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Abstract Leaf blotch diseases (LBD), such as Septoria
nodorum bloch (Parastagnospora nodorum), Septoria
tritici blotch (Zymoseptoria tritici) and Tan spot
(Pyrenophora tritici-repentis) can cause severe yield
losses (up to 50%) in Norwegian spring wheat (Triticum
aestivum) and are mainly controlled by fungicide appli-
cations. A forecastingmodel to predict disease risk can be
an important tool to optimize disease control. The asso-
ciation between specific weather variables and the devel-
opment of LBD differs between wheat growth stages. In
this study, amathematical model to estimate phenological
development of spring wheat was derived based on sow-
ing date, air temperature and photoperiod. Weather fac-
tors associated with LBD severity were then identified for
selected phenological growth stages by a correlation
study of LBD severity data (17 years). Although infor-
mation regarding host resistance and previous crop were
added to the identified weather factors, two purely
weather-based risk prediction models (CART, classifica-
tion and regression tree algorithm) and one black box
model (KNN, based on K nearest neighbor algorithm)
were most accurate to predict moderate to high LBD
severity (>5% infection). The predictive accuracy of these
models (76–83%) was compared to that of two existing

models used in Norway and Denmark (60 and 61%
accuracy, respectively). The newly developed models
performed better than the existing models, but still had
the tendency to overestimate disease risk. Specificity of
the new models varied between 49 and 74% compared to
40 and 37% for the existing models. These new models
are promising decision tools to improve integrated LBD
management of spring wheat in Norway.
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Introduction

Parastagonospora nodorum (also known as Septoria
nodorum, Phaeosphaeria nodorum, or Stagonospora
nodorum) causal agent of Glume blotch and Septoria
nodorum blotch (SNB), Zymoseptoria tritici (also
known as Septoria tritici or Mycosphaerella
graminicola) causing Septoria tritici blotch (STB) and
Pyrenophora tritici-repentis (also known as Drechlsera
tritici-repentis), causing Tan spot or Yellow spot (DTR)
are major necrotrophic leaf pathogens in wheat
(Bergstrom 2010; Shaner 2010; McMullen 2010).
These pathogens cause similar symptoms on wheat
leaves, e.g. light brown oval to elongated lesions or
blotches with yellow margins. As they can co-occur in
the same field and on the same leaf, the three leaf
diseases are difficult to distinguish with the unaided
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eye and are considered together as the leaf blotch dis-
ease (LBD) complex in this study. In Norway,
P. nodorum is the dominating pathogen in spring wheat,
but Z. tritici and P. tritici-repentis also occur regularly
(Ficke et al. 2018a) and need to be considered for
effective disease management. The potential for
P. nodorum to cause significant grain yield and quality
losses has been discussed recently (Ficke et al. 2018b).
In fungicide trials in Norway, an average yield loss has
been found to range from 13% in a moderately resistant
cultivar to 25% in a susceptible cultivar (Ficke et al.
2016a).

The photosynthetic active tissue area of the flag leaf is
considered an important factor in determining grain yield
(Simpson 1968; Lupton 1972). King et al. (1983) found a
strong relationship between LBD severity on the flag
(first) and second leaf at growth stage (GS) 75 (medium
milk (Zadoks et al. 1974)) and yield reduction. Assess-
ment of LBD on the last upper two to three leaves at GS
70–77 (water ripe to late milk) have become a standard
GS in many countries to evaluate disease severity
(Bhathal et al. 2003; King et al. 1983). The reduction of
the yield determining area and consequently yield loss
from LBD pathogens can vary considerably between
years, varieties and locations, making the use of a general
management threshold unfeasible. Control of LBD path-
ogens is based on the use of healthy or fungicide treated
seed (for SNB and DTR), tillage and crop rotation,
varietal host resistance when available, and fungicide
applications (Shipton et al. 1971; Jørgensen and Olsen
2007; Jørgensen et al. 2008). Fungicide applications are
only profitable when their application is aligned with the
actual need to control a disease and justified by a certain
level of expected yield loss. Wiik and Rosenqvist (2010)
showed that the mean net return for fungicide use in
Swedish winter wheat fields was negative in 10 out of
25 years, and it was less than 12 € per ha on average
during the period. Routine application of fungicide ap-
pears little profitable and should be replaced by reliable
disease risk models to guide the farmers decisions and
implement integrated pest management (IPM) principles.

Weather conditions in the growing season, tillage,
crop rotation and host resistance influence the develop-
ment of LBD and yield loss. All three LBD pathogens
can survive on wheat stubble between growth seasons.
Parastagonospora nodorum and Z. tritici produce splash
dispersed conidia in pycnidia or ascospores in
pseudothecia on wheat debris (Faulkner and Colhoun
1976; Shaw and Royle 1993; Suffert et al. 2011), while

P. tritici-repentis produces wind-dispersed conidia or
ascospores from pseudothecia that can infect the young
wheat plants (Wright and Sutton 1990). Once infection is
established, these polycyclic diseases infect upper layers
of the growing wheat plants via conidia. Conditions
considered favorable for infections include continuous
precipitation or high levels of humidity (> 90%) for
several hours (> 4 h) (Jeger et al. 1981; Hess and
Shaner 1987; Francl 1998). Temperature also plays an
important role in LBD development. Severity of DTR
was positively correlated with temperature, with an opti-
mum between 18 to 28 °C depending on the variety used
(Da Luz and Bergstrom 1986). Highest STB inoculum
production on wheat seedlings has been reported between
18 and 22 °C during the day (Chungu et al. 2001), and for
SNB the latent period was shortest at 23 °C (Shearer and
Zadoks 1972). Wiik and Ewaldz (2009) showed that air
temperature and precipitation as monthly means ex-
plained more than 50% of the variation in yield increase
due to fungicides and variation in diseases, including
LBD on winter wheat in Sweden. Prediction models to
estimate risk based on weather factors influencing disease
development would be very useful to determine the need
for chemical control and the optimal timing of these
control measures to avoid redundant use of resources.

By systemizing our knowledge on the effect of these
weather factors, a prediction model to estimate risk of
disease outbreaks can be constructed. EPISET, a SNB
simulation model was developed by Rapilly and Jolivet
in 1976 to understand better each stage of pathogen de-
velopment in relation to precipitation, humidity and tem-
perature (Rapilly and Jolivet 1976). Several disease pre-
diction models exist for Z. tritici and/or P. nodorum de-
velopment in winter wheat, based on precipitation
(Tyldesley and Thompson 1980; Hansen et al. 1994),
and for Z. tritici based on precipitation and air temperature
(Coakley et al. 1985; Te Beest et al. 2009), precipitation
and relative humidity or precipitation, air temperature and
wind speed (Pietravalle et al. 2003). Some of these models
additionally require information about when the plant
reach stem elongation (Hansen et al. 1994; Te Beest
et al. 2009; Pietravalle et al. 2003). De Wolf and Francl
(1998) evaluated an empirical P. tritici-repentis infection
periodmodel for its use in aDTR forecasting system based
on temperature, relative humidity, wind speed, wind di-
rection, solar radiation, precipitation, and flat-plate type
wetness sensor resistance. Djurle and Yuen (1991) devel-
oped a simulation model for P. nodorum that was con-
nected to a winter wheat growthmodel to demonstrate that
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weather conditions were the most important factors for an
SNB epidemic in a particular year. However, only a few
models are widely used by the farmers and models to
predict the risk of all three LBD diseases in spring wheat
are absent in the peer reviewed literature.

Hansen et al. (1994) developed a forecasting model to
estimate the risk of Septoria development (including SNB
and STB) in winter wheat under Danish conditions based
on 10 years of field data. Themodel starts at the beginning
of stem elongation (GS 32) and considers sowing date, air
temperature and precipitation as inputs to give an estimate
of infection risk as output. In this model, a threshold value
of 5% disease severity of total green leaf area at medium
milk to soft dough (GS 75–85) was used to distinguish
between low and high risk. High risk of the Septoria
diseases was predicted when the number of days with
precipitation above or equal to 1 mm, calculated during
a period of 30 days, was above 8 for susceptible and above
9 for resistant winter wheat varieties. However, a spraying
threshold of 7 to 8 days with precipitation above or equal
to 1 mm during the last 30 days was recommended,
because the resulting yield gain from two fungicide sprays
justified the fungicide costs under these conditions. This
‘Hansenmodel’ has been adjusted and implemented in the
Danish decision support system Crop Protection Online
(CPO) to optimize fungicide inputs in winter wheat
(Hagelskjær and Jørgensen 2003).

Based on the ‘Hansen model’ developed for winter
wheat, a Norwegian LBD prediction model was devel-
oped to estimate the level of LBD severity and assess the
need for fungicide treatment in spring wheat using Nor-
wegian field observations (Elen 2007). The starting
value for disease development in this model is corrected
for by host resistance, tillage and crop rotation. The
main factors driving the model are the number of days
with precipitation above 1 mm and the total amount of
precipitation over a certain time. The model estimates
the level of LBD severity and the need for fungicide
treatment over time. To increase the accuracy of the
recommended spraying time, the model was adjusted
on a yearly basis according to spring wheat trial obser-
vations in Norway. This model was included in the
Norwegian decision support system VIPS (www.vips-
landbruk.no) in 2001 and is currently available to
farmers and agricultural extension services. VIPS is a
Norwegian open source information platform that
implements IPM tools, by making pest and disease
forecast risk models for agricultural and horticultural
crops available. Testing of this ‘VIPS 2001’ model for

LBD in wheat with Norwegian field data from 2010 to
2017 showed that it had the tendency to overestimate the
need for fungicide applications (Ficke et al. 2019).

It is known that host susceptibility and disease devel-
opment of stripe rust changeswith the developmental stage
of the wheat plant (Farber and Mundt 2017). Resistance
mechanisms in durumwheat to DTRwere shown to differ
between plant organs and to be under different genetic
control depending on the host phenological growth stage
(Fernandez et al. 1994). Jones and Odebunmi (1971)
showed that later inoculations of spring wheat variety
‘Opal’ with P. nodorum lead to larger reduction in grain
size and numbers than earlier inoculations. The greater
SNB development at later growth stages was also con-
firmed byWainshilbaum and Lipps (1991). No such effect
was observed for Z. tritici in the same study
(Wainshilbaum and Lipps 1991). The dynamic host-
pathogen interactions over different phenological stages
lead us to hypothesize that different weather variables
can have a different effect on LBD development at differ-
ent growth stages in the spring wheat development as well.

The objective of this study was to develop a new
prediction model for LBD risk in spring wheat during
the milk development stage (GS 70–79), based on host
resistance, previous crop and weather factors during
different phenological growth stages. The study was
performed in three different steps: (1) a model was
developed to predict spring wheat phenological devel-
opment, (2) the associations between LBD severity and
weather conditions during different phenological
growth stages was determined in a correlation study,
and (3) three models to predict the risk of LBD (classi-
fied at a 5% severity threshold, as used by Hansen et al.
1994) were developed and further compared with two
existing models (‘VIPS 2001’ and the ‘Hansen-model’).
Our goal was to develop a disease prediction tool with
high accuracy and sensitivity that could be included in
the integrated management of LBD in spring wheat.

Material and methods

Part 1: Phenological model to predict spring wheat
development

Phenological growth stage data from field trials

Data on phenological growth stages of spring wheat
were obtained from field trials conducted by NIBIO
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and the Norwegian extension service. A total of 153
observations of average phenological growth stage were
recorded in different field trials between 2009 and 2016,
withmost data collected in 2015 (24%) and 2016 (19%).
All observations were from South Eastern Norway,
representing the main production area (> 95%) for
wheat in Norway. The phenological growth stages
(GS) of the spring wheat plants were observed between
GS 12 (seedling growth, two leavers unfolded) and GS
90 (ripening). For all observations, field location and
sowing date was recorded in addition to the phenolog-
ical growth stage of the plants at a specific date.

Weather records connected to the growth stage
observations

Mean daily records of air temperature (T; °C), minimum
daily air temperature (Tmin; °C) and maximum daily air
temperature (Tmax; °C) were provided by the nearest
weather station owned by Agrometeorology Norway
(2020) and downloaded via the national agricultural
meteorological services (https://lmt.nibio.no/).
Additionally, the environmental variable photoperiod
(Ph, h day−1), which is the number of daylight hours,
was calculated based on the latitude of the nearest
weather station and the day of the year according to
Olseth and Skartveit (1985). All weather stations were
within a distance between 0 and 22 km from the field
trials we recorded the phenological growth stages from.

Development of a model to predict phenological growth
stages of spring wheat

Mathematical models were constructed to predict phe-
nological growth stages of spring wheat (see e-Xtra
Table S1). Nineteen different models were proposed
based on the Gompertz function (Batschelet 1976).
The models depended on air temperature alone or in
combination with photoperiod, which are the two main
environmental variables affecting crop growth
(Shaykewich 1995).

According to the cross-year validation technique
(Landschoot et al. 2012), the data were grouped by year,
and for each subset with observations from a specific
year, the model was fitted to the remaining dataset
(without using the observations of the subset under
consideration). Thereafter, the observations in the subset
were used to evaluate the predictive performance of the
model. The Bayesian calibration framework (Robert

and Casella 1999) was used to best fit the model to
observed data, while the root mean square error of
validation (RMSEV) was included for model evaluation
and to select the best model to predict spring wheat
development.

Part 2: Associations between leaf blotch disease severity
and weather conditions during different phenological
growth stages in spring wheat

Field data of leaf blotch disease severity

Observations of LBD severity were obtained from field
trials conducted by NIBIO and the Norwegian extension
service (not the same dataset as described in Part 1).
This dataset was collected in the same area and during
the same time period than the one for determining
phenological growth stages. Not all trials that contained
data on phenological stages contained the data on LBD
severity, so the two datasets contain a different selection
of field trials. The LBD severity was recorded as the
average percentage of the leaf area with LBD symptoms
on the upper two to three leaves per plant of a total of 25
plants per plot. LBD severity was then averaged over
two or three replicates (one plot per replicate) per ex-
perimental field. For each observation, registration date,
sowing date, previous crop (wheat or not wheat), host
resistance level and field location were recorded in
addition to LBD severity. Most of the observations
(99%) were from field trials located in South Eastern
Norway (Viken – 63%, Innlandet – 19% and Vestfold
and Telemark – 17%) and the remaining 1% from
Middle Norway (Trøndelag). Only observations con-
ducted during milk development stage (GS 70–79) were
included in the dataset. Moreover, observations with
missing values or poor quality of weather data (espe-
cially relative humidity records) were discarded. The
remaining data set contained 283 observations of LBD
severity and were collected between 2002 and 2018 (no
suitable data was available for 2004 and 2006). More
than 97% of the fields were ploughed, making the data
unsuitable for testing the effect of tillage on LBD sever-
ity. Almost 20% of the fields had wheat as previous
crop, and the resistance factor of the host to LBD varied
between three and seven (Russenes et al. 2019), where
one is most susceptible and 10 least susceptible.

The observed severity of LBD varied between 0%
and 100% infection and the mean severity across all
field trials was 15% with a median value of 6%. A total

202 Eur J Plant Pathol (2021) 160:199–213

https://lmt.nibio.no/


of 177 observations (63%) were recorded with LBD
severity above or equal to 5%, 120 observations (42%)
with LBD severity above or equal to 10%, and 71
observations (25%) with LBD above or equal to 20%.
The 283 observations of LBD severity were divided
randomly into a training dataset of 189 observations
(67%) and a test dataset of 94 observations (33%).

Weather records connected to the leaf blotch disease
severity observations

Hourly air temperature (T; °C), precipitation (P; mm)
and relative humidity (RH; %) were obtained from 14
different weather stations of the Agrometeorology Nor-
way (https://lmt.nibio.no/). Additionally, vapor pressure
deficit (vpd; kPa) was estimated. Saturated vapor
pressure was es t imated f rom measured ai r
temperatures according to Goff and Gratch (1946),
while the actual vapor pressure deficit was derived from
the estimated saturated vapor pressure and the measured
relative humidity (Perry and Green 1997).

Data analysis

The associations between LBD severity in spring
wheat during milk development stages and weather
conditions during different phenological growth
stages were assessed in a correlation study based
on the methodology introduced by Coakley et al.
(1982), later called ‘window-pane’. For each obser-
vation of LBD severity, growth stages were estimat-
ed daily between sowing and end of flowering by
the phenological model developed in this study
(SWM1, presented in the results below). Flowering
(GS 65) is usually the last stage at which fungicides
can be applied in Norway, as there must be a 5-
week period between the last application of fungi-
cides and the time of harvest. These estimated phe-
nological growth stages were further separated into
six groups (phenological windows), reflecting the
different plant developmental stages that correspond
to germination/ seedling growth, tillering, stem elon-
gation, booting, heading, and flowering (Table 1).
Additionally, a seventh group was constructed by
combining the tillering and stem elongation win-
dows, as the number of observations of growth stage
data from these two periods were limited in the
dataset used to develop SWM1. Based on our un-
derstanding of LBD epidemiology, 139 different

weather summarisations (air temperature, precipita-
tion, relative humidity and vapor pressure deficit)
were defined (see e-Xtra Table S2) and calculated
within each phenological window for the training
data of LBD severity. Possible associations between
LBD severity during the milk development stage and
the estimated weather summarisations were calculat-
ed using the Pearson (assesses the linear relationship
between two continuous variables) and the Spearman
correlation coefficients (assesses the ranked values
for each variable). The training data were randomly
split into two different datasets, and the correlation
study repeated for both datasets separately to ensure
robustness. Weather summarisations with a signifi-
cant (5% level) correlation (Pearson or Spearman) to
LBD severity, for both datasets, were retained as
important weather conditions for LBD development
and included as possible factors in the LBD risk
model. Several of these summarisations were highly
intercorrelated, and for the weather summarisations
that were highly correlated (>0.9), only the
summarisations with highest correlation to LBD were
retained for developing the LBD risk model.

Part 3: Prediction model to classify risk of leaf blotch
disease severity

Development of a prediction model to classify risk
of leaf blotch disease severity

In order to develop a classification model to predict the
risk of moderate to high LBD severity (≥ 5%), weather
summarizations, host resistance and previous crop were
included as variables. Two different algorithms were
tested: (1) Classification and Regression Trees (CART),
and (2) K-Nearest Neighbors (KNN). The algorithms
are respectively (1) a tree-like structure with its root
node at the top, and with a set of if-else statements used
to classify (Breiman et al. 1984), and (2) a nonparamet-
ric memory-based algorithm that requires training data
at run time (Altman 2012).

Both algorithms were fitted to the training dataset
according to the 5-fold cross validation technique,
where the data were divided between five groups, and
for each subset with observations from a specific group,
the model was fitted to the remaining dataset (without
using the observations of the subset under consider-
ation). Thereafter, the observations in the subset were
used to evaluate the predictive performance of the
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model. Contingency tables were developed and summa-
ry statistics of accuracy, sensitivity (percentage of pre-
dictions correctly classified as moderate to high pres-
ence of LBD (≥ 5%)) and specificity (percentage of
predictions correctly classified as low presence of
LBD (< 5%)) calculated. Further, model selection was
based on the accuracy, but also simplicity, biological
relevance, sensitivity and the values of the false posi-
tives (falsely classified as low presence of LBD).

Model testing and comparison

The best models to predict risk of LBD in spring wheat,
developed in this study were tested on the separate test
dataset that was not included in model development.
Additionally, the ‘VIPS 2001’ model and the ‘Hansen
model’ were tested with the same test data. The Hansen
model was developed to predict development of
Septoria spp. in winter wheat under Danish weather
conditions and requires the host growth stage as input.
Before testing this model, the growth stages of the
spring wheat fields included in our dataset were calcu-
lated by using the phenological model developed in our
study (SWM1, presented in the results below). Contin-
gency tables were created, and model accuracy, sensi-
tivity and specificity calculated and used to assess if the
new models would outperform the two older LBD fore-
casting models.

Software

MATLABR2019a was used for the data mining and for
the model development.

Results

Phenological model to predict spring wheat
development

Nineteen different mathematical models to estimate
phenological growth stages of Norwegian spring wheat
were developed based on air temperature alone or in
combination with photoperiod (see e-Xtra Table S1).
The predictive performance was estimated for each pro-
posed model, and the one with lowest error term (root
mean square error of validation, RMSEV) was selected
as the best model to predict spring wheat development
under Norwegian conditions (hereby referred to as
SWM1). The model is described in Eq. 1.

GSi ¼ min 96:4∙e−3:388∙e
−0:003∙DDi

; 90
� �

ð1Þ

The model predicts daily growth stages (GSi) and is
driven by the adjusted degree day (DDi) which is de-
scribed in Model 6 in the e-Xtra (Table S1). Specifical-
ly, the adjusted degree day is here defined as the accu-
mulated air temperature from sowing to day i, using a
lower boundary base air temperature of 0 °C and with an
additional weighing function by photoperiod (the rela-
tive number of day light hours). The output from the
SWM1model is plotted together with field observations
in Fig. 1. Table 1 shows the adjusted degree days and
the number of days for the previously defined pheno-
logical growth stage windows until flowering (GS 65),
estimated for Norwegian spring wheat based on the
SWM1 model. From the model, end of flowering (GS
65) was estimated at 715 adjusted degree days from
sowing (Table 1), while mature grain (GS 90) was

Table 1 Growth stages with estimated degree days adjusted with photoperiod from sowing to end of flowering stage and mean number of
days with standard deviation for each growth stage for Norwegian spring wheat based on observations in field trials in the years 2009 to 2016

Growth stage (GS) Phenological growth
stage windows

Degree days adjusted
with photoperiod from s
owing to end of GS window

Number of days in the
GS window, as mean and
standard deviation

[0 20)* Germination/seedling growth 255 33.5 (6.1)

[20 30) Tillering 354 9.5 (1.3)

[30 40) Stem elongation 448 8.8 (0.9)

[40 50) Booting 545 8.1 (1.0)

[50 60) Heading 654 9.1 (0.9)

[60 65) Flowering 715 5.4 (0.8)

* The bracket [indicates that the following number is included in the interval while) indicates that the previous number is not included
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estimated at 1298 adjusted degree days from sowing.
From the observed data, the average time between sow-
ing and end of flowering was 74 days (Table 1), and
138 days from sowing to estimated ripening (GS 90).
The number of days between sowing and GS 87 (hard
dough) of spring wheat is in this paper referred to as the
growth period, and the duration of this period was
estimated to be 117 days using this dataset, with a
variation between 102 and 138 days depending on lo-
cation and sowing day.

Associations between leaf blotch disease severity
in spring wheat and weather conditions at different
phenological growth stage windows

The SWM1 model was used to predict the starting date of
each of the seven defined phenological growth stage win-
dows (germination and seedling growth, tillering, stem
elongation, booting, heading, flowering and the combined
tillering and stem elongation window) for all the observa-
tions of LBD severity in the training dataset. The 139
weather summarisations defined (e-Xtra Table S2) were
estimated within each of the seven phenological windows
and then correlated with LBD severity during the milk
development stage. This was done separately for two splits
of the LBD datasets. The weather summarisations with
significant (p < 0.05) correlation (Pearson or Spearman) to
LBD severity for both splits of the data, were retained as
important weather conditions for LBD development and

listed in the e-Xtra (Table S3 and Table S4). To reflect
some major findings in the association between LBD
severity in spring wheat and weather conditions during
different phenological windows, three important weather
summarisations are visualized in Fig. 2.

Figure 2a shows the Pearson correlation between
LBD severity and rainy periods (occurrence of ≥8 con-
secutive hours with precipitation >0.2 mm) for each of
the six defined growth stage windows. LBD severity
was positively and significantly (p < 0.05) correlated
with rainy conditions during stem elongation. During
the other phenological windows, this weather
summarisation was not significantly associated with
LBD severity.

Figure 2b shows the Pearson correlation between
LBD severity and moist conditions (relative humidity
>80%) for each of the six defined growth stage win-
dows. A positive significant (p < 0.05) correlation was
identified between LBD severity and moist conditions
from stem elongation to heading, with highest associa-
tion during booting.

Figure 2c shows the Pearson correlation between
LBD severity and air temperatures between 15 and
30 °C combined with and no rain (P ≤ 0.2 mm) for each
of the six defined growth stage windows. This shows a
negative significant (p < 0.05) correlation between LBD
severity and the daily number of hours with the combi-
nation of high air temperatures (15–30 °C) combined
with no rain during tillering.

Fig. 1 Estimated phenological
development of Norwegian
spring wheat from the SWM1
model (curve) together with ob-
served data (dots)
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Development of a prediction model to classify risk
of leaf blotch disease severity

Two binary CART models to classify moderate to high
risk (≥ 5%) of LBD severity during milk development
stage were selected based on accuracy and sensitivity to
predict LBD severity, referred to as CART1 and
CART2. Both models turned out to be purely weather
based.

The CART1 model (Fig. 3) predicted risk of moder-
ate to high LBD severity when the average daily number
of hours with air temperature between 15 and 30 °C
combined with precipitation ≤0.2 mm during tillering
was below 16.3 h and the daily temperature fluctuation
(difference between the daily maximum and minimum
air temperature) during booting was below 9.1 °C. Ad-
ditionally, the model predicted risk of moderate to high
LBD severity when the average daily number of hours
with air temperature between 15 and 30 °C combined
with precipitation ≤0.2 mm during tillering was below
16.3 h, the daily temperature fluctuation (difference

between the daily maximum and minimum air temper-
ature) during booting was above 9.1 °C, and the average
daily number of hours with air temperature between 15
and 20 °C combined with relative humidity >70% dur-
ing booting was above 1.7. Based on cross validation,
CART1 had an accuracy of 80% with a sensitivity of
94% (predictions correctly classified with moderate to
high severity of LBD) and a specificity of 52% (predic-
tions correctly classified with low severity of LBD).
This gave a low percentage of false negative (6%) and
a high percentage of false positive (48%).

The CART2 model (Fig. 4) predicted risk of moder-
ate to high LBD severity when the average daily number
of hours with air temperature between 15 and 30 °C and
precipitation ≤0.2 mm during tillering was below 16.3 h
and the daily number of hours with relative humidity
>80% during booting was more than 3.7 h. From the
cross validation, an accuracy of 80% was calculated
with a sensitivity of 98% (predictions correctly classi-
fied with moderate to high severity of LBD) and a
specificity of 46% (predictions correctly classified with

Fig. 2 The Pearson correlation coefficient calculated between
LBD severity (% infection) at the milk development stage in
Norwegian spring wheat and different weather factors, during

estimated growth stage windows (GS). Asteriks indicate that the
correlation is significant at the 10% level (*) or at the 5% level (**)
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low severity of LBD). This led to a low percentage of
false negatives (2%) and a high percentage of false
positive (54%).

One KNN model was selected based on accurate
classification of LBD severity (KNN1). Using the vali-
dation data, the model had an accuracy of 85%, with a
sensitivity of 90% (predictions correctly classified with
moderate to high severity of LBD) and a specificity of
73% (predictions correctly classified with low severity of
LBD). This lead to a low percentage of false negative
(10%) and amoderate percentage of false positive (27%).

Model comparison and predictive accuracy

The predictive performance of the three models devel-
oped and selected in this study were calculated with the
test data set consisting of 94 observations of LBD se-
verity (Table 2). The two CART models performed in
the same range as with cross validation based on the
training test data set, with a predictive accuracy of 78%
and 76% respectively for CART1 and CART2. Both
models had a high sensitivity of 100% and 98% respec-
tively, with correspondingly few false negatives

Fig. 3 The CART1 model, a binary classification and regression
tree to predict the risk for moderate to high LBD severity (≥ 5%
infection) based on weather conditions (mean air temperature T,

minimum air temperature Tmin, maximum air temperature Tmax,
precipitation P and relative humidity RH) during different pheno-
logical windows in Norwegian spring wheat
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(Table 2). Only one observation of 15% LBD severity
was misclassified with low risk. Despite the high sensi-
tivity, the CART models performed with specificities of
51% (CART1) and 49% (CART2). The KNN1 model
performed with a higher accuracy (83%) than both
CART models. The sensitivity was slightly lower
(90%), but the highest observed value of the 10% false

negatives was only 12% LBD severity. In addition, the
KNN1 model had a much higher specificity (74%) than
CART1 models as it misclassified fewer observations
with moderate to high LBD severity.

Both the ‘VIPS 2001’ and the ‘Hansen model’ were
tested on the same test set as the newly developed
models in this study. Based on the test data set, we

Fig. 4 The CART2 model, a binary classification and regression
tree to predict the risk for moderate to high LBD severity (> 5%
infection) based on weather conditions (mean air temperature T,

precipitation P and relative humidity RH) during different pheno-
logical windows in Norwegian spring wheat

Table 2 The performance (accuracy, sensitivity and specificity)
of the three models developed in this study (CART1, CART2 and
KNN1), an on-line forecasting model (‘VIPS 2001’) and the

‘Hansen model’ to predict the risk of LBD severity (> 5% infec-
tion) in Norwegian spring wheat based on the test data set

Model Accuracy (%) Sensitivity1 (%) Specificity2 (%)

CART1 78 100 51

CART2 76 98 49

KNN1 83 90 74

‘VIPS 2001’ 60 76 40

’Hansen model’ 61 80 37

1 percentage of predictions correctly classified as moderate to high presence of LBD (≥ 5% disease severity)
2 percentage of predictions correctly classified as low presence of LBD (< 5% disease severity)
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estimated the predictive accuracy of the models to be
60% and 61% for the ‘VIPS 2001’ model and the
‘Hansen model’, respectively. Also, for these models,
the sensitivity was higher than the specificity, 76% and
40% for the ‘VIPS 2001’ model and 80% and 37% for
the ‘Hansen model’. Among the false negatives, the
highest LBD severity misclassified with low risk was
respectively 75% and 42% for these two models.

Discussion

The goal of our work was to develop a prediction model
for LBD risk in spring wheat under Norwegian condi-
tions that would perform better than the model currently
used in the Norwegian decision support platform VIPS.
VIPS is an important tool for the Norwegian farmers in
the integrated management of diseases and pest in sev-
eral crops. For development and validation of a LDB
risk model, data from field observations of LBD in
spring wheat were collected between 2002 and 2018
from the main cereal growing areas of Norway, and
weather data were collected from the nearest weather
stations. Several models were designed using both the
CART and KNN algorithms to identify factors (host
resistance, previous crop, and weather summarizations
during different phenological windows) associated with
development of LBD in Norwegian spring wheat. The
performance of the prediction models based on CART
was not improved by including information on host
resistance and previous crop. Thus, the selected CART
models are purely weather based. The KNN approach is
on the other hand based on a non-parametric evaluation
of similarity. The algorithm stores all the available data
and classifies the new data points to the class most
common among its nearest neighbors. Hence, all factors
(host resistance, previous crop and weather summariza-
tions during different phenological windows) contribute
in the classification, but with different weight.

As disease development and the associated need for
fungicide application is closely related to weather con-
ditions during plant development, we tested the associ-
ation between LBD severity and weather conditions at
defined plant growth stages. The data set we had avail-
able for developing our disease risk model did rarely
include information on observed growth stages. There-
fore, so as to obtain weather data related to a specific
growth stage period, a mathematical model (SWM1)
was developed to calculate the starting dates and

duration of different growth stage periods for each
spring wheat field included in this study. For the various
stages of plant development, weather factors highly
associated with risk of LBD, could then be identified.

Among the 19 simple models derived in this study to
estimate phenological development of spring wheat in
Norway, the model named SWM1 was selected as the
best model because of the lowest error term. All proposed
models followed the Gompertz growth function of de-
gree-days, in line with Shaykewich (1995), who conclud-
ed that developmental rate of cereal crops was a sigmoid
function of degree-days. As other studies agree, air tem-
perature and photoperiod are the two most important
factors for spring wheat development (Davidson and
Campbell 1983; Olesen et al. 2012; Yan and Wallace
1998; Saarikko and Carter 1996), and only these envi-
ronmental variables were evaluated in this study and
combined in SWM1. Other factors, such as N fertility,
soil moisture or water stress appeared to have no direct
effect on spring wheat development in other studies
(Davidson and Campbell 1983; Penning de Vries et al.
1989) and were therefore not considered here. The base
temperature is the threshold temperature, at which no
plant growth takes place. A base temperature of both
0 °C (Wang and Engel 1998; Dofing and Knight 1992)
and 5 °C (Olesen et al. 2012; Saarikko and Carter 1996)
are common to use and a base temperature of 0 °C turned
out to fit the Norwegian spring wheat data best. From the
SWM1 model, the growth period from sowing to GS 87
was estimated to be 117 days on average, varying be-
tween 102 and 138 in our data set. However, the growth
period (the number of days between sowing and GS 87)
is observed to vary between 120 and 127 days for the
most common spring wheat varieties grown in Norway
(Russenes et al. 2019). Hence, on average the phenolog-
ical model slightly underestimated the number of days
between sowing and hard dough (sowing - GS 87) but
gave a high variation in estimated number of days. This
large variation in the estimated growth period might be
due to the extended sowing period for spring wheat in
Norway, which can vary strongly between sites and years
due to differences in soil temperature along the cereal
growing area (it varied between 16th April and 6th June
in our data set). Nonetheless, the predicted number of
days between sowing and flowering (sowing – GS 65),
when disease risk classification is most relevant, was
within a reasonable estimate.

Weather conditions during the phenological windows
stem elongation and booting were identified as most
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decisive for LBD severity in the correlation analysis.
Both CART models showed a negative correlation be-
tween moderate to high LBD severity and a dry period
(P < 0.2 mm) with temperature between 15 and 30 °C
during tillering. This is not surprising, as the primary
inoculum is most likely coming from infected plant
material at the soil surface, and/or from infected untreated
seeds. Extended dry and warm periods during tillering
will stop the splash dispersal of the LBD pathogen
P. nodorum and prevent infection of the young leaves,
delaying the start of the epidemic considerably. Once the
stem elongation period starts (GS 30), the splash dis-
persed spores from the soil or lowest leaf level might
not reach the upper leaves to colonize successfully the
third, second and first leaf which were assessed for LBD
severity in our study. Royle et al. (1986) mentioned that
the risk of dispersal for Septoria species is highest during
stem elongation of wheat. If there is no efficient vertical
dispersal during stem elongation, the risk for infection of
the upper leaves and the head is reduced (Royle et al.
1986). Ascospores might still be able to infect the upper
leaf layers but could be arriving too late in the season and
in too low numbers to cause significant damage in Nor-
way (Ficke et al. 2016b). Number of hours with high
humidity (RH > 70–80%), daily temperatures between
15 and 20 °C and/or large temperature fluctuations
(Tmax-Tmin) during booting were positively correlated
with the risk of high LBD severity. Humidity is a major
prerequisite for sporulation and spread of LBD across the
leaf surface. At the booting stage, the upper two leaves
including the flag leafmight already be infected by splash
dispersed conidia and the high humidity will then lead to
optimal sporulation conditions and high LBD severity on
these leaf layers. It is peculiar that high temperature
fluctuations were correlated with severe LBD infections.
However, during cool, clear nights and warm days, when
temperature fluctuations are rather large, Norway can
experience extended dew periods, which could explain
the positive correlation between increased infection risk
and those temperature conditions.

Both CART models can be interpreted by using
knowledge of the biology of pathogens causing LBD
and the host plant, as they show the important effect of
weather during different phenological windows on the
LBD severity. Beside the weather factors, host resistance
level and previous crop were included in the model
development and then discarded, as only weather factors
appeared significantly correlated with LBD severity
based on our data set. However, the agronomic factors,

such as previous crop, tillage and host resistance are
highly relevant for LBD disease development in general
and should be considered when interpreting the results
from the weather-based LBD risk classification.

In contrast to the CART models, the KNN model
classifies based on similarity to other data. Specifically,
each data to be classified by KNN1 was assigned to the
class most common among its ten nearest neighbors, in
the space spanned by all factors (weather factors, host
resistance level and previous crop). As it is a non-
parametric memory-based algorithm, no further biolog-
ical interpretation of the model is possible.

The three new models were compared to two ‘older’
regressionmodels, ‘VIPS 2001’ (Elen 2007) used by the
Norwegian extension service, and with the ‘Hansen
model’ (Hansen et al. 1994) based on their accuracy,
sensitivity and specificity. The ‘VIPS 2001’ model and
the ‘Hansen model’ consider precipitation as the most
important parameter for LBD risk prediction and do not
include humidity. Also, the ‘Hansen model’ was devel-
oped for winter wheat, but adapted for spring wheat,
based on the SWM1 phenological model in our com-
parison. Both models showed an overall accuracy of
about 60% and specificity of about 40%, indicating that
they both overestimated LBD risk for the Norwegian
data. All three new models developed here performed
better than the ‘older’ models for these characteristics.
The KNNmodel had the overall highest accuracy (83%)
and specificity (74%). Sensitivity on the other hand was
highest for the two CARTmodels, but these models also
had a tendency to overestimate LBD infection, and
predicted risk of moderate to high LBD severity when
the risk was actually low in ca 50% of the tested cases
(model specificity). However, based on feedback ob-
tained from extension specialists, overestimation of risk
is preferable to underestimation of the risk (model sen-
sitivity). A user will quickly lose trust and interest in
using decision support tools if the use of these tools
leads to ‘missing’ fungicide applications that were actu-
ally needed. In addition, a prediction of ‘high risk’ will
not necessarily lead to a fungicide spray, as it only
indicates to the user that the weather conditions were
favorable for infection. The final decision on the actual
need for action, will depend also on other agronomic
factors, such as previous crop, tillage, crop density,
grain prices, yield expectations and host resistance level.

Every model is only a simplification of the actual
situation in the field and is based on several assumptions
that might not be fully met in the field. Our models
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include an estimation of growth stages of wheat based
on a given sowing date and temperature for the actual
field. Furthermore, the humidity and precipitation data
came from weather stations in the area, not from in-field
weather stations, which could lead to incorrect weather
input for LBD risk prediction. In Denmark, farmers
have stopped using local weather stations for predicting
disease risk and are now using interpolated weather data
from the DanishMeteorological Institute (Bligaard et al.
2016). These additional uncertainties regarding growth
stage estimates and weather data input constitute impor-
tant sources of error that can contribute to the relatively
low specificity. An additional source of uncertainty is
the composition of the LBD complex which is currently
dominated by SNB in Norway. Future changes in the
climate and/or agricultural practices can lead to a shift in
this complex towards STB and/or DTR, which might
lead to poorer performance of the developed model.

With these considerations in mind, we have designed
three risk models that capture the most relevant factors
for leaf blotch development on spring wheat in Norway.
These models can be used as forecasting models to
guide farmers decisions under the current Norwegian
growing conditions. Even though the new models ap-
pear to have a higher accuracy than the two older
models, we are aware that their performance might
change under future weather conditions and possible
alterations in the composition of the LBD complex.

Supplementary Information The online version contains sup-
plementary material available at https://doi.org/10.1007/s10658-
021-02235-6.

Acknowledgements This research was funded by the Research
Council of Norway through the SMARTCROP project (project
number 244526). Field experiments conducted for data collection
were financed by different projects funded by the Research Coun-
cil of Norway and the Agriculture and Food Industry Research
Funds - FFL/JA with support from several industry partners and
NIBIO. We also thank the Norwegian Agricultural Extension
Service for carrying out the field trials.

Authors’ contributions Anne-Grete Roer Hjelkrem and
Andrea Ficke designed the study. Andrea Ficke and Unni
Abrahamsen compiled the data. Andrea Ficke, Guro Brodal and
Anne-Grete Roer Hjelkrem selected the data while Anne-Grete
Roer Hjelkrem analyzed the data and derived the models with
support from Andrea Ficke, Ingerd Skow Hofgaard and Guro
Brodal. The first draft of the manuscript was written by Anne-
Grete Roer Hjelkrem and Andrea Ficke with considerable input
from Guro Brodal. All authors commented on the following

versions of the manuscript. All authors read and approved the final
manuscript.

Funding Open access funding provided by Norwegian Institute
of Bioeconomy Research. All forms of financial support are ac-
knowledged in the acknowledgement.

Declarations

Ethical approval This study does not contain any studies with
human participants or animals performed by any of the authors.

Consent for publication All authors consent to this submission.

Conflict of interest There is no conflict of interest related to this
research.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format,
as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party
material in this article are included in the article's Creative Com-
mons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article's Creative Com-
mons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Altman, N. S. (2012). An introduction to kernel and nearest-
neighbor nonparametric regression. The American
statistican, 46(6), 175–185.

Batschelet, E. (1976). Introduction to mathematics for life scien-
tists. New York: Springer.

Bergstrom, G. C. (2010). Stagonospora nodorum blotch and
Stagonospora avenae blotch. In W. W. Bockus, R. L.
Bowden, R. M. Hunger, W. L. Morrill, T. D. Murray, & R.
W. Smiley (Eds.),Compendium ofWheat Diseases and Pests
(3rd ed., pp. 75–77). St. Paul: APS Press.

Bhathal, J. S., Loughman, R., & Speijers, J. (2003). Yield reduc-
tion in wheat in relation to leaf disease from yellow (tan) spot
and Septoria nodorum blotch. European Journal of Plant
Pathology, 109(5), 435–443.

Bligaard, J., Jørgensen, L.N., Nielsen, G.C., Ørum, J.E., Hansen,
J.G., Axelsen, J., Baby, S., Pedersen, L.H. (2016).
Septoriamodel med vejrdata versus en Septoria Timer i
afgrøden. Summary of presentation at Plantekongress 2016,
Danmark, 136-137.

211Eur J Plant Pathol (2021) 160:199–213

https://doi.org/10.1007/s10658-021-02235-6
https://doi.org/10.1007/s10658-021-02235-6
https://doi.org/


Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984).
Classification and regression trees. Boca Raton: CRC Press.

Chungu, C., Gilbert, J., & Townley-Smith, F. (2001). Septoria
tritici blotch development as affected by temperature, dura-
tion of leaf wetness, inoculum concentration, and host. Plant
Disease, 85(4), 430–435.

Coakley, S. M., Boyd, W. S., & Line, R. F. (1982). Statistical
models for predicting strip rust on winter wheat in the Pacific
northwest. Phytopathology, 72(12), 1539–1542.

Coakley, S. M., McDaniel, L. R., & Shaner, G. (1985). Model for
predicting severity of Septoria tritici blotch on winter wheat.
Phytopathology, 75(11), 1245–1251.

Da Luz, W. C., & Bergstrom, G. C. (1986). Effect of temperature
on tan spot development in spring wheat cultivars differing in
resistance. Canadian Journal of Plant Pathology, 8(4), 451–
454.

Davidson, H. R., & Campbell, C. A. (1983). The effect of tem-
perature, moisture and nitrogen on the rate of development of
spring wheat as measured by degree days. Canadian Journal
of Plant Science, 63, 833–846.

De Wolf, E. D., & Francl, L. J. (1998). Empirical infection period
models for tan spot of wheat. Canadian Journal of Plant
Pathology, 20(4), 394–395.

Djurle, A., & Yuen, J. E. (1991). A simulation model for Septoria
nodorum in winter wheat. Agricultural Systems, 37(2), 193–
218.

Dofing, S. M., & Knight, C. W. (1992). Heading synchrony and
yield components of barley grown in subarctic environments.
Crop Science, 32(6), 1377–1380.

Elen, O. (2007). Forecasting models of disease in barley, wheat
and oilseed crops in Norway. NJF 23rd Congress 2007,
Trends perspectives and agriculture. NJF Report, 3(2),
209–210.

Farber, D. H., & Mundt, C. C. (2017). Effect of plant age and leaf
posit ion on susceptibi l i ty to wheat st r ipe rust .
Phytopathology, 107(4), 412–417.

Faulkner, M. J., & Colhoun, J. (1976). Aerial dispersal of
pycnidiospores of Leptosphaeria nodorum. Journal of
Phytopathology, 86(4), 357–360.

Fernandez, M. R., Clarke, J. M., DePauw, R. M., Lopez, G., &
Leeson, S. (1994). Response of durum wheat kernels and
leaves at different growth stages to Pyrenophora tritici-
repentis. Plant Disease, 78(6), 597–600.

Ficke, A., Brodal, G., & Abrahamsen, U. (2016a).
Bladflekksjukdommer og avlingstap i hvete - en komplisert
sammenheng (in Norwegian) [leaf blotch diseases and yield
losses in wheat – A complicated relationship]. NIBIO BOK,
2(1), 14–147.

Ficke, A., Asalf, B., & Ruud, A. (2016b). Ascospore biology of
Parastagonospora nodorum under Norwegian field condi-
tions. Phytopathology, 106(12), 30–31.

Ficke, A., Dieseth, J. A., Kim, M. O., & Lillemo, M. (2018a).
Bladsjukdommer i norsk hvete. Forekomst, betydning og
tiltak. NIBIO BOK, 4(1), 108–115.

Ficke, A., Cowger, C., Bergstrom, G., & Brodal, G. (2018b).
Understanding yield loss and pathogen biology to improve
disease management: Septoria nodorum blotch-a case study
in wheat. Plant Disease, 102(4), 696–707.

Ficke, A., Olsen, A. K. B., Hjelkrem, A. G. R., Nordskog, B., &
Brodal , G. (2019). Sprøyte el ler ikke sprøyte?

Varslingsmodeller for soppsjukdommer i korn og
oljevekster. NIBIO BOK, 5(1), 78–82.

Francl, L. J. (1998). Genesis and liberation of conidia of
Pyrenophora tritici-repentis. Canadian Journal of Plant
Pathology, 20(4), 387–393.

Goff, J. A., & Gratch, S. (1946). Low-pressure properties of water
from −160 to 212 F. In Transactions of the American society
of heating and ventilating engineers. New York: American
Society of Heating and Ventilating Engineers.

Hagelskjær, L., & Jørgensen, L. N. (2003). A web-based decision
support system for integrated management of cereal pests.
EPPO Bulletin, 33, 467–471.

Hansen, J. G., Secher, B. J. M., Jørgensen, L. N., & Welling, B.
(1994). Thresholds for control of Septoria spp. in winter
wheat based on precipitation and growth stage. Plant
Pathology, 43, 183–189.

Hess, D. E., & Shaner, G. (1987). Effect of moisture on Septoria
tritici blotch development on wheat in the field.
Phytopathology, 77(2), 220–226.

Jeger, M. J., Griffiths, E., & Jones, D. G. (1981). Influence of
environmental conditions on spore dispersal and infection by
Septoria nodorum. Annals of Applied Biology, 99(1), 29–34.

Jones, D. G., & Odebunmi, K. (1971). The epidemiology of
Septoria tritici and S. nodorum: IV. The effect of inoculation
at different growth stages and on different plant parts.
Transactions of the British Mycological Society, 56(2),
281–288.

Jørgensen, L. N., & Olsen, L. V. (2007). Control of tan spot
(Drechslera tritici-repentis) using cultivar resistance, tillage
methods and fungicides. Crop Protection, 26(11), 1606–
1616.

Jørgensen, L. N., Nielsen, G. C., Ørum, J. E., Jensen, J. E., &
Pinnschmidt, H. O. (2008). Integrating disease control in
winter wheat–optimizing fungicide input. Outlooks on Pest
management, 19(5), 206–213.

King, J. E., Jenkins, J. E. E., & Morgan, W. A. (1983). The
estimation of yield losses in wheat from severity of infection
by Septoria species. Plant Pathology, 32(3), 239–249.

Landschoot, S., Waegeman, W., Audeaert, K., Vandepitte, J.,
Haeaert, G., & De Baets, B. (2012). Toward a reliable eval-
uation of forecasting Systems for Plant Disease: A case study
using fusarium head blight of wheat. Plant Disease, 96(6),
889–896.

Lupton, F. G. H. (1972). Further experiments on photosynthesis
and translocation in wheat. Annals of Applied Biology, 71(1),
69–79.

McMullen, M.P. (2010). Tan spot (yellow leaf spot). In. Bockus,
W.W., Bowden, R.L., Hunger, R.M., Morrill, W.L., Murray,
T.D., & Smiley, R.W. (Eds.), Compendium of Wheat
Diseases and Pests (3rd ed., pp. 82–84) APS press, St.
Paul, MN.

Olesen, J. E., Børgesen, C. D., Elsgaard, L., Palosuo, T., Rötter, R.
P., Skjelvåg, A. O., Peltonen-Sainio, P., Börjesson, T., Trnka,
M., Siebert, S., Brisson, N., Eitzinger, J., van Asselt, E. D.,
Oberforster, M., & van der Fels-Klerx, H. J. (2012). Changes
in time of sowing, flowering and maturity of cereals in
Europe under climate change. Food Additives &
Contaminants: Part A., 29(10), 1527–1542.

Olseth, J.A., & Skartveit, A. (1985). Strålingshåndboka. Det
norske meteorologiske institutt, 6.

212 Eur J Plant Pathol (2021) 160:199–213



Penning de Vries, F.W.T., Jansen, D.M., ten Berge, H.F.M.,
Bakema, A. (1989). Simulation of ecophysiological process-
es of growth in several annual crops. Pudoc Wageningen.

Perry, R.H., & Green, D.W. (1997). Perry’s chemical engineers’
handbook. McGraw-Hill.

Pietravalle, S., Shaw, M. W., Parker, S. R., & Van Den Bosch, F.
(2003). Modeling of relationships between weather and
Septoria tritici epidemics on winter wheat: A critical ap-
proach. Phytopathology, 93(10), 1329–1339.

Rapilly, F., & Jolivet, E. (1976). Construction d’une modele
(EPISEPT) permettant la simulation d'une epidemie de
Septoria nodorum (Berk.) sur ble. Rev. Statist Appl, 24, 31–
60.

Robert, C. P., & Casella, G. (1999). Monte Carli statistical
methods. New York: Springer-Verlag.

Royle, D. J., Shaw, M. W., & Cook, R. J. (1986). Patterns of
development of Septoria nodorum and S. tritici in some
winter wheat crops in Western Europe, 1981―83. Plant
Pathology, 35(4), 466–476.

Russenes, A., Åssveen, M., Bjerke, O., & Weiseth, L. (2019).
Sorter og sortsprøving 2018. NIBIO BOK, 5(1), 28–62.

Saarikko, R. A., &Carter, T. R. (1996). Phenological development
in spring cereals: Response to temperature and photoperiod
under northern conditions. European Journal of Agronomy,
5, 59–70.

Shaner, G. (2010). Septoria tritici Blotch. In W. W. Bockus, R. L.
Bowden, R. M. Hunger, W. L. Morrill, T. D. Murray, & R.
W. Smiley (Eds.),Compendium ofWheat Diseases and Pests
(3rd ed., pp. 56–58). MN: APS Press, St. Paul.

Shaw, M. W., & Royle, D. J. (1993). Factors determining the
severity of epidemics of Mycosphaerella graminicola
(Septoria tritici) on winter wheat in the UK. Plant
Pathology, 42(6), 882–899.

Shaykewich, C. F. (1995). An appraisal of cereal crop phenology
modelling. Canadian Journal of Plant Science, 75, 329–341.

Shearer, B. L., & Zadoks, J. C. (1972). The latent period of
Septoria nodorum in wheat. 1. The effect of temperature
and moisture treatments under controlled conditions.
Netherlands Journal of Plant Pathology, 78(6), 231–241.

Shipton, W. A., Boyd, W. R. J., Rosielle, A. A., & Shearer, B. I.
(1971). The common Septoria diseases of wheat. The
Botanical Review, 37(2), 231–262.

Simpson, G. M. (1968). Association between grain yield per plant
and photosynthetic area above the flag-leaf node in wheat.
Canadian Journal of Plant Science, 48(3), 253–260.

Suffert, F., Sache, I., & Lannou, C. (2011). Early stages of septoria
tritici blotch epidemics of winter wheat: Build-up,
overseasoning, and release of primary inoculum. Plant
Pathology, 60(2), 166–177.

Te Beest, D. E., Pavrley, N. D., Shaw,M.W., & van den Bosch, F.
(2009). Disease-weather relationships for powdery mildew
and yellow Rus on winter wheat. Phytopathology, 98(5),
609–617.

Tyldesley, J. B., & Thompson, N. (1980). Forecasting Septoria
nodorum on winter wheat in England and Wales. Plant
Pathology, 29, 9–20.

Wainshilbaum, S. J., & Lipps, P. E. (1991). Effect of temperature
and growth stage of wheat on development of leaf and glume
blotch caused by Septoria tritici and S. nodorum. Plant
Disease, 75, 993–998.

Wang, E., & Engel, T. (1998). Simulation of Phenological devel-
opment of wheat crops. Agricultural Systems, 58(1), 1–24.

Wiik, L., & Ewaldz, T. (2009). Impact of temperature and precip-
itation on yield and plant diseases of winter wheat in southern
Sweden 1983–2007. Crop Protection, 28(11), 952–962.

Wiik, L.,& Rosenqvist, H. (2010). The economics of fungicide use
in winter wheat in southern Sweden. Crop Protection, 29(1),
11–19.

Wright, K. H., & Sutton, J. C. (1990). Inoculum of Pyrenophora
tritici-repentis in relation to epidemics of tan spot of winter
wheat in Ontario. Canadian Journal of Plant Pathology,
12(2), 149–157.

Yan, W., & Wallace, D. H. (1998). Simulation and prediction of
plant phenology for five crops based on photoperiod x tem-
perature interactions. Annals of Botany, 81, 705–716.

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal
code for the growth stages of cereals. Weed Research, 14,
415–421.

213Eur J Plant Pathol (2021) 160:199–213


	Prediction of leaf Bloch disease risk in Norwegian spring wheat based on weather factors and host phenology
	Abstract
	Introduction
	Material and methods
	Part 1: Phenological model to predict spring wheat development
	Phenological growth stage data from field trials
	Weather records connected to the growth stage observations
	Development of a model to predict phenological growth stages of spring wheat

	Part 2: Associations between leaf blotch disease severity and weather conditions during different phenological growth stages in spring wheat
	Field data of leaf blotch disease severity
	Weather records connected to the leaf blotch disease severity observations
	Data analysis

	Part 3: Prediction model to classify risk of leaf blotch disease severity
	Development of a prediction model to classify risk of leaf blotch disease severity
	Model testing and comparison
	Software


	Results
	Phenological model to predict spring wheat development
	Associations between leaf blotch disease severity in spring wheat and weather conditions at different phenological growth stage windows
	Development of a prediction model to classify risk of leaf blotch disease severity
	Model comparison and predictive accuracy

	Discussion
	References


