlation coefficient 0.32–0.54) or prior inventory information
(Pearson’s correlation coefficient −0.33 to 0.57). The stronger explanatory power of drone
variables was further confirmed by the fact that the drone model required one variable less
than the ALS or the Prior ones. When including the information for prior inventory infor-
mation, the Nbefore was included in both the drone + Prior and ALS + Prior, indicating the
importance of the number of stems for discriminating the stands according to the tending
needs. Interestingly, variables derived from the predictions of biophysical variables such as
the tree density (N̂) and the future crop tree density (N̂c) were selected in three out of the
four fitted models, both for drone and ALS data. This finding highlights the important link
between drone data analytics (maps) and actionable insights (management decisions). The
importance of tree density information for determining tending needs was further
strengthened by (i) the selection of Nbefore in all of the models including prior inventory
information and (ii) by the fact that height-related variables were discarded from all of the
tending need models, indicating that in such drone data-driven approach, the tree density
plays a more important role in the determining the need and cost of tending.

For the drone models, the selection of a textural variable computed using the DSM
further confirmed the usefulness of digital terrain model (DTM)-independent variable for
describing forest biophysical properties (Giannetti et al. 2018; Puliti et al. 2020).
Specifically, the dsmENTR is a measure of the disorder in an image and achieves its largest
value when all pixels in a DSM have a uniform height. Thus, low values correspond to open
and sparse canopy structures and high values to uniform thickets of vegetation where the
competition needs to be regulated (Fig. 2). Concerning the ALS model, in addition to the
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standard deviation of the predicted number of future crop trees (N̂cSD), the mean (Dipmean)
and standard deviation (DipSD) of the Hartigan’s dip statistic were selected, indicating the
importance of this newly tested predictor variable. The variables selected for the models
based on prior inventory information included the tree density (Nbefore), the percentage of
future crop pine trees N%_PINEcrop, and the stand potential productivity of (POT_PROD).

The evaluation of the predictive accuracy for the tending need model according to a
leave-one-out cross-validation (see Table 3 and confusion matrices in Appendix A) revealed
a larger overall accuracy for drone (84%–89%) compared with ALS data (81%), with the for-
mer yielding a larger producer’s (90%) and user’s accuracies (67%–83%). When including
prior information, the overall accuracy of drone data was boosted to 89% thanks to an
increase in the correctly detected stands in tending need resulting in the largest producer’s
accuracy (83%). Among the producer’s and the user’s accuracy, the former has a more severe
impact on forest management. The omission errors (i.e., 100% producer’s accuracy) corre-
spond to stands for which the tending may not need to be done and thus lead to an overall
economic loss due to the reduction in the value of the assortments obtainable from the
future stand. Although limited by a small number of sampled stands, it was encouraging
seeing the contribution from the drone in reducing the number of omitted stands in tend-
ing need. The reported OA values were larger than what was previously reported by
Korhonen et al. (2013), who, using ALS data, found a stand-level OA of 71%. The larger overall
accuracy was due to a larger percentage of correctly classified stand with no tending need in
this study (90%) compared to the study by Korhonen et al. (2013) (70%). The relatively large
OA of the logistic model based on ALS was a noteworthy finding, which can partly be

Fig. 2. Pearson’s correlation coefficient plots for the selected variables for drone or airborne laser scanning (ALS)
data for the logistic model for classifying the tending need. The ellipses describe the strength and direction of the
correlation. The variables included, textural variables (dsmENTRmean), predictions based on previously exisitng
models for number of trees (N hat sd), number of future crop trees (Nc hat mean), the standard deviation of the
ratios between the blue and red bands (B/R sd mean), the mean or standard deviation of the Hartigan's dip
statistics (Dip mean and sd) as well as variables from previous inventories (Prior) such as the Stand potential
productivity (POT_PROD), stand density (N) spruce percentage of tree density (N before) and the proportion of
pine trees in the future crop trees (N%_PINEafter).

Table 3. Summary of the accuracy assessment for the logistic classification of the need for
tending and regression modeling for the tending cost.

Overall accuracy

Producer’s accuracy
(100-omission error)

User’s accuracy
(100-commission error)

No tending Tending No tending Tending

Drone 84 90 67 90 67
Drone+ Prior 89 90 83 95 71
ALS 81 90 50 86 60
ALS+ Prior 81 85 67 90 43
Prior 85 95 50 83 75

Note: ALS, airborne laser scanning; Prior, prior information from forest management plans.
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explained by dataset-specific characteristics and perhaps by the use of the newly proposed
variable, i.e., the Hartigan’s dip statistic. The increase from 50% to 67% in the producer’s
accuracy when complementing ALS data with prior inventory information offers an appeal-
ing methodology for operational implementation. However, it is important to keep in mind
that in this study, the ALS data were only two years old, and the use of older data is likely to
have negative effects on the predictive accuracy of ALS models. Because our study was
conducted using a limited number of stands, future research should further investigate
the use of ALS + Prior models using larger sample sizes and across broader geographical
scales. The use of prior inventory information alone yielded an OA of 85%, which, even
though seemingly large, was driven by a large producer’s accuracy (95%) for stands not
needing tending while only 50% of the stands with tending needs were correctly identified.
The relatively low ability for the prior information to correctly detect stands with tending
needs justifies the current need for performing field visits.

Tending cost
The variable selection for the tending cost models (Fig. 3), in general, resulted in the

selection of a larger number of variables (i.e., mostly four variables) than the tending need
models, and these variables were, in general, less correlated to the field assessed tending
costs than the explanatory variables for the tending need. The drone and drone + Prior
models were identical, meaning that drone variables were a stronger predictor of costs than
any variable from the prior inventory. In particular, the standard deviation of the predicted
number of future crop trees (N̂cSD) from drone data was strongly correlated (Pearson’s corre-
lation coefficient = 0.74) with the tending cost. Interestingly, the number of future crop
trees is a key variable to quantify the cost for the tending operations in current operational
conditions. Thus, the inclusion of drone predicted N̂cSD in the cost model, further confirms
the usefulness of drone data analytics to obtain actionable insights. Other explanatory var-
iables included in the drone cost model included the textural variables from the DSM
(dsmDISSmean), the mean Hartigan’s dip statistic (Dipmean), and mean of the standard
deviations of the band ratios calculated using the blue and red bands (B/RSDmean). The first
two variables confirm the usefulness of DTM-independent variables and of Hartigan’s dip
statistic even for drone data. The B/RSDmean represents the only spectral variable in any of
the fitted models in this study, and its inclusion in the tending cost model shows the
synergy between spectral and three-dimensional information. An important drawback of
using spectral variables is that they can vary substantially due to varying light and

Fig. 3. Pearson’s correlation coefficient plots for the selected variables for drone or airborne laser scanning (ALS)
data for the regression model for predicting the tending cost. The ellipses describe the strength and direction of
the correlation. The variables included, textural variables (dsmDISSmean), predictions based on previously
exisitng models for number of trees (N hat sd), number of future crop trees (Nc hat sd), the standard deviation of
the ratios between the blue and red bands (B/R sd mean), the mean or standard deviation of the Hartigan's dip
statistics (Dip mean), the mean and standard deviation of the digital surface model values (minDSMmean and
min_DSMsd), the median of the normalized height values (p50 mean), the density of ALS points below half of the
top height (d50sd) as well as variables from previous inventories (Prior) such as the site index (SIh40) age (AGE),
proportion of crop trees (N%crop) and the proportion of pine (N%_PINEcrop).
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atmospheric conditions, and thus their use may affect the transferability of a model to new
data. In this study, the drone data were collected over several days and under varying light
and atmospheric conditions; thus, the drone tending cost model can account for this varia-
tion to a certain degree. Furthermore, the selection of a band ratio was encouraging as
ratios are typically more robust to variations in light conditions and topographic shading
than the individual band digital number values. Further studies should, however, investi-
gate the effect of the variation in light, atmospheric, and phenological conditions on the
predictive accuracy of drone models.

The ALS cost model was characterized by the selection of the mean of two height percen-
tiles the mean (p0mean and p50mean), the standard deviation of the minimum value of the
normalized point cloud (p0SD), and a density variable (d50SD). The minimum height (p0)
represented the height of the lowest vegetation points and thus is useful to detect the pres-
ence of thick low vegetation and its variation through each stand. The costs increased when
increasing p0 but decreased with its variability. The selection of the ALS height and density
variables is consistent with previous literature on the use of ALS data for regeneration for-
ests (Korhonen et al. 2013; Ørka et al. 2016) and shows that, differently from drone data,
when high-quality height information is available it is indeed useful to model tending costs.
When complementing ALS with prior information, the site index (SIh40) and the
percentage of the number of trees that are supposed to form the future population of crop
trees (N%crop) were included in the model.

The leave-one-out validation of the tending cost model revealed that the use of drone
data alone outperformed any of the other data sources, yielding the best model fit
(Adj. R2 = 0.86) and smallest RMSE (23.4 EUR ha−1 or 15%) and MD (7.8) values (Table 4).
While prior information availability did not affect the drone model, it had a substantial
positive effect on the models relying on ALS data. These results are in line with the findings
by Kangas et al. (2020), who found that models using both ALS explanatory variables and
prior information were more accurate than using the two data sources separately. Even
though the cost model using ALS + Prior had a similar model fit to the drone models, the
respective residuals were not significantly different according to a paired t-test (p = 0.6).
Furthermore, the RMSE and MD for ALS+ Prior models were larger than drone data alone.
This was mainly due to the underestimation of the stand’s cost that had the largest field
estimated costs (Fig. 4). Systematic errors can be particularly problematic in a forest enter-
prise as they can lead to substantial economic losses in the long term. A promising way to
reduce the bias in the estimates using prior inventory information is to use growth models
to update prior information to the present date (Kangas et al. 2020). However, such growth
models are nonexistent in Norway; thus, it is currently not possible to update prior infor-
mation on regeneration forests. Unsurprisingly, the use of prior information alone resulted

Table 4. Summary of the independent validation for the cost model for each of the study
scenarios and according to adjusted R2 (Adj. R2), root-mean square error (RMSE), mean
difference (MD), and their relative values (RMSE% and MD%).

Tested scenario

Tending cost predictions

Adj. R2 RMSE (EUR ha−1) RMSE% (%) MD (EUR ha−1) MD% (%)

Drone 0.86 23.4 14.9 7.8 4.9
Drone+ Prior 0.86 23.4 14.9 7.8 4.9
ALS 0.69 35.5 22.6 23.5 15.0
ALS+ Prior 0.86 31.4 20 16.9 10
Prior 0.49 102.7 65.4 31.4 20.0

Note: ALS, airborne laser scanning; Prior, prior information from forest management plans.
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in the poorer models, characterized by the largest RMSE (102 EUR ha−1) and MD (31 EUR
ha−1). Such a poor ability to predict costs using prior information is one of the main reasons
behind the current practice of conducting field checks. It is also true that a thorough assess-
ment of prior inventory information can be difficult due to the large variability in terms of
quality of these data, especially concerning regeneration forests. To the authors’ best
knowledge, this is the only study where remotely sensed data were used to estimate the
costs for tending; thus, no comparison with previous literature was possible.

General considerations
Our study showed how drone data outperformed ALS data and produced results similar

to the field-based estimates when coupling the results from the tending need and cost mod-
els. This study also highlighted the existence of important synergies between the drone and
prior inventory data. While not included in the cost model, using prior information in the
drone tending model resulted in a reduction by half of the omission errors compared with
the model based on drone data alone. Thus, it is evident that drone data has the potential
for operational use for the management of regeneration forests.

In agreement with the previous literature (Korhonen et al. 2013; Ørka et al. 2016), the use
of ALS data alone was not promising for operational application as only 50% of the stands in
tending need were correctly detected, and systematic errors characterized the cost predic-
tions. On the other hand, our study found the combination of ALS and prior information
to be an appealing alternative to drone data. Even though ALS + Prior resulted in larger
omission errors than drone+ Prior, the costs per hectare for acquiring ALS over large areas
are substantially smaller than those for acquiring drone data. Our results for ALS + Prior
models encourage further investigation of the synergy between ALS and prior information,
as this may provide an efficient method for managing regeneration forests on a large scale.
However, a major disadvantage is that ALS data and prior information may not be available
at all or, if available, they may be outdated and thus unreliable for decision-making.

Fig. 4. Scatterplot of the field estimated cost versus the drone predicted costs. The diagonal line represents the
1:1 line. The green points represent the true positive according to the classification for tending need, while the
red one represents the true negative or the stand that was wrongly classified as with no tending need.
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Concerning the operational application of the proposed method, we showed that the
drone data acquisition’s total cost was approximately 50% of the cost for the field survey
(Puliti et al. 2019). This was mainly due to the drastic reduction in the time required to walk
to, within, and from each stand. Further work should focus on determining whether the
smaller costs associated with drone data collection outweigh the costs because of
sub-optimal decisions due to the presence of small errors in drone predictions. This will
provide stronger evidence on the costs and benefits of using drone data in regeneration
forests.

Conclusion

This study addressed the use of drone data to provide actionable insights for the manage-
ment of regeneration forests. Given the available data, the main findings of this study can
be summarized as follows.

• The drone data outperformed ALS data for predicting tending need and cost.
• The study demonstrated the usefulness of drone data analytics to convert raw drone data into

actionable insights.
• The study showed the importance of tree density information (i.e., included in 9/10 tested

models) for management of regeneration stands.
• This is the first study where the operational costs for silvicultural treatments are modeled

using remotely sensed data.
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Appendix A

Confusion matrices for the classification of tending need

Table 1A. Confusion matrix for the cross-validated predictions using unmanned aerial
vehicle predictor variables.

Logistic model

Field estimate

Total User’s accuracyNo tending Tending

No tending 19 2 21 90%
Tending 2 4 6 67%
Total 21 6 27 —

Producer’s accuracy 90% 67% Overall accuracy 85%

Table 2A. Confusion matrix for the cross-validated predictions using unmanned aerial
vehicle predictor variables and prior inventory information.

Logistic model

Field estimate

Total User’s accuracyNo tending Tending

No tending 19 1 20 95%
Tending 2 5 7 71%
Total 21 6 27 —

Producer’s accuracy 90% 83% Overall accuracy 89%
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Table 3A. Confusion matrix for the cross-validated predictions using airborne laser
scanning predictor variables.

Logistic model

Field estimate

Total User’s accuracyNo tending Tending

No tending 19 3 22 86%
Tending 2 3 5 60%
Total 21 6 27 —

Producer’s accuracy 90% 50% Overall accuracy 81%

Table 4A. Confusion matrix for the cross validated predictions using airborne laser
scanning predictor variables and prior inventory information.

Logistic model

Field estimate

Total User’s accuracyNo tending Tending

No tending 18 2 20 90%
Tending 3 4 7 43%
Total 21 6 27 —

Producer’s accuracy 85% 67% Overall accuracy 81%

Table 5A. Confusion matrix for the cross validated predictions using only the prior
inventory information as predictor variables.

Logistic model

Field estimate

Total User’s accuracyNo tending Tending

No tending 20 3 23 83%
Tending 1 3 4 75%
Total 21 6 27 —

Producer’s accuracy 95% 50% Overall accuracy 85%

58 J. Unmanned Veh. Syst. Vol. 9, 2021

Published by NRC Research Press

J.
 U

nm
an

ne
d 

V
eh

. S
ys

. D
ow

nl
oa

de
d 

fr
om

 c
dn

sc
ie

nc
ep

ub
.c

om
 b

y 
N

O
R

SK
 I

N
ST

IT
U

T
T

 F
O

R
 B

IO
O

K
O

N
O

M
I 

on
 0

3/
24

/2
1

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


