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Preface 
Most activities of NIBIO require that geospatial information of various type is available or generate new 
spatial information as output. The organization handles large amounts of data, and new information is 
generated as output leading to a rapid increase of the volume of data. It is therefore vital for NIBIO to 
have the most advanced competences to deal with geospatial big data. In 2018 NIBIO started an internal 
competence project to build knowledge in this sector across all the divisions of the institute.  

NIBIO is already using big data technologies and methodologies in several departments, and 
particularly in the centres for precision agriculture and the centre for precision forestry. These centres 
also have researchers with competences on the subject. However, until 2018 there was no coordination 
and little communication across divisions, which is leading to limited exploitation of the huge potential 
already available in NIBIO as well as a loss of efficiency due to replication of activities, data, or processes. 
The “Stordata” project, hosted by the Geomatics department under the Survey and Statistics Division is 
aiming to better link people and activities about big data for the benefit of the entire NIBIO organization. 

The aim of this document is to present selected examples of big data applications in NIBIO. 

In addition to the authors of the report, other authors contributed with Chapter 3: 

• Therese W. Berge (Division of Biotechnology and Plant Health, Department of Fungal Plant 
Pathology in Forestry, Agriculture and Horticulture) 

• Håvard Eikemo (Division of Biotechnology and Plant Health, Department of Fungal Plant 
Pathology in Forestry, Agriculture and Horticulture) 

• Anne-Grete Roer Hjelkrem (Division of Food Production and Society, Department of 
Agricultural Technology and System Analysis) 

• Ingerd Skow Hofgaard (Division of Biotechnology and Plant Health, Department of Fungal 
Plant Pathology in Forestry, Agriculture and Horticulture) 

• Brita Linnestad (Division of Biotechnology and Plant Health, Department of Fungal Plant 
Pathology in Forestry, Agriculture and Horticulture) 

• Jiangsan Zhao (Division of Environment and Natural Resources, Department of 
Biogeochemistry and Soil Quality) 

 

Ås, 03.10.21 

 

Hildegunn Norheim 
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1 Introduction 
The importance of a well-functioning bioeconomy is increasingly recognised in addressing challenges 
such as food safety, natural resource scarcity, climate change, unsustainable development, and 
consumption patterns. Defined as an economy in which food, materials and energy are derived from 
renewable biological resources involving the land and the sea (Commission, 2012), bioeconomy is seen 
as a central component of sustainable development. Availability of data and information is crucial to be 
able to take correct decisions at all levels and in many other sectors, from healthcare to transport and 
energy, including bioeconomy, big data have become fundamental.  

The implementation of big data technologies and methodologies in NIBIO is examined in the report 
Spatial Big Data tools and methods within NIBIO. A guide to new opportunities and possible ideas and 
challenges for NIBIO. During the development of that report, the authors also collected materials 
describing examples of big data usage inside NIBIO.  The materials are published in this report.  
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2 How Big Data can support the AR5 workflow 
AR5 is the authoritative land resource map at a scale of 1: 5000. AR5 is a detailed, nationally 
comprehensive dataset and the best source of information on the country's land resources. The map 
classifies the land by area type, forest site quality, tree species and soil conditions.  

A process which is particularly relevant for NIBIO is the AR5 update, which is done in cooperation with 
municipalities. While municipalities update AR5 continuously, NIBIO contribute by performing 
periodic updates every few years. Inaccuracies and area changes neglected in the continuous updating 
made by the municipalities are captured using orthophotos. In addition, AR5 is harmonized with other 
updated data sets, such as road and water as needed. 

The periodic updating of AR5 is done in cooperation with Geovekst, and AR5 is one of the ordinary 
Geovekst projects. This means that the municipalities will submit the data for updating in the same way 
as other FKB data sets. A periodic update must be adapted to aerial photography and management, 
operation, and maintenance agreements (FDV) under the auspices of Geovekst. Where there are no 
comprehensive local photography projects for the municipality, orthophoto from Geovekst can be 
combined with other photos. 

The update process of AR5 is done manually. It is not realistic to expect to completely automatize the 
update process, but it may be possible to take advantage of methods such as machine learning to improve 
the efficiency of the process and introduce some automated steps. 

Periodic updates made by NIBIO use the latest version of FKB-AR5 as a starting point. This contains 
changes from the municipality's continuous updating.  AR5 is placed over the latest orthophoto so that 
it is possible to visually see if the map matches what can be seen in the image. The map is updated where 
orthophotos show that there are changes in the landscape. In areas that need to be mapped, information 
from other archives, such as economic maps or soil data, is also used. Changes must not be projected, it 
is the current state that must be registered in AR5. In the case of periodic updating, the area condition 
at the time of aerial photography is registered. If the municipality has made registrations of more recent 
date than the orthophotos, the municipality's registrations are retained. 

2.1 AR5 Classification 
The classification of AR5 is shown in Figure 1, including colours and symbols used in the maps. Some of 
the themes are difficult to identify from an aerial image since they are not related only to the land cover 
but also information not directly visible from aerial images such as site quality. The presence of an 
operator performing the classification is therefore fundamental and, in these case, even big data 
methods cannot provide good result; those layers are elaborated in section 10. However, most of the 
layers do not have this problem and it is therefore important to exploit the potential coming from big 
data methods for automated or semi-automated mapping. 

Most problematic layers are fully cultivated, surface cultivated, infield grazing and open permanent land 
that can potentially be classified as the same area type in machine learning. Bogs (Mire?) can also fall 
under the same class. Built-up area with garden can also be misinterpreted. Further, grass-covered area 
classification is particularly challenging for a machine. 
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2.2 AR5 workflow 

 
Figure 2. Current AR5 workflow  

1. Collection and 
processing of 

data

2. Update

3. Control (land 
type)
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5. Data storage
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Collection and processing of data 

The first step is retrieving AR5 from the central base (SFBK). FKB-Water, road and railway are also 
collected. All road and water data contained in AR5 is replaced and updated with the latest data. 

A technical inspection is taken of the continuous updating carried out by the municipality. The technical 
control checks that curves, surfaces, signatures, and data capture date are correct. Depending on how 
much and how good a job the municipality has done, the latter task can take from less than an hour to 
several days of work. 

Furthermore, AR5 is adapted for the operators who will update AR5. Areas where the municipality has 
changed ground conditions and ARTYPE are highlighted for the operators. Areas that may have 
incorrect soil condition based on information from soil data will also be highlighted. 

Before updating there is also a control of what the municipality has done in terms of updates to the map, 
such as changing an area from forest to cultivated area. By doing this we get a good overview of the 
changes the municipality has made, as well as an assessment of the quality of the municipality's work. 

If huge discrepancies/errors are found in the municipality's continuous work, the municipality will be 
contacted for clarifications. 

Update 

All stages of the AR5 flow are important, and good updating is the very foundation of AR5. 

The whole municipality is checked manually using orthophoto, in addition other aids used are: 

• Economic data 

• Soil maps 

• Google Streetview 

During the update, operators will make changes where they believe it is appropriate, but there are two 
exceptions: 

• The municipality has registrations newer than the available orthophoto  

• Infield pastures - With regard to strict requirements for defining an area as infield pastures, this is 
an area that must be checked in the field. 

It will in some cases not be possible to determine the condition of an area using orthophoto; in such 
cases, the operator will have the opportunity to mark the area with a question to show they are uncertain. 
These questions can then be asked to the municipality in the clarification meeting. 

Technical control 

The technical control checks that the entire municipality has been updated by the operators. It also 
includes correction of technical errors such as surfaces, junctions etc. 

Finally, this step also includes the production of change analysis, a file that shows what we have 
changed during periodic update and is used in the next control. 

Ground control 

The fourth step is the ground-based final inspection, which is a complete review of the entire 
municipality before a clarification meeting is carried out. Both the municipalities and NIBIO’s work is 
controlled. 

In particular, the focus is the following activities: 

• Identify possible areas that have been forgotten to be updated; 
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• Areas that are not correctly updated according to current practices and rules; 

 

Clarification meeting 

The clarification meeting, marking the end of the periodic update, is carried out for all municipalities 
and is the last thing done before the new AR5 file is sent back to the Mapping Authority. There is a 
control that checks that there are no technical errors in the file before it is sent back. A file that shows 
changes done during the periodic update is also made. 

Information meeting 

An information meeting with the municipality is held after all the data has been updated in our map 
services. This meeting aims to give the municipality information on what they should focus on in the 
future and give them information about how they can look at the changes we have done. There is also 
information on how they can update AR5 based on the GIS-software the municipality is using. 

2.3 Big data Methods to improve the process of update of AR5 
A full automation of the updating process is not foreseen due to the characteristics of the maps (it is a 
combination of land cover and (potential) land use), but several steps can benefit from it. 

Identification of areas requiring update 

Periodic updates of the AR5 datasets are dependent on the availability of high-resolution aerial images, 
which are taken with intervals of several years. However, satellite images, with a much higher temporal 
frequency, can help identify areas where changes have occurred. The limitation of these images is the 
resolution, which is much lower than the precision needed by the AR5. Therefore, satellite images cannot 
be directly used to update the geometry of the AR5 polygons. 

 

A competence project made in cooperation with external data scientists, allowed to evaluate the possible 
results that can be obtained using machine learning or deep learning algorithms on aerial images. 
Several solutions have been tested. The first step towards a more automated update of AR5 is 
represented by the possibility of dividing the area under investigation into tiles and for each tile calculate 
the probability that changes have occurred after the previous updates. This can be achieved through the 
following steps. 

1. Extract AR5 and images for last update and new update to perform 

2. Divide the maps and the images into tiles 
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3. Compare the possible maps obtained by machine learning applied to both images 

4. Quantify the probability of changes in that tile 

This procedure potentially represents an improvement compared to the actual process since operators 
do not need to check all images thoroughly but can focus mainly on areas where the described procedure 
reports a higher probability of changes (and thus the need of an update). Advanced support for the 
identification of new AR5 areas 

Further methods have been tested in the aforementioned cooperation project, aiming to find an 
algorithm able to propose an updated AR5 map. It is important to remind that some AR5 classes cannot 
be identified from an automated procedure and require the interaction with a human operator. 

Although an automated procedure provides good results, the results might have an accuracy too low 
compared to that required by AR5.  

Integration of images from multiple sources at different scales 

A further development towards a more automated update of AR5 can be provided using different data 
sources at different temporal and spatial resolution. This can allow to have more frequent updates on 
areas where there have been more changes. The following Figure show the possible data sources that 
can be used in a sequence, from higher temporal resolution and lower spatial resolution, to on demand 
images with very high resolution. 

 

Figure 4. Possible data source to be used for the update of AR5. 

Satellite images

Satellite images such as 
Sentinel 2 can allow a quick 
overview of areas in needs of 
updates. Although the 
spatial resolution is 10 m or 
coarser, most of the changes 
should be identified. 

Airplane images

Airplane images have a high 
resolution that can allow a 
more accurate mapping of 
area with changes, first with 
an autmated procedure to 
identify areas needing an 
update and then by using 
the images for the update.

UAV

UAV can be used to make 
rapid survey on areas where 
there have been changes and 
there is no availability of 
Airplane images. Resolution 
can be very high and the 
cost of the survey can be 
quite small. However, this 
method can be used only for 
small regions.
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3 Applications in the Plant Health division 

3.1 Use of artificial intelligence to improve existing disease prediction 
models in VIPS 

Weather factors have different and varying effects on potato late blight (PLB) in different stages of 
disease development which are challenging to model. Various conditions are favourable for spore 
production, spore spread, survival of the spores and infection, and if one of the stages does not have 
good enough conditions, it will not be a successful infection. NIBIO has nine years of data (weather data, 
spore release and infection data from trap plants). Based on these data, the Nærstad model 1  was 
developed, and it is in use in VIPS 2  today. It is a process-based model that consists of several 
parameters. The use of artificial intelligence would be ideal to use on such an advanced data set, both 
due to the complicated biology and all the factors affecting the various stages of the disease. This will 
give a good indication of whether machine learning is a suitable method for improving existing and 
developing new disease infection models. 

The aim of the pilot application was to test the use of machine learning on PLB data. NIBIO's PLB data 
are from the seasons 2006 – 2015 and contains a total of 286 daily values. The PLB data was combined 
with weather data for the given hours. Everything was collected in a csv file.  The data has been run in a 
program developed in Python, using the Jupyter Notebook. The libraries that have been used are 
Pandas, NumPy and Keras. 

Although in this case the available dataset is rather small compared to a traditional big data application, 
it was possible to use the PLB dataset to look at different machine learning models, with different 
parameters as input. For all parameter combinations, the accuracy was estimated, describing the 
percentage of hits when the test data was used in a prediction calculation. Furthermore, a confusion 
matrix was defined for each combination of parameters, showing the proportion of false positives and 
false negatives. 

Three different algorithms have been tested on the dry rot data set: 

• Logistisc Regression (LR); is a good starting point for binary classification, 

• Support Vector Machine (SVM); is also a good starting point for binary classification, 

• Random Forest (RS). 

The first two algorithms are strong on binary classifications, while the last one performs well with 
multiclass classifications. 

The purpose of the application is to predict risk of PLB. In the observed data, a threshold value of zero 
lesions per plant was used to distinguish between infection/non-infection. The number of lesions per 
plant is a daily value. New weather parameters were calculated based on the hourly values. The day was 
defined as being between from 15:00 and 15:00, and included the following parameters: 

• TM: average temperature; 

• RR: total precipitation; 

• UM: number of hours with humidity over 80%; 

 
1 https://www.vips-landbruk.no/forecasts/models/NAERSTADMO/ 
2 https://www.vips-landbruk.no/ 
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• BT: number of hours with leaf moisture; 

• MIN: minimum temperature; 

• MAX: maximum temperature; 

• #hours with TM > 10°C: Number of hours with temperatures above 10 ° C. 

The data set was divided into a training set, containing 80% of the data, and a validation set, containing 
the remaining 20% of the data. Data weas randomly split into the two datasets. 

Table 1.  Overview of the results obtained by the different combinations of parameters using the three algorithms. 

Parameter LR SVR RS 

TM, RR 0,810 0,778 0,655 

TM, RR, UM 0,810 0,778 0,328 

TM, RR, UM, #hours with TM > 10°C 0,810 0,759 0,810 

TM, RR, UM, #hours with TM > 10°C, BT 0,845 0,759 0,810 

TM, RR, UM, #hours with TM > 10°C, BT, MIN, MAX 0,897 0,810 0,828 
 

 

 

Figure 5.  Accuracy and confusion matrix using the logistic regression with the following combination of parameters: TM, 
RR, UM, #hours with TM > 10°C, BT. 

 

Results show that all models get better accuracy with an increasing number of input parameters. It 
would certainly be possible to determine more parameters based on existing data and get even better 
results.  

Although it is not possible to directly compare these results with the model created based on the same 
dataset, it seems that the method can find good correlations with high accuracy between climatic factors 
and disease on the plants even based on few parameters. Further developments should focus on the use 
of neural networks and deep learning. However, it is important to have a larger dataset to have a more 
robust training. 
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3.2 Use of artificial intelligence to identify associations between 
environmental factors and mycotoxins in oats. 

The aim of this pilot is to test machine learning algorithms (specifically unsupervised learning) on 
existing data sets to investigate the association between cultivation conditions and the development of 
mycotoxins in Norwegian oats. Since the aim is to develop warning models with known groupings for 
risk/non-risk, it was early decided to switch to supervised learning. When using machine learning 
algorithms for classifying data, most of the time (~ 90%) is spent on preparing the data sets. In this case, 
by using existing datasets, simple pilot models were developed for warning of the risk of the mycotoxin 
deoxynivalenol (DON). Implemented algorithms are the following ones: 

• Classification trees 

• K-nearest neighbour 

• Linear discriminant analysis. 

An example of a classification tree is given in the following figure. 

 

 

Figure 6.  An example of a tree model for warning of the risk of disease in cereals based on weather data. 

 

The pilot models gave good results, but since the data set was relatively small for a robust machine 
learning application, it could not completely take the advantages of the benefits that lie in machine 
learning and big data methods.  

Fusarium species that produce DON need warm and humid conditions for infection and disease 
development. Therefore, relative humidity (RH) is an important weather factor that is often included in 
our warning models. Unfortunately, RH is difficult to measure and there is also considerable uncertainty 
associated with these measurements. We have lost large parts of our data sets as a number of weather 
stations have delivered too low values over several years. This is a general weakness of instruments that 
measure RH. NIBIO / LMT has a lot of historical data on this variable, and we envisage that it should 
be possible to use these data sets in machine learning / deep learning to estimate relative humidity or 
to be able to detect changes / needs for service at weather stations. 
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3.3 Automatic identification and quantification of plant pests  
Artificial intelligence has proven to be an effective approach to image analysis and classification, far 
more so than traditional digital image analysis. Neural networks have in several attempts been trained 
to analyse images more efficiently and accurately than humans. For example, machines are now better 
than specialists at determining whether a mole is benign or malignant. To date, NIBIO has used 
traditional, rule-based algorithms for image analysis. Using existing datasets (images of pests), we can 
train artificial neural networks to recognize plant pests automatically. This can be used in, for example, 
precision agriculture, automatic detection of pests in the field, and reduction of manual labour in 
connection with analyses under a microscope. It is possible to compare artificial intelligence 
methodologies with classical methods, both machine vision algorithms and manual counting. In this 
pilot there have been two applications related to: i) fungal spores/potato rot and ii) weeds. 

3.3.1 Automatic identification of plant pests (fungal spores / potato rot) from 
images taken under a microscope 

Sporangia of Phytophthora infestants which cause late blight in potatoes (PLB), have a characteristic 
shape that makes them well suited for exploring image recognition as a detection method. By monitoring 
the presence of spores in the air, one can estimate the risk of attack of the disease at a given time and 
compare with weather data and other observations. This is an important tool in developing models for 
many pests. Today, spores of this disease are counted manually using a microscope, and the efficiency 
potential of automation is significant. NIBIO has previously used traditional image analysis algorithms 
to detect fungal spores of an insect pathogen. The experiences from these two different methodologies 
can be compared. 

Preparation of slides 

Pictures were taken from microscope slides with a tape containing spores of Phytophthora infestants 
(PI). This is the way spores are caught in the field using volumetric spore traps. To use as training data, 
slides prepared in the lab containing only spores of PI (no contamination like soil, pollen, or other 
spores) were used to identify the spores. At a later stage, real spore trap slides were included to provide 
a more challenging environment. 

Image annotation 

Images are labelled with graphical image annotation tool (as shown in the following figure), Labelme, 
to mark the locations of spores on these images. Then a csv-file of the coordinates of these spores 
highlighted is prepared together with the original images for training. 
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Figure 7. Original image of the spores (top) and mask of annotated spores (bottom). 

 

Model training 

Due to the small size of the dataset, transfer learning using pretrained model, ResNet101 architecture 
trained on Coco data set, was used to train for spore detection. The model was trained for 10 epochs in 
total with 3000 iterations in each epoch; the learning rate was set at 1e-5 and kept constant during 
training. 

The free of charge cloud service, Google Colaboratory (Colab) together with Python 3 runtime, was the 
major platform for all the model training. Colab is equipped with a 2.3 GHz and 12.6 GB RAM Intel Xeon 
processor with two cores and a NVIDIA Tesla K80 GPU with 12 GB RAM. Data preparation was done in 
python 3. 

Results and Discussion 

Through transfer learning, the model is already good enough to detect spores of potato late blight on 
relatively clean slides with high accuracy after 10 epochs training (see figure), which enables quick spore 
quantification, number, and size in high throughput manner. However, the images collected from the 
field can be much noisier, more data from field situations should be used for training and more extensive 
data augmentation methods will be applied to enhance the model robustness in the future. 

 

Figure 8. Graph of the regression loss of the training, with constant decrease to 0.21 at epoch 10. 
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Figure 9.  Detection results of trained images (above) and spores detected on new test images (below). 

 

An attempt to compare automatic counting with the traditional, manual counting, unfortunately failed 
due to low performing in-house equipment (too long time to generate images with a quality that is 
insufficient). More advanced equipment can now be found on the marked to produce higher resolution 
pictures, having additional possibilities like creating a multi- focus image by adjusting focus while the 
picture is created (e.g., LAS X "Live Z-Image Builder" in Leica Application Suite) or creating low 
magnification picture with high depth of field. Further investments of time and money in this direction, 
given the promising preliminary results, are encouraged for NIBIO. In this direction, the cooperation 
with external partner organizations such as NMBU and its Imaging Centre can allow to have access to 
advanced equipment without large investments. 

These results show that the potential for automatic recognition and counting of spores is high when you 
have spores with characteristics making them easy to distinguish from other spores or contamination. 
But this requires that a single, high quality picture can be generated from one slide. Further, the 
resources spent to create this image should be lower than what is needed to do the spore counting 
manually. In addition, including a multi-focus image can further increase the precision of this method 
compared to the manual, because “dirty” slides with spores in several focal planes are challenging to 
count accurately in the manual way. 

3.3.2 Automatic identification of weeds 
The aim of this activity was to complete a scientific manuscript that deals with automatic identification 
and quantification of young seed-propagated weeds (dicots and monocots) vs. spring barley in 
proximate (ground-based) RGB images. The result is a comparison between a new algorithm based on 
neural networks and a traditional rule-based algorithm. The new algorithm was generally more precise 
than the traditional one but coped poorly for images with extremely high weediness. The algorithms 
based on neural networks gave better results than traditional algorithms, but representativity in training 
data is important. The usefulness of robust AI–based algorithms is large because they are basis for 
innovative precision weeding methods that can reduce the herbicides usage and other weeding measures 
in conventional and organic production, while maintaining or even increase weeding efficacy, and thus 
secure high crop yields.  
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The results are described in detail in a submitted manuscript "Precision weeding in cereals: Evaluation 
of a novel machine vision algorithm based on deep learning" (by Therese W. Berge et al.). The results, 
presented also in an oral speech with the title "Precision weed harrowing in spring cereals" at a 
conference in late 2019, represents a building block for future innovations in precision 
agriculture/precision weeding technologies and integrated pest management (IPM, in particular IPN 
principle No. 6). Further use of this result may be variable rate weed harrowing in spring cereals, a 
precision agriculture approach to reduce herbicide use and risk of herbicide resistance development in 
weeds (conventional/IPM production) or diesel use during mechanical weeding (organic production). 
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4 Processing satellite data using open-source 
libraries for distributed computing 

In this chapter, we present an example application where an integrated method based on a cluster of 
personal computers and a set of open-source software packages have been used to build-up a local 
solution for distributed processing of satellite data (in this case, Sentinel-2 satellite images are used, but 
the same could be done with any satellite or other remote sensing data). The infrastructure has been 
tested under different configurations by computing the Normalized Difference Vegetation Index (NDVI) 
and the monthly median values of time series of Sentinel-2 images. 

4.1 Hardware and software 
For this experiment, we created a network of 10 workstations with different computational and storage 
capacities, as detailed in Table 1. All devices were connected to the local network using high speed 
ethernet cables with data transfer speed of about 1 Gb/s.  

Table 2.  Specifications of the computers used in the cluster. The last computer (J) is used as a client and it is not involved 
in the computation, therefore its RAM and cores are not part of the total RAM and cores. 

ID Operating system RAM (GB) # of cores/threads Processor speed (GHz) 

A Linux (Centos) 64 6/12 3.7 

B Windows 32 4/8 3.4 

C Linux (Ubuntu) 16 4/8 3.4 

D Linux (Centos) 16 6/6 3 

E Linux (Centos) 8 4/4 3.3 

F Linux (Centos) 8 4/4 3.3 

G Linux (Centos) 4 2/4 1.9 

H Linux (Centos) 4 1/1 2.5 

I Linux (Centos) 2 2/2 2.2 

J Windows 8* 4* 2.7 

Total  154 33/49  
 

The integrated system is tested both under the Anaconda Spyder IDE and the Jupyter lab with the main 
software and their versions listed in Table 2. 

Table 3.  List of the open-source software used in this experiment. 

SW Component Version  SW Component Version 

Python 3.7.5  Dask 2.30.0 

Anaconda 4.9.2  Spyder IDE 3.3.6 

Xarray 0.15.1  Jupyter 1.0.0 
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4.2 Analysis and results 
The selected analysis for this experiment are two indicators: NDVI (Normalized Vegetation Difference 
Index,) and the monthly median value calculated for each band. Although the calculations are not 
complex, they can be demanding from a computational point of view. In particular, the median requires 
sorting all the values of the considered dataset, which is an operation that require large memory when 
computed over large datasets. 

The NDVI allow to understand if an observed pixel contains living vegetation and allows the evaluation 
of the health status of the observed vegetation, such as forest, grass, or any crop.  The NDVI is calculated 
as follows: 

NDVI = ( NIR − Red ) / ( NIR + Red )  

where: 

• NIR: value of reflectance from the Near InfraRed band (Band 8 of Sentinel-2), 

• Red: value of reflectance from the Red band (visible, Band 4 of Sentinel-2). 

The median of a series of values (in this case a time series of the values for each pixel) is the value 
separating the lower and higher half values of a given dataset (not to be confused with the mean or 
average, which is a calculated value). The median allows to understand if the distribution of the values 
is or is not skewed (although need to be used together with other indexes). For a series of values, the 
median is found by ordering increasingly all values and selecting the middle one (in case of odd number 
of observations) or the mean of the two middle values (in case of even number of values). The median 
value can be useful in optical satellite image time series (SITS) data to extract an image that is not 
influenced by clouds and shadows, that have high and low values respectively. 

The first two experiments have been done to check the performances using a single machine at a time 
and doing the computation splitting the data into chunks of different size. As it was expected, computers 
with higher RAM and multiple cores are faster in calculating both the NDVI and the median. It was 
noted that the chunk size can have a great influence on the performance of the infrastructure. Splitting the 
data into small chunks, increases the overall computation time: this is due to the higher time used for the 
transmission of data. Increased chunk size, instead, reduces the computation time if chunks have a size 
which is well under the available memory of the used machines, otherwise the elaborations can be slower, 
or some machine could even be excluded from the network if RAM is not enough to handle the chunks. In 
our case, chunk size of 2745 pixels resulted in the fastest computation (a chunk of 2745 pixels is one-
fourth of a Sentinel-2 frame, which is 10980 by 10980 pixels). 

Calculations have been successively performed in different ways to evaluate how different 
configurations of the cluster perform. When the NDVI or median are calculated using the Dask cluster 
starting from the less powerful machine and then adding a machine at a time in order of increasing 
performance, the computation time is decreasing as shown in Figures 10A and 10C, with the fastest 
computation obtained when the cluster includes all the computers. However, when the calculation of 
the NDVI or median are done starting from the best performing machine and adding all others in 
decreasing order of performances, the computation time keeps on decreasing up to a point where it 
starts to increase, as shown in Figure 10A and Figure 10B. Anyway, the computation time achieved by 
using all the computers in the cluster is the same in this case to the previous case with increasing order 
of performances as the final cluster is the same. The lowest computation time is registered when 4 (for 
NDVI) or 3 (for median) best performing computers are used. 
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A 

 

B 

 

C 

 

D 

Figure 10.  Time for computing the NDVI (A and C) and the median (B and D) by adding new machines to the framework 
in order of increasing (from I to A) and decreasing (from A to I) performances. 

 

Last experiment focused on the use of different source of data, comparing local data vs. remotely stored 
data. Results showed a big difference between the computation time when using local network disk 
compared to the use of a remote server. Data acquisition from a remote server can increase the execution 
time due to the low bandwidth compared to data acquisition from a local source. In the performed 
experiment the execution time decuplicated due the much higher time spent on data transfer. 

4.3 Conclusions 
The open-source infrastructure briefly presented and tested for the calculation of some indices, showed 
that doing analysis of big data that goes over the capacity of a single personal computer, can be possible 
in an efficient way also using a local infrastructure, before scaling up with very large analysis that require 
High Performance Computers (HPC) or Cloud services. Further, the tested infrastructure can be used 
for testing of processing routines before implementing on HPC’s or Cloud services. The implementation 
is simple, and it is based on Python, which is now widely used for big data analysis. Additionally, the 
proposed solution does not require a dedicated hardware, but can be built up on personal computers 
that are often idle during the daytime and almost always during the night in medium/large 
organizations.  

The performed test highlighted some aspects to be considered when setting up an infrastructure similar 
to the proposed one. 
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• Machines with low performances (e.g., little RAM or single core) can slow down the overall 
processing speed and therefore should not be included.  

• The connection of the devices used within the cluster and between the cluster and the data storage 
(if external) should be fast to avoid the creation of a bottleneck. 

• In the executed script, it is important to optimize data access (or eventually scattering), dimension 
of chunks used to split data, and computational algorithms. It is recommended to break down the 
entire job into smaller tasks. 
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nibio.no  

NIBIO - Norwegian Institute of Bioeconomy Research was established July 1 2015 as a merger 
between the Norwegian Institute for Agricultural and Environmental Research, the Norwegian 
Agricultural Economics Research Institute and Norwegian Forest and Landscape Institute. 

The basis of bioeconomics is the utilisation and management of fresh photosynthesis, rather than 
a fossile economy based on preserved photosynthesis (oil). NIBIO is to become the leading 
national centre for development of knowledge in bioeconomics. The goal of the Institute is to 
contribute to food security, sustainable resource management, innovation and value creation 
through research and knowledge production within food, forestry and other biobased industries. 
The Institute will deliver research, managerial support and knowledge for use in national 
preparedness, as well as for businesses and the society at large. 
NIBIO is owned by the Ministry of Agriculture and Food as an administrative agency with special 
authorization and its own board. The main office is located at Ås. The Institute has several 
regional divisions and a branch office in Oslo.  
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