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Abstract
This study investigated the potential of in-season airborne hyperspectral imaging for the 
calibration of robust forage yield and quality estimation models. An unmanned aerial vehi-
cle (UAV) and a hyperspectral imager were used to capture canopy reflections of a grass-
legume mixture in the range of 450 nm to 800 nm. Measurements were performed over 
two years at two locations in Southeast and Central Norway. All images were subject to 
radiometric and geometric corrections before being processed to ortho-images, carrying 
canopy reflectance information. The data (n = 707) was split in two, using half the data 
for model calibration and the remaining half for validation. Several powered partial least 
squares regression (PPLSR) models were fitted to the reflectance data to estimate fresh 
(FM) and dry matter (DM) yields, as well as crude protein (CP), dry matter digestibil-
ity (DMD), neutral detergent fibre (NDF), and indigestible neutral detergent fibre (iNDF) 
content. Prediction performance of these models was compared with the prediction perfor-
mance of simple linear regression (SLR) models, which were based on selected vegetation 
indices and plant height. The highest prediction accuracies for general models, based on 
the pooled data, were achieved by means of PPLSR, with relative root-mean-square errors 
of validation of 14.2% (2550 kg FM  ha−1), 15.2% (555 kg DM  ha−1), 11.7% (1.32 g CP 
100   g−1 DM), 2.4% (1.71  g DMD 100   g−1 DM), 4.8% (2.72  g NDF 100   g−1 DM), and 
12.8% (1.32 g iNDF 100   g−1 DM) for the prediction of FM, DM, CP, DMD, NDF, and 
iNDF content, respectively. None of the tested SLR models achieved acceptable prediction 
accuracies.
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Introduction

Efficient and precise grassland management and feed planning are key factors to 
increase the economic profitability of ruminant livestock production. To support farm-
ers in their management decisions, regarding timing of harvests, fertilization rates and 
feed purchase, updated information on the prevailing field situation and harvested forage 
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is necessary (Schellberg et al. 2008). Particularly in regions with long winters and long 
periods of indoor feeding, robust estimates on forage yields and quality are valuable. 
Remote sensing technology offers tools that have the capacity to assist farmers with 
such information (Weiss et al. 2020).

Many studies have already shown the potential of hyperspectral remote sensing 
together with multivariate regression techniques for the determination of cereal grain 
yield and quality (Fu et al. 2014; Kusnierek and Korsaeth 2015; Øvergaard et al. 2013, 
2010). Although such technology may be less important for production on grassland 
farms than on cereal farms (Schellberg and Verbruggen 2014), it has received increasing 
attention in research on forage management over the last years (Wachendorf et al. 2018).

A number of grassland studies have focused on field spectroscopy, commonly using 
handheld point spectrometers that are sensitive in a wavelength range of around 350 nm 
to 2500 nm, featuring a high spectral and radiometric resolution. This technology has 
been shown useable to predict forage yields and forage quality parameters, e.g. crude 
protein content or fibre content (Safari et al. 2016; Zhou et al. 2019), within a limited 
spatial area. For any practical purposes, however, the spectral data acquisition requires 
more efficient approaches. One option is to use an aircraft as platform for the sensor sys-
tem. Several authors have shown that the use of pushbroom hyperspectral instruments 
mounted on a manned aircraft has a high potential for forage yield and quality predic-
tions (e.g. Cho et al. 2007; Pullanagari et al. 2018, 2016). Since this approach requires a 
fully equipped aircraft and a pilot, it is very costly, and the setup may be a constraint for 
the flexibility needed in busy periods during the cropping season.

The use of unmanned aerial vehicles (UAVs) represents a cheaper and more flexible 
alternative. When reviewing remote sensing as a tool to assess key properties of temper-
ate grasslands, Wachendorf et  al. (2018) stated that UAVs and hyperspectral imaging 
systems may play a major role in rapid and non-destructive sampling of such informa-
tion. So far, published studies on grassland using hyperspectral imaging on a UAV have 
been carried out with a rather limited number of ground truth samples. To the authors’ 
knowledge, the most extensive work in this regard has been conducted by Wijesingha 
et  al. (2020), who reported a sample size (n) of 194, focusing exclusively on the pre-
diction of forage quality. Moreover, the literature revealed that studies utilizing multi-
variate methods for analysing hyperspectral data in grassland studies are scarce. The 
standard approach is based on the use of simple vegetation indices, comprising only a 
few variables (i.e. wavebands). There is a risk that by using only a very limited number 
of bands in the electromagnetic spectrum, valuable information is left out, as shown for 
wheat yield and quality estimation (Øvergaard et al. 2013, 2010). Capolupo et al. (2015) 
compared statistical approaches for analysing hyperspectral data from a grassland trial 
(n = 120) and concluded that a multivariate method (partial least squares regression, 
PLSR) was superior to the methods based on selected vegetation indices for predicting 
structural and biochemical features.

In this study, the possibilities of combining UAV-borne hyperspectral imaging technol-
ogy with multivariate statistics have been explored in order to design a rapid and robust 
tool to provide accurate in-season estimates of both grassland (forage) yields and quality. 
A relatively comprehensive data set (n = 707) was acquired from field trials designed to 
mimic typical forage production systems. The trials were conducted over two years in two 
of the major Norwegian agricultural regions, representing both humid continental and mar-
itime climate. The study focused on the development of thoroughly validated and general-
izable prediction models for forage yields and some of the most important feed parameters. 
In addition, prediction performance of multivariate models and models based on common 
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vegetation indices was compared. The study builds upon the initial work of Geipel and 
Korsaeth (2017), comprising additional data and analyses.

Materials and methods

Experimental sites

Field experiments were conducted at Apelsvoll and Kvithamar, two research stations of the 
Norwegian Institute of Bioeconomy Research (NIBIO), located in South-East and Central 
Norway, respectively.

At Apelsvoll (APE; 60.70 ° N, 10.87 ° E; elevation 251 m a.s.l.), the average annual pre-
cipitation (1961–1990) is 600 mm, of which 319 mm fall in the growing season (May–Sep-
tember), and the average annual air temperature is 3.6 °C (12 °C in the growing season). 
The soil is an imperfectly drained brown earth with dominantly loam and silty sand tex-
tures, developed from moraine till deposits.

At Kvithamar (KVI; 63.49 ° N, 10.87 ° E; elevation 25 m a.s.l.), the average annual pre-
cipitation (1961–1990) is 900 mm, of which 416 mm fall in the growing season (May–Sep-
tember), and the average annual air temperature is 5.0 °C (11.7 °C in the growing season). 
The soil is a poorly drained silty clay loam, developed from marine sediments.

Field experiments

At each of the two sites, a mixed sward field trial was established at the end of June 2015. 
Timothy (Phleum pratense L., cv. Grindstad), meadow fescue (Festuca pratensis, cv. Fure) 
and red clover (Trifolium pratense L., cv. Lea) were sown with a weight-based seed mix 
ratio of 77:20:3, respectively, and at a sowing rate of 25 kg  ha−1. At sowing, 50 kg N  ha−1 
was applied as a NPK compound fertilizer. In the middle of August, the sward was cut 
once to a stubble height of 70 mm.

In 2016, the trials were laid out according to a split-plot design with fertilizer rate as 
main plot (summing up to 130 kg N  ha−1  year−1, 200 kg N  ha−1  year−1 or 270 kg N  ha−1 
 year−1) and time of harvest as sub-plot (early or normal first cut). The trial at APE con-
sisted of five replicates and a total of 120 plots (6.0 m × 1.5 m), whereas that at KVI con-
sisted of six replicates and 144 plots (5.5 m × 1.5 m). Both trial layouts are shown in Fig. 1.

The leys were fertilized in spring (40 kg N  ha−1, 80 kg N  ha−1 or 120 kg N  ha−1), after 
the first cut (30, 60 or 90 kg N  ha−1), and after the second cut (60 kg N  ha−1 in all treat-
ments). The different fertilizer treatments were not chosen to investigate the effect of the 
applied N on plant growth but to ensure larger variation in plant matter and quality for a 
more robust model calibration.

In each of the years 2016 and 2017, a three-cut regime was chosen, which is repre-
sentative for silage production practice in these regions. Half of the plots were harvested at 
early heading of timothy, and the remaining plots one week later, corresponding to approx-
imately 90 growing degree days (GDD, base temperature 0 °C; Table 1). The second cut 
included all plots and was scheduled to be harvested approximately 550 GDD after the 
later first cut. The third and final cut was harvested around 10 September, but these data 
were not included in the study, since there is a general practice to harvest as late in the 
season as possible, thus making it difficult to obtain representative models for the final 
cut. The two first harvests (first cut), designated ‘early’ and ‘normal’, were both within the 
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range of phenological development stages of the plants in which farmers in the regions 
normally time their harvest. The yield and fibre content will normally increase at a high 
rate between these two stages, whereas the digestibility will decrease.

Fig. 1  The mixed sward field trial in Kvithamar (a) and Apelsvoll (b) with a typical Norwegian seed mix, 
laid out according to a split-plot design with five and six replicates and a total of 120 plots and 144 plots in 
Apelsvoll and Kvithamar, respectively. Fertilizer rate was allocated to main plots, and time of harvest (early 
or normal first cut) to the sub-plots

Table 1  Harvest dates, growing degree days (GDD, base temperature 0 °C) and precipitation sum for the 
first two cuts

a Accumulated in the period from the day of estimated growth start according to Grovfôrmodellen (Nord-
skog et al. 2018) until harvest of the first cut
b Accumulated in the period from 1. cut (normal) until harvest of the second cut

Year Location 1. cut (early) 1. cut (normal) 2. cut

Date GDDa Pre-
cipitationa 
[mm]

Date GDDa Pre-
cipitationa 
[mm]

Date GDDb Precipi-
tationb 
[mm]

2016 APE 7 June 496 114 14 June 586 116 28 July 700 79
KVI 13 June 563 102 17 June 619 102 27 July 618 111

2017 APE 14 June 551 124 21 June 658 128 26 July 527 37
KVI 9 June 473 161 17 June 588 202 25 July 522 163



1441Precision Agriculture (2021) 22:1437–1463 

1 3

Sensor and sensor platform

The Rikola Hyperspectral Imager (Rikola HSI, Senop Optronics, Lievestuore, Finland) was 
utilized to measure the canopy reflection at a nadir view. The Rikola HSI is a small and 
robust snapshot camera with a resolution of 1 mega-pixel and a weight of 720 g. It can cap-
ture up to 32 different wavebands sequentially, which are stacked to a hyperspectral image 
cube and stored in a proprietary file format. Due to the movement of the camera in flight, 
the wavebands of such a hyperspectral image cube are spatially un-aligned. Therefore, the 
term image stack will be used for imagery before and the term hypercube will be used for 
imagery after image co-registration.

The Rikola HSI was configured to register wavebands in the electromagnetic spectrum 
from 450 nm to 800 nm with full width half maxima (FWHM) of 10 nm to 20 nm. As high 
correlations of the red-edge (RE) and near-infrared (NIR) reflection with the forage yield 
and quality was expected, spectral resolutions of 5 nm and 10 nm were used in the range 
680 nm to 745 nm and 760 nm to 790 nm, respectively. In the 2017 season, the waveband 
configuration in the VIS region was slightly changed in order to ensure a more balanced 
spectral distribution of the selected wavebands (Fig. 2).

As sensor platform, a multi-rotor UAV (Spreading Wings S1000 + , DJI, Shenz-
hen, China) was used. It was modified to carry a high-precision 3-axes stabilized gimbal 
(Ronin-M, DJI, Shenzhen, China), on which the Rikola HSI was mounted. With this setup, 
the UAV had a take-off weight of around 10 kg, which allowed for a flight time of 12 min.

Measurements

In 2016 (the first year of ley), UAV-borne measurement campaigns were performed right 
before the two first cuts and the second cut of the field trial in APE, only. At KVI, some 
spectral information was acquired with a hand-held sensor, but for consistency these data 
were not included in the current study. In 2017 (the second year of ley), UAV-borne meas-
urement campaigns were carried out right before the two first cuts and the second cut at 
both locations.

In the beginning of each flight mission, ground control points (GCP) were staked out 
around the field trials using a real-time kinematic global navigation satellite system (RTK-
GNSS) receiver (Geo7X, Trimble, Sunnyvale, CA, USA) and were marked with black/
white reference targets. Before take-off, the gimbal was enabled to stabilize the Rikola 
HSI’s viewing angel in a nadir position. A dark current image stack was captured by cov-
ering the lens with an opaque foam plastic and a grey reference image stack was captured 
over a levelled spectral reference panel (Zenith Lite™ Diffuse Reflectance Target ~ 50%R, 

Fig. 2  Waveband setup of the Rikola Hyperspectral Imager in the 2016 and 2017 season. The two setups 
differ slightly in the VIS part of the electromagnetic spectrum
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Sphere Optics, Herrsching, Germany). Then, the field trials were overflown at a scheduled 
flight altitude of 50  m above ground level and a forward speed of 3  m  s−1. To achieve 
an image forward lap of 70% and a side lap of 60%, waypoints were predefined and an 
automatic camera trigger was set to record images every 3 s. All flights had a duration of 
approximately 7 min and were performed in stable, fine weather with clear skies.

Immediately after each flight, the plot biomass was cut by a plot grass harvester (F-55, 
Haldrup, Ilshofen, Germany) with a stubble height of 70 mm. Fresh matter (FM) yields 
were successively recorded in the field, and sub samples of around 0.5–1 kg FM were taken 
and dried at 60 °C for 48 h before dry matter (DM) recording.

Then, approximately half of the sub samples were randomly selected for further near 
infrared reflectance spectroscopy (NIRS) analysis. This required that the dried yield sam-
ples were chopped and milled to pass a 1  mm sieve (Cyclotec 1093 sample mill, Foss 
companies, Hillerød, Denmark), prior to the analyses of crude protein (CP), dry matter 
digestibility (DMD), neutral detergent fibre (NDF) and indigestible neutral detergent fibre 
(iNDF). The analyses were performed with a near infrared reflectance spectrophotometer 
(NIR systems 6500, Silver Spring MD, USA), as described by Fystro and Lunnan (2006).

Data pre‑processing

Data pre-processing was carried out on data from each flight mission individually by fol-
lowing a processing chain, built upon five different software packages. An overview of the 
pre-processing chain is given in Fig. 3.

The individual steps are explained in the following. Firstly, the Rikola HSI software 
(Hyperspectral Imager Software, v. 2.0.1-beta, Senop Optronics, Lievestuore, Finland) was 
used to conduct a radiometric calibration of each image stack, and to obtain a conversion 
from a proprietary to a generic data format for further processing. For each set of imagery, 
a corresponding dark current image stack was selected to account for the noise created by 
small electric currents on the complementary metal–oxide–semiconductor (CMOS) sen-
sor. The Rikola HSI software was then used to remove the lens’ vignetting effect and to 
perform a radiometric calibration of the sensor signals from digital numbers to spectral 
radiance, utilizing laboratory calibration information and measurements from the system’s 
irradiance sensor.

Secondly, a self-developed Python routine (Python Software Foundation 2021) was 
used along with the libraries OSGeo (OSGeo Python Library, v. 2.1.3), openCV (Open 
Source Computer Vision Library, v. 3.2.0), and NumPy (NumPy Python Library, v. 1.11.0). 
The routine converts each image stack to reflectance using its corresponding grey reference 
image stack and the reference panel’s calibration values:

where Rλ is the spectral reflectance, Lr
λ
 is the spectral radiance reflected from the canopy, 

LRP
λ

 is the spectral radiance reflected from the grey reference panel, rRP
λ

 is the reference 
panels’ spectral reflectance, and λ is the center wavelength of the waveband. Then, the lens’ 
geometric distortion effects were removed from each image stack by applying an individual 
camera calibration for each waveband. Subsequently, the wavebands of each image stack 
were spatially registered to a predefined master band and cropped to a hypercube. The 

(1)Rλ =
Lr
λ

LRP
λ

× rRP
λ
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implemented feature detection, feature matching and co-registration procedure was adapted 
from the source code of the MEPHySTo Toolbox (Jakob et al. 2017).

Thirdly, the 3D reconstruction software PhotoScan (PhotoScan Professional, v. 1.3.4, 
Agisoft, St. Petersburg, Russia) was used to process 3D point clouds, digital surface mod-
els (DSM) and accurate ortho-image hypercube. To guarantee an accurate geo-reference, 
each hypercube’s coarse GNSS location and the precise GCP coordinates were used to 
determine the exterior orientation parameters.

Fourthly, the geographic information system QGIS (QGIS Development Team 2021) 
was used to manually select ground points at the plots’ borders and to extract the corre-
sponding elevation information from the DSM that was produced in the previous step. The 
ground points were then used together with the extracted elevation information to create 
a digital terrain model (DTM), applying an inverse distance weighted interpolation algo-
rithm. Consequently, the DTM was subtracted from the DSM to produce an elevation 
model carrying plant height (PH) information:

where PH is the resulting plant height above ground, DSM is the elevation of the surface 
model, and DTM is the elevation of the digital terrain model above mean sea level.

Finally, the statistical computation software R (R Core Team 2021) was used along 
with the libraries rgdal (Bindings for the Geospatial Data Abstraction Library, v. 
1.1–10), sp (Classes and Methods for Spatial Data, v. 1.2–3), and raster (Geographic 
Data Analysis and Modeling, v. 2.5–8) to overlay the resulting elevation model with 
a geographical vector data set, containing the field trials’ plot boundaries, in order to 
extract the average plant height for each plot. In the same way, the radiometric informa-
tion from each pixel of the ortho-image hypercube was extracted and an average reflec-
tance spectrum was calculated for each plot utilizing the library hyperSpec (Work with 
Hyperspectral Data, v. 0.98–20 150 304). Then, the average spectra of the mixed sward 
field trial from 2016 were resampled to the waveband setup of 2017, using a natural 
spline interpolation. Consequently, each average spectrum was individually normalized 
to a mean reflectance value of 1. The mean-normalized spectra then served as basis 
for the calculation of the popular normalized difference vegetation index (NDVI; Rouse 
et al. 1974) and the red-edge inflection point (REIP; Guyot et al. 1992):

where Rλ is the spectral reflectance of wavebands with a centre wavelength of λ in [nm].

Regression modelling and statistics

Uni-response regression analyses were conducted with the statistical computation 
software R. The predictor variables were pooled to several observation matrices to 

(2)PH = DSM − DTM

(3)NDVI =

(
R780 − R670

)

(
R780 + R670

)

(4)REIP = 700 + 40 ×

((
R670 + R780

)
× 0.5 − R700

)

(
R740 − R700

)
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investigate their potential to estimate forage yield and quality with a general model, and 
for each location and year individually.

A cluster analysis was performed to split the observations matrices into equally sized 
sets for calibration and validation (1:1 C:V-ratio) by assigning similar observations to 
either set. As a measure of similarity, the Euclidean distance of two spectra matrices 
was recursively calculated for all pairwise combinations of the observations. In each 
recursion step, the observation pair with the minimum distance was taken out of the 
observation matrix, split, and assigned to either set.

Then, the spectra matrix and its corresponding response matrix were mean centred 
(mean value of 0) and analysed utilizing the library pls (Partial Least Squares and Prin-
cipal Component regression, v.2.5-0). Powered partial least squares regression (PPLSR) 
models were fit to the spectra, while controlling the range for the power optimization 
parameter γ from a lower limit of 0.5 to an upper limit of 1 (Indahl 2005). To avoid 
over-fitting, a two-step approach was chosen. In a first step, the number of PPLSR com-
ponents was selected by searching for a local minimum of the mean-square error (MSE) 
of validation within the first ten components (Mevik and Wehrens 2007). If a local mini-
mum of the MSE could not be found within the first ten components, the MSE of the 
tenth component was selected instead. In a second step, the model selection strategy, 
proposed by Indahl (2005), was applied. Utilizing a chi-squared test of variance, defin-
ing the selected MSE as estimate for the true model error variance, it was tested if the 
MSEs of simpler models with less components significantly differed from the selected 
MSE. From those MSEs that did not differ significantly (p ≤ 0.05), the corresponding 
model with the fewest components was selected.

Consequently, the standardized regression coefficients Beta ( B ) were calculated 
by multiplying each regression coefficient times the ratio of its corresponding predic-
tor variable’s standard deviation and the dependent variable’s standard deviation. The 
predictor variables with an absolute standardized regression coefficient greater than the 
standard deviation of all standardized regression coefficients were then defined as domi-
nant contributors to the model:

where bλ is the regression coefficient of a waveband with centre wavelength λ , sx,λ , sy , and 
sB are the predictor variable’s standard deviation, the dependent variable’s standard devia-
tion, and the standard deviation of all standardized regression coefficients, respectively, 
and λdom indicates the center wavelength of a dominant waveband.

In order to set a benchmark for model evaluation, simple linear regression (SLR) mod-
els, based on NDVI, REIP and PH as predictor variables were calibrated and validated with 
the same data sets that were used for the PPLSR models.

Finally, the PPLSR and SLR models were compared in terms of their predictive 
power by using the models’ root-mean-square errors (RMSE) of validation as measure of 
comparison:

(5)Bλ = bλ ×
sx,λ

sy

(6)||Bλ
|| > sB ⇒ λdom

(7)RMSE =

√
1

n
×

∑n

(i=1)
(Pi −Mi)

2
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where n is the number of samples, Pi are the predicted values, Mi are the measured values, 
and 

−

M is the measured values’ arithmetic mean.

Results

Measurements

All hyperspectral measurements were conducted according to schedule. Due to a problem 
with the Rikola HSI’s memory card, image stacks were not recorded for the first flight mis-
sion in APE 2017 (early first cut). As the 60 trial plots were already harvested when the 
error was noticed, a repetition of the hyperspectral measurements was not possible. Sam-
pling of FM and DM yield was successful, except for one erroneous record in APE 2016 
that lead to a missing value for one plot (second cut). The measured yields and quality 
parameters followed an expected distribution and are given in Tables 2 and 3, respectively.

Although fresh matter yields were highest in KVI 2017 (second year of ley), dry matter 
yields were highest in APE 2016 (first year of ley), indicating a higher plant water con-
tent for the KVI 2017 data set. The highest average dry matter yield at a single date was 
recorded on the normal first cut in APE 2017 (second year of ley). As a result of the vary-
ing fertilization treatments, the yields from both locations, APE and KVI, generally exhib-
ited a wide range from low yielding to high yielding trial plots. Due to the missing image 
stacks from the first flight mission in APE 2017, the yields from the early first cut were not 
included in Table 2.

Quality parameters, especially crude protein content, were also influenced by the differ-
ent fertilization treatments and showed a wide variety, following reasonable distributions 
except for one occasion: The crude protein contents in APE 2017 (second cut) were unusu-
ally high, which may be explained by unusually high clover content in the swards of this 
cut (averaging 23.5 g 100  g−1 DM, data not shown). As for fresh and dry matter yields, the 
quality parameters from APE 2017 (early first cut) were not included in Table 3 due to the 
missing image stacks from the flight mission.

(8)RMSE[%] =
100

M
× RMSE

Fig. 5  Scatter plot of measured vs. predicted validation results for fresh (FM) and dry matter yields (DM), 
along with the standardized regression coefficients Beta and their standard deviation (SD) for the general 
PPLSR models
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Pre‑processed data

The processed ortho-image hypercubes and the DSMs showed an average ground sam-
ple distance (GSD) of 37 mm. The average residual RMSE of the GCP 3D locations was 
47 mm. The plot-wise extracted and resampled reflectance spectra exhibited a general trend 
of differences in magnitude between the locations and years. Mean-normalization removed 
this trend and is displayed as examples for the average spectral reflectance of the measure-
ments aggregated by location and year Fig. 4.

Fig. 6  Scatter plot of measured vs. predicted validation results for crude protein (CP), dry matter digest-
ibility (DMD), neutral detergent fibre (NDF) and indigestible neutral detergent fibre (iNDF), along with the 
standardized regression coefficients Beta and their standard deviation (SD) for the general PPLSR models

Fig. 7  Dominant wavebands of the general PPLSR models for fresh (FM) and dry matter yields (DM), 
crude protein (CP), dry matter digestibility (DMD), neutral detergent fibre (NDF) and indigestible neutral 
detergent fibre (iNDF)
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Model outcomes

The PPLSR model results for forage yield and quality are given in Tables 4 and 5, respec-
tively. Both tables show the calibration and validation results for one generalized (i.e. using 
pooled datasets) and three individual models for each combination of location and year. 
Although the validation results are most important in terms of model generalization, the 
calibration results are shown for completeness. It should be emphasized that outliers were 
not removed from any of the models.

All PPLSR models for the prediction of fresh and dry matter yields showed relatively 
low RMSEs of validation, with models that were based on data subsets achieving slightly 
higher prediction accuracies than the general models for fresh matter (RMSE of 14.2%, 
2358 kg FM  ha−1) and dry matter prediction (RMSE of 15.2%, 555 kg DM  ha−1). All mod-
els followed a similar trend, exhibiting γ values in the upper range (0.86–1.00), empha-
sizing the importance of correlation between predictors and dependent variables. With 9 
components, both general models were more complex than the models that were based on 
data subsets (2–5 selected components).

Wavebands in the RE and NIR region contributed more to the prediction of fresh and 
dry matter yields than those in the VIS region Fig. 5.

The prediction of quality parameters with PPLSR models followed a similar trend to 
the prediction of fresh and dry matter. General models achieved slightly lower predictive 
performances than prediction models built on data subsets (Table 5). Again, general mod-
els were more complex and featured a higher number of selected components (5–9) and 
the models for the prediction of crude protein concentration, neutral detergent fibre and 
indigestible neutral detergent fibre showed γ values close to 1 (γ = 0.89–0.99). In contrast, 
the general model for the prediction of dry matter digestibility had a much lower γ value 
(0.63), indicating that larger weight was given to predictors with high variance. It is note-
worthy, that the model for the prediction of crude protein content that was solely built on 
the KVI 2017 data set, explained less than 30% of the variation in measured crude protein 
 (R2 = 0.27).

Wavebands in the RE and NIR region contributed mainly to the prediction of crude 
protein content, wavebands in the NIR region to the prediction of dry matter digestibility, 
wavebands in the RE region to the prediction of neutral detergent fibre, and wavebands 
in the green, RE and NIR region to the prediction of indigestible neutral detergent fibre 
Fig. 6. The scatter plot for crude protein content estimation shows a tendency towards over-
estimation of lower and underestimation of higher crude protein contents, which might 
result from the unusually high clover contents in the second cut of the APE 2017 data set 
and the unexplained variation within the KVI 2017 data set.

Figure 7 summarizes the centre wavelengths λ of those wavebands that were found 
to be dominant contributors to the general prediction models. Only four of the dominant 
wavebands were in the VIS part of the electromagnetic spectrum, and they were either 
used in the prediction of dry matter yields (λ = 520 nm), neutral detergent fibre content 
(λ = 695 nm), or indigestible neutral detergent fibre content (λ = 520 nm and 530 nm). 
All other dominating wavebands were in the RE and NIR region.

The SLR model results for forage yield and quality are given in Tables  6 and 7, 
respectively. The prediction performance of these models, based on the vegetation indi-
ces and the plant height, was generally poor.

Although model predictions of fresh and dry matter yields based on the APE 2017 
data set with PH as predictor variable achieved coefficients of determination of almost 
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0.7, the RMSEs of validation were low compared with the performances of the corre-
sponding PPLSR models. None of the SLR models predicted fresh matter yields with an 
RMSE lower than 24.3% (3972 kg FM  ha−1) and dry matter yields with an RMSE lower 
than 24.1% (875 kg DM  ha−1).

The prediction of quality parameters with the SLR models followed a very similar pat-
tern to the prediction of fresh and dry matter yields. Only one SLR model obtained results 
being reasonably close to the corresponding PPLSR model in terms of predictive power; 
the model predicting crude protein content based on the APE 2016 data using NDVI as 
predictor. This NDVI model achieved an RMSE of 12.4% (1.21 g 100  g−1 DM), whereas 
the PPLSR model achieved an RMSE of 10.9% (1.06 g 100  g−1 DM).

Discussion

The PPLSR modelling approach returned models that achieved high prediction accuracies 
for both forage yield and quality estimates. In contrast, SLR models based on the indices 
NDVI, REIP and PH as predictor variables did not achieve satisfactory prediction accura-
cies, except for some models that were based on subsets of the data. Both the multivariate 
and the simple linear regressions revealed that subset models, calibrated on data from one 
location and year, performed better than models based on pooled data. It should, however, 
be emphasized that the subset models were validated on subsets of the data (i.e. data from 
the same field and year, but not used in the calibration). When the subset models were 
tested on pooled data, their prediction accuracies were poor (not shown). In other words, 
the subset models were less generalizable than the models based on the pooled data.

Generalizability may be expressed as a model’s ability to perform well when applied to 
new conditions, while maintaining the same set of explanatory variables and parameters 
(Patton et al. 2015). The generalizability of a model depends on many factors, such as type 
of data, the degree of variation between the environment in which the calibrations were 
performed and the new conditions, and the size and quality of the calibration data. When 
predicting yields and yield quality in spring wheat utilizing hyperspectral data, Øvergaard 
et al. (2013) showed that the generalizability of their models (expressed as the normalized 
RMSE of validation for an independent dataset with n = 144) increased with increasing size 
of the calibration dataset from n = 160 to n = 832. The authors attributed this effect largely 
to the increasing variation in the calibration data, when more years and sites were included.

As prediction models based on large datasets are more favourable in terms of generaliz-
ability than models calibrated on smaller data sets, the discussion focus on the PPLSR pre-
diction models that were based on the pooled data sets. Nevertheless, the data sets contain 
measurements on only one of many common grassland species compositions. Hence, apart 
from other aforementioned reasons, the resulting PPLSR prediction models may be limited 
in terms of generalizability when used in other grassland types.

Within grassland research, studies that have utilized airborne hyperspectral imaging 
with data sets at sample sizes that allow statements on the generalizability of the calibrated 
models are scarce. Model performance in the current study, here defined as the relative 
error of prediction (i.e. normalized RMSE of validation), has therefore been compared to 
some studies that have presented models with a limited generalizability, i.e. with smaller 
number of calibration and validation samples, sample locations and years included. There 
exist, however, more comprehensive studies that have utilized handheld hyperspectral sens-
ing technologies, and these were used as additional benchmarks. It is noteworthy that these 
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handheld instruments commonly enable a much higher spectral and radiometric resolu-
tion at a wider spectral range, from VIS to shortwave infrared (SWIR), than hyperspectral 
equipment suitable for mounting on UAVs (such as the Rikola HSI used in this study). 
Measurements in the shortwave infrared range are beneficial in terms of multivariate model 
calibration for quality parameters, such as proteins, cellulose, and lignin, since these prop-
erties show absorption of radiation in the SWIR part of the electromagnetic spectrum (Cur-
ran 1989).

Forage yield prediction

The PPLSR model presented was able to predict fresh matter yields at a high accuracy. 
With a prediction error of 14.2%, it performed better than the model of Capolupo et  al. 
(2015; 17.6%, n = 120), who used PLSR and leave-one-out cross validation (LOO-CV) 
on data from experimental grassland swards, fertilized with N levels ranging from 0  kg 
to 340  kg annual N  ha−1. The difference between PPLSR and PLSR is that the former 
includes a power optimization parameter γ, which has the ability to focus the algorithm. 
Using a γ-value of 0.5, the PPLSR degenerates to the PLSR-solution, which focus on 
the covariance of the data (i.e. by finding the multidimensional direction in the predic-
tor space that explains the maximum multidimensional variance direction in the space of 
the dependent variables). When increasing the γ-value above 0.5, the correlation between 
predictors and dependent variables is given gradually more weight in the algorithm. In 
all PPLSR-models presented, the automatically fitted γ values were larger than 0.5, and 
thereby obtaining higher prediction accuracies than what had been the case when using a 
PLS approach. The finding that a modelling approach based on PPLSR was superior to a 
PLSR-approach, was also reported by Øvergaard et al. (2013, 2010), when analysing yields 
and quality in spring wheat.

Whereas Capolupo et al. (2015) used hyperspectral data acquired by a UAV, a method 
comparable to the current study, Schut et  al. (2006) utilized a sensor system consisting 
of three active hyperspectral sensors mounted on a mobile ground platform. With a spa-
tial resolution of measured reflectance on the soil surface of up to 1.39 by 152 mm, they 
reported prediction errors of fresh matter herbage yield of 7–18%, when using PLSR and 
leave-k-out cross validation (LKO-CV, n = 76–413) on pure and mixed perennial ryegrass 
(Lolium perenne L.) and white clover (Trifolium repens L.) swards with N applications of 
0–450 kg annual N  ha−1. In spite of the large differences between the current study and 
that of Schut et  al. (2006) in terms of spatial resolution and type of sensors, the results 
were within the same range. Considering that the use of UAV represents a very efficient 
method for data acquisition compared to most ground-based approaches, the results appear 
promising.

Dry matter yields were also predicted at a high accuracy, with an error of 15.2%. This 
is comparable to that reported by Capolupo et al. (2015; 15.9%), who appeared to improve 
their accuracy noticeably when predicting DM yields compared with FM yields. In con-
trast, the model performance in this study became slightly poorer when predicting DM 
yields. In the ground based approach of Schut et al. (2006), the authors reported the same 
phenomenon, as their relative error increased from 7–18% to 8–22%, when moving from 
FM to DM yield predictions. Presumably, FM yield predictions may obtain higher accura-
cies when compared to DM yield predictions since spectral signals observed from the sen-
sor may be a more direct measure of the plants’ FM than DM. This assumption is supported 
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by Wang et al. (2011). They studied spectral reflectance from green leaves combining field 
data and simulations with the PROSPECT-model and reported that leaf internal structure is 
a confounding factor for dry matter estimation over the entire NIR-spectrum. The findings 
of this study could also be indirectly related to water content. Carter (1991) found second-
ary effects of water (i.e. effects not resulting solely from the radiative properties of water) 
in leaves throughout the 400–2500 nm wavelength range.

Zhou et al. (2019) utilized a hand-held spectrometer in combination with support vec-
tor machine (SVM) regressions to estimate selected forage crop properties. Splitting their 
data of mixtures of different grass and legume species (n = 377) in two, corresponding to a 
2:1 ratio for the size of the calibration and the validation data set (C:V-ratio), they obtained 
an accuracy of their DM forage biomass estimates of 14.1%. Other studies have indicated 
that there may be a potential to achieve even higher accuracies by inclusion of additional 
predictor variables. Näsi et al. (2018) and Oliveira et al. (2019) reported prediction errors 
in the range from 6% to 12.5%, when using random forest (RF) regression models and 
LOO-CV based on the full spectrum (up to 36 wavebands) and adding 3D features and 
vegetation indices as predictors. Viljanen et al. (2018) found an error of 12.7% with a mul-
tiple linear regression (MLR) model and LOO-CV, using plant height, vegetation indices 
and RGB information as predictors. These three studies, however, used data from the same 
field trial, and the models were run on very small data sets (n = 24) of timothy dominated 
swards, mixed with meadow fescue. Fertilizer was applied with six N levels from 0 kg N 
 ha−1 to 150 kg N  ha−1 and the growth was monitored over a short period of 23 days, only. 
In order to conclude on any possible benefits of using additional predictor variables to 
those obtained by spectral reflection, such studies need to be validated with far more com-
prehensive datasets.

In this study, the most dominant wavebands were observed within the spectral regions of 
the red-edge inflection point and the NIR, for both models predicting FM and DM yields. 
The RE region (i.e. the region around the point of maximum slope in the reflectance spec-
tra of green leaves, which normally occurs between 680 nm and 750 nm; Gitelson et al. 
1996) is long known to be strongly correlated with the chlorophyll concentration of green 
biomass (e.g. Pinar and Curran 1996). In contrast, the NIR reflection depends on structural 
components like the amount and thickness of cell walls and inter-cellular spaces (Gausman 
1977; Knipling 1970), and increases normally with increasing biomass density. Wavebands 
in the chlorophyll absorption areas of VIS (i.e. with peaks at 430 nm, 460 nm, 640 nm and 
660 nm; Curran 1989) did not appear to affect the models much, even though VIS radiation 
is mainly influenced by leaf pigments (Gates et al. 1965; Guyot et al. 1992).

Forage quality prediction

The selected PPLSR-model, estimating crude protein (CP) content, achieved a high accu-
racy with an error of 11.7%. This is comparable with the results reported by Wijesingha 
et al. (2020), who obtained an accuracy of 10.6% when gathering data from eight grass-
land sites with different management practices and species compositions, using a UAV-
borne hyperspectral camera in combination with SVM regressions with a C:V-ratio of 4:1 
(n = 194). The authors were surprised to find that the reflectance at wavelength 718 nm was 
most fundamental for their best CP-model, since this band is not related to any foliar chem-
ical absorption feature, such as protein. The findings of this study support, however, that 
reported by Wijesingha et al. (2020), as the most dominating bands in the CP-model had 
centre wavelengths at 720 nm and 725 nm. All these wavelengths are located within the 
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region of the red-edge inflection point, which is known for its strong correlation with leaf 
chlorophyll and nitrogen content (Fava et al. 2009; Gitelson et al. 2003). Although the RE 
region does not contain typical protein absorption bands, the findings may be explained by 
a more indirect effect: almost 80 years ago it was established that the chlorophyll-protein 
compound in green leaves contains a significant proportion (around 16%) of the total leaf 
protein content (Smith 1941).

Capolupo et al. (2015) reported an even smaller prediction error when estimating CP 
(9.7%), using PLSR and LOO-CV. They found correlations above 0.5 (i.e. Pearson’s r) 
between spectral bands of the hyperspectral dataset and crude protein for the entire range 
from 450 nm to 720 nm, with peaks around 460 nm and 680 nm. Pullanagari et al. (2018), 
using a pushbroom hyperspectral imaging system mounted on a manned aircraft, reported 
an absolute prediction error of 2.2 g CP 100  g−1 DM (corresponding to a relative error of 
13.5%), when using RF regressions and a C:V-ratio of 3:2 (n = 150). The underlying data 
was sampled from 150 sites with perennial ryegrass and white clover as the dominant spe-
cies. They identified distinct spectral features in the SWIR region as main contributors. 
These features lie outside the measurement range of the sensor used in the current study, 
but the findings show that it is possible to achieve a comparably high accuracy of CP-pre-
dictions using the RE-NIR region only. Using ground based field spectroscopy, Pullanagari 
et al. (2012; PLSR with 1:1 C:V-ratio, n = 214, mainly perennial ryegrass and white clover 
grassland), Schut et al. (2006, n = 76–413) and Zhou et al. (2019, n = 377) reported predic-
tion errors of 11.3%, 7–11%, and 15.6%, respectively. These findings illustrate that with the 
authors’ current knowledge, there appears to be no distinct difference in terms of modelling 
accuracy of crude protein predictions in forage biomass, whether the reflectance data is 
acquired from airborne or from ground-based sensors.

In this study, dry matter digestibility (DMD) content was predicted at a very high accu-
racy, with an error of only 2.4%. The wavebands which dominated the prediction model, 
were exclusively within the NIR range (770–790  nm), a region known for its high cor-
relation with plant structural components. The authors were not able to find any directly 
comparable reference studies. However, Pullanagari et al. (2012) predicted the content of 
organic matter digestibility (OMD) in mixed pastures (i.e. commercial New Zealand pas-
tures), using a hand-held spectrometer and a probe (containing an active light source). They 
reported a prediction error of 5.1% but did not present any dominant wavebands for OMD.

As for DMD, the prediction of neutral detergent fibre (NDF) content resulted in very 
accurate estimates, with an error of only 4.8%. In comparison, Schut et al. (2006) achieved 
an even smaller error (3%), whereas Pullanagari et al. (2012) reported a somewhat larger 
error (10.6%). In both these studies, the prediction models were based on data from ground-
based field spectroscopy and PLSR. In the current study, there was a strong relationship 
between reflectance in the RE-NIR region and NDF, which is in line with Pullanagari et al. 
(2012), who found that wavelengths around 805 nm (i.e. NIR-region) were important when 
predicting the same forage quality parameter.

Indigestible neutral detergent fibre (iNDF) was estimated with a prediction error of 
12.8%, thus significantly larger than that of NDF. The authors cannot explain the reason for 
this reduction in accuracy. In contrast to the prediction model for NDF, the iNDF predic-
tion model is based on dominant wavebands in the VIS (520–530 nm) and in the RE-NIR 
range (735 nm and 770 nm). To the authors’ knowledge, there exists no reference studies 
for comparison using wavebands in similar spectral regions.
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Data preparation

In the current study, all images and extracted features underwent thorough pre-pro-
cessing routines in order to secure high geometric, spectral and radiometric quality of 
the modelling data. Data preparation is essential in terms of generating sound model 
input data (Aasen and Bolten 2018; Aasen et al. 2018), and the need for such routines 
increases as the measurement methods get more advanced. Even though the pre-pro-
cessing in this study was relatively comprehensive, it was still necessary to perform a 
z-transformation of the extracted and resampled reflectance spectra to remove a general 
trend of differences in magnitude that was apparent between spectra originating from 
different locations and years.

The Euclidean distance of the spectra matrices was used as selection criterion for 
splitting the data into equally sized calibration and validation data sets for modelling. 
This maximized the variation within the data sets, and thereby enhanced the potential of 
model generalizability. The size of both calibration and validation data sets were unusu-
ally large, and outliers were not removed from them. The overall high accuracy of the 
prediction models thus highlights the strong potential of the PPLSR method. It should 
be emphasized, that the model selection approach in this study was based on a combina-
tion of the selection strategies of Indahl (2005) and Mevik and Wehrens (2007), which 
should be regarded as a rather conservative approach.

Conclusions

Combining UAV-borne hyperspectral imaging spectroscopy with multivariate statistics 
is a promising approach for rapid and non-destructive in-season forage yield and qual-
ity estimation. The use of models that utilize the full spectrum/many bands as potential 
predictors appear to be superior to model-approaches based on a few bands, though this 
was shown for SLR models with NDVI and REIP as predictor variables, only. High 
accuracies in terms of yield and quality predictions do not, however, require a spec-
trum reaching beyond the VIS–NIR-region. The hyperspectral imager used in this study, 
which measured 29 wavebands in the range from 450 nm to 800 nm, obtained prediction 
results comparable or even better than those reported by authors that used field spec-
troscopy with hundreds of wavebands in the range from 350 nm to 2500 nm. A model’s 
ability to perform well when applied to new conditions generally increases with increas-
ing size and variation in the calibration data set, and many studies suffer from too lim-
ited data sets to provide generalizable models. Regardless of the size of the calibration 
data, however, thorough pre-processing of hyperspectral imagery is a prerequisite in 
order to secure high data integrity and model accuracy.
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