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A B S T R A C T   

The maximum size-density relationship describes site carrying capacity, i.e., the maximum number of trees of a 
given size that can be stocked per unit area (self-thinning line). We analysed whether the self-thinning lines of 
Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) have remained unchanged over time in 
South Germany, Norway and Finland, i.e., over a wide climatic gradient from Central Europe up to the Arctic 
circle. The analyses are based on long-term growth and yield experiments measured on individual tree basis over 
several decades, the oldest experiments established during the early 20th century. The stochastic frontier analysis 
was used to analyse changes in the species-specific self-thinning lines. The results show that the self-thinning 
lines have shifted upwards over time in all the regions. Thus, currently stands sustain higher stand densities 
than in the past. The increase of the maximum density for a given average stem size was more pronounced for 
pine than for spruce, but similar in all studied geographical regions. In addition, increasing site index was 
associated with increasing site carrying capacity for spruce and pine in all regions. The results imply that 
environmental changes have altered site properties in similar fashion across the whole study region. In practical 
forestry, increased site carrying capacity will reduce mortality and loss of growing stock.   

1. Introduction 

Growing stock has shown an increase in many developed countries 
(e.g., Köhl et al., 2015), which is also reflected in increasing forest 
carbon stocks (Pan et al., 2011). In Central and Northern Europe, this 
increase is partly attributable to improved site productivity and 
enhanced forest growth as indicated by empirical results. Part of the 
observed increase in growth rates can be linked to environmental 
changes such as increased growing season temperature (Pretzsch et al., 
2014b; Henttonen et al., 2017). Moreover, model predictions forecast a 
future enhancement of growth rates in some regions (e.g., Xia et al., 
2014; Kellomäki et al., 2018). 

The maximum size-density relationship (also called as self-thinning 
line) has been used to identify the capacity of biomass storage for a 
given species and site (Reineke, 1933; Yoda et al., 1963). It describes site 
carrying capacity, i.e., the maximum number of trees of a given size that 
can be stocked per unit area (“packing space”). It is often estimated as a 

line fit to the tree size and stand density using static data on quadratic 
mean diameter and number of trees per unit area. Stands self-thin at 
different density levels following different size-density trajectories 
depending on species, regions and site fertility. On fertile sites, mortality 
due to competition occurs at higher stand densities than on infertile sites 
(Bi, 2004; Zhang et al., 2013; Weiskittel and Kuehne, 2019). In addition, 
the slope may not be a constant and it may vary between species and 
environmental conditions (e.g., Brunet-Navarro et al., 2016; Aguirre 
et al., 2018). 

There are indications that forest sites are becoming increasingly 
fertile as shown for example in the Boreal region (Salemaa et al., 2008; 
Dirnböck et al., 2014). Such changes are likely to be reflected in natural 
mortality patterns. Up to now, results on this process have been con-
tradictory. Zeide (2001) demonstrated that the environmental change 
over time has increased the number of Jack pines (Pinus banksiana 
Lamb.) of the same diameter and age per unit area in Northern Ontario. 
Accordingly, in Southern and Central Germany and Western Poland, 
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Pretzsch et al. (2014a) showed that the carrying capacity of oak (Quercus 
petraea (Matt.) Liebl. and Quercus robur L.) stands increased in terms of 
the number of living trees at a given tree size per unit area. In contrast, 
the maximum number of Norway spruce (Picea abies (L.) Karst.) and 
European beech (Fagus sylvatica L.) trees per unit area has not changed 
over time in Southern Germany (Pretzsch et al., 2014b). 

Several studies have shown that stands growing under different cli-
matic conditions differ in terms of the relationship between tree density 
per unit area and average tree size in fully stocked stands (e.g., Hynynen, 
1993; Brunet-Navarro et al., 2016; Condés et al., 2017; Aguirre et al., 
2018; Kimsey et al., 2019). Even though such studies based on different 
growing conditions do not consider time explicitly, their results have 
been assumed to indicate the responses of current stands to future 
climate conditions. Clearly, our knowledge about the long-term changes 
in stand dynamics is limited and the underlying processes and the 
driving factors behind it have not been studied adequately. 

Several statistical approaches have been proposed for fitting size- 
density relationships. Zhang et al. (2005) and Salas-Eljatib and Weis-
kittel (2018) compared alternative approaches. Zhang et al. (2005) 
favoured the stochastic frontier analysis and Salas-Eljatib and Weiskittel 
(2018) quantile regression, although in both studies the approaches 
performed nearly equally well. 

The aim of this study was to quantify the effects of the changing 
environment on tree mortality in South Germany, Norway and Finland, 
i.e., over a wide climatic gradient from Central Europe up to the Arctic 
circle. We analyzed whether stand carrying capacity has changed over a 
period of 100 years. Specifically, we analysed whether the self-thinning 
lines of two common tree species (Norway spruce and Scots pine (Pinus 
sylvestris L.) have remained unchanged over time at differing locations. 
Our hypothesis is that self-thinning occurs at higher stand densities 
today than in the past. Due to different environmental conditions, i.e. 
temperate climate in Central Europe, maritime climate in Norway and 
more continental subarctic climate in Finland, it is plausible that a 
divergent trend in site carrying capacity has occurred in the different 
regions. 

2. Materials and methods 

2.1. Study material 

The analyses are based on long-term growth and yield experiments 
measured on individual tree basis over several decades in Finland, 
Norway and Germany, the oldest experiments established during the 
early 20th century. Successive tree-size measurements and recording of 
living and dead trees form the basis for analysing mortality patterns and 
the resulting stand dynamics. 

The Finnish data set consists of 148 plots from long-term experi-
ments with Norway spruce (“spruce”, N = 39) and Scots pine (“pine”, N 
= 109), established to investigate the effects of varying thinning in-
tensities on the growth and yield of the stands (Table 1). Most of the 
experiments were located in South and Central Finland, but the north-
ernmost experiments were located north of the Arctic circle (Fig. 1). The 
experiments were originally established in pure or almost pure even- 
aged spruce and pine stands with high initial densities on mineral 
soils. Most of the experiments were established in young stands near the 
first thinning stage, but some experiments were in older stands. The 
experiments were measured 2–11 times between 1928 and 2016 (Fig. 2). 
Only the unthinned control plots of the experiments were used for our 
study. On each plot, stem diameter at breast height (1.3 m), as well as 
tree status (living/dead), of all the trees were measured. In addition, the 
height of sample trees randomly selected across a stand’s diameter range 
(~30 per plot) was measured. Site index, i.e., mean height of the 100 
thickest trees ha− 1 at stand age 100 years (H100), was calculated based 
on a measurement around 1990 (or the last measurement if the exper-
iment was terminated earlier) using the models by Vuokila and Väliaho 
(1980) for artificially regenerated stands and the models by Gustavsen 

(1980) for naturally regenerated stands. Such a static site index accounts 
for differences between site types and geographical regions but retains 
potential changes in the site carrying capacity over time. The mean 
annual temperature ranges from slightly over +5 ◦C in South-West 
Finland to about − 2 ◦C in Northern Finland, and annual precipitation 
sums range from about 500 mm to 650 mm with the highest sums in 
Southern Finland. The average temperature sum (Tsum, 1971–2000) 
was calculated for each plot according to Ojansuu and Henttonen 
(1983). Most of the experiments have been used in previous studies and 
a more detailed description of the experiments and measurements is 
provided in Mäkinen and Isomäki (2004a,b) and Mäkinen et al. (2017). 

The Norwegian data set derives from 179 plots in pure or almost pure 
spruce (N = 114) and pine stands (N = 65) on mineral soil with varying 
initial density (Fig. 1, Table 1). About 62% of the plots were unthinned 
and 38% had been thinned at the time of establishment, but left 
unthinned thereafter. The oldest measurements dated back to the early 
1920s, but only a few plots were that old, and the most resent mea-
surements were from 2014 (Fig. 2). Later on, the number of plots 
consistently increased especially in the 1960s and thereafter. The plots 
were measured as in the Finnish data set, but site index was calculated as 
the mean height of the 100 thickest trees at breast height age 40 years 
(H40) using the models by Tveite (1977) and Tveite and Braastad (1981). 
Mean annual temperature for the Norwegian plots analysed here varies 
between little under − 2 ◦C in northern Norway to about 7 ◦C in western 

Table 1 
Characteristics of the Norway spruce and Scots pine plots in Finland, Norway 
and Germany.  

Parameter Unit Mean Std Min. Max. 

Finland, Norway spruce      
No of plots  39    
Plot size ha 0.12 0.03 0.05 0.25 
No of measurements N/plot 5.7 2.2 2 11 
Period length years 6.2 2.3 2 14 
H100* m 32.0 2.3 27.0 36.4 
Elevation m, asl 122 28 80 200 
Tsum d.d. 1200 69 1033 1275 
Finland, Scots pine      
No of plots  109    
Plot size ha 0.11 0.04 0.01 0.25 
No of measurements N/plot 4.3 1.9 2 11 
Period length years 9.1 3.5 2 26 
H100* m 24.3 4.1 15.6 32.0 
Elevation m, asl 150 54 35 280 
Tsum d.d. 1099 177 744 1332 
Norway, Norway spruce      
No of plots  114    
Plot size ha 0.09 0.03 0.02 0.25 
No of measurements N/plot 7.5 2.2 3 13 
Period length years 5.8 2.3 1 20 
H40* m 20.6 4.1 10.1 28.8 
Elevation m, asl 149 87 15 400 
Tsum d.d. 1045 236 560 1406 
Norway, Scots pine      
No of plots  65    
Plot size ha 0.12 0.06 0.04 0.28 
No of measurements N/plot 9.3 4.0 4 22 
Period length years 6.4 2.5 1 15 
H40* m 13.8 4.5 3.5 21.8 
Elevation m, asl 168 83 20 340 
Tsum d.d. 918 236 539 1331 
Germany, Norway spruce      
No of plots  13    
Plot size ha 0.18 0.08 0.10 0.33 
No of measurements N/plot 7.6 2.1 3 10 
Period length years 4.3 1.4 1 7 
H100 m 37.7 3.0 32.3 40.7 
Elevation m, asl 750 233 421 1087 
Tsum d.d. 1479 238 1007 1757  

* H40 and H100 are site indices, i.e., mean height of the 100 thickest trees ha− 1 

at stand age 40 and 100 years, respectively; Period length is the number of years 
between the successive measurements; Tsum is temperature sum. 
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Norway while annual precipitation ranges from circa 350 mm in the far 
north to slightly over 2500 mm in the west. The average temperature 
sum for each plot was calculated as annual degree days >5 ◦C 
(1961–1990) using climate data obtained from the Meteorological 
Institute of Norway. The plots are described in Næsset (1995), Øyen and 
Nes (1997), Braastad and Tveite (2001). 

The German data set comprises repeated measurements of 13 spruce 
experimental plots at nine different locations (stands) in Baden-Würt-
temberg, Southwestern Germany (Fig. 1, Table 1). The plots were 
measured 3–10 times between 1964 and 2018, the longest measurement 
period being 38 years (Fig. 2). In the course of the experiments, the plots 
were left unthinned or almost unthinned, i.e., thinning was restricted 
only to the removal of dying and dead trees. The site indices (H100) were 
calculated using the model by Sloboda (1971). All stands were single- 
species and even-aged. The mean annual temperatures range from 4.7 
to 8.2 ◦C, and precipitation from about 800–1800 mm. During the 
vegetation period (April-September), temperatures range from 10.1 to 
14.6 ◦C and precipitation from about 370–750 mm (the source of the 
climate data: Deutscher Wetterdienst). 

The early development of the plots before the onset of self-thinning 
was removed from the data, if the plot exhibited no mortality. In addi-
tion, plots exhibiting an increase in the number of stems ha− 1, as well as 
a decrease in mean stem diameter, in subsequent measurements were 
removed. 

2.2. Self-thinning line 

The stochastic frontier analysis (SFA) was used to analyse changes in 
the species-specific maximum size-density relationships over time in the 

different regions. SFA has been adopted to forestry and ecological 
research from economics (e.g., Coelli et al., 1998; Bi, 2004). The analysis 
renders production frontier, i.e., the maximum asymptotic stand density 
as a function of tree size. SFA is able to evaluate changes in production 
frontier over time when panel data is used. 

The basic equation used to illustrate the size-density trajectories was: 

ln(Nit) = α0 + α1ln(Dqit)+ vit + uit (1)  

where Nit is the number of stems ha− 1 of measurement t on plot i, Dqit is 
the quadratic mean diameter, vit is a random error and uit is a one-sided 
error (uit ≥ 0) capturing the technical inefficiency in production, i.e., the 
shortfall of Nit from the frontier. 

The potential change over time in the size-density relationship was 
tested by first including calendar year (Year), its interaction with Dq, 
and site index (H100,i, H40,i was used in the Norwegian data) to the 
model: 

ln(Nit) = α0 + α1ln(Dqit)+α2H100,i + α3Yeart +α4Yeart

× ln(Dqit)+ α5Tsumi + vit + uit (2) 

The interaction term Year × ln(Dq) was not significant and it was 
excluded. The average temperature sum of plot i (Tsumi) was then added 
to the model for describing geographical differences (latitude, altitude) 
between the plots. However, it was not statistically significant when site 
index (H40 or H100) was included in the model. Moreover, the interaction 
terms Year × H100, H100 × ln(Dq) and Tsum × ln(Dq) were not significant 
and were not included. The maximum likelihood estimates of the pa-
rameters of Eq. (2) were calculated using the QLIM procedure in SAS 
(version 9.4, SAS Institute Inc. 2017). To distinguish whether the results 
are method dependent (Zhang et al., 2005; Salas-Eljatib and Weiskittel, 
2018), we calculated the size-density relationships also based on the 
quantile regression approach using the QUANTREG procedure in SAS. 

Even though new plots have been established over the study period, 
there is a lack of young stands in recent years (Fig. 2). In order to 
counterbalance the shift towards older ages, we also calculated the re-
sults by fixing the age span to 40–85 years. 

3. Results 

In all regions, stand density decreased with increasing stem diameter 
(Fig. 3). The decrease was fastest for spruce in Finland and slowest for 
spruce in Norway (parameter α1, Table 2). No consistent pattern was 
found for the tree species, i.e., in Finland the decrease was faster for 
spruce than for pine, but in Norway vice versa. 

Increasing site index (H40, H100) was associated with increasing site 
carrying capacity for spruce and pine in all regions (parameter α2, 
Table 2). As it was the case with stem diameter, no coherent order was 
found for the coefficient of site index for spruce and pine in Finland and 
Norway, where both species were available in the data. The temperature 
sum (Tsumi) was not significant in any country when site index was 
included in the model. 

The maximum density for a given average stem size increased over 
time in all regions (Table 2). The increase appeared to be slightly larger 
for pine than for spruce both in Finland and Norway (Table 2, Fig. 3). 

The results were also calculated by fixing the age span to 40–85 
years. However, narrowing the age span resulted in no major changes to 
the results (Supplementary material, Table S2). 

The maximum size-density relationships were also derived using 
quantile regression to further evaluate whether findings are sensitive to 
the statistical approach. The results revealed no major differences be-
tween the two evaluated approaches. Findings for the stochastic frontier 
analysis are reported here, and those derived from quantile regression in 
the supplementary material (Table S1). 

Fig. 1. Location of the sample plots in Finland, Norway and Germany; Norway 
spruce square, Scots pine circle. 
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4. Discussion 

Using repeated measurements spanning over time periods of up to 
96 years, we quantified whether stand dynamics and mortality have 
changed in three climatically different countries from Central Europe up 
to Northern Fennoscandia. The results showed that the self-thinning line 
has shifted upwards over time and self-thinning occurs at higher stand 
densities today. 

Contrary to our prior expectations, no major differences were found 
between Germany, Norway and Finland. The results imply that envi-
ronmental changes have altered site properties in a similar fashion 
across the whole study region. The similar changes in the maximum size- 
density relationship suggest that one large-scale factor has played a 
driving role, but the possibility that several changing environmental 
determinants have resulted in parallel shifts in the site carrying capacity 
cannot be excluded. There are many possible causes for changes in site 

carrying capacity, including rising temperature, eutrophication due to 
nitrogen deposition and atmospheric CO2 enrichment. While a com-
bined effect of all these drivers might have caused the observed changes 
in carrying capacities irrespective of studied species and region, indi-
vidual contributions by each driver are likely to vary between regions. 
Based on the results of this study, it is, however, difficult to quantify the 
individual effects and the considerations about potential driving factors 
remain rather speculative. 

The growth of the Finnish forests has steadily increased since the 
early 1970s (Peltola et al., 2019). In a recent study, we showed that 
environmental changes explain as much as 37% of the shift (Henttonen 
et al., 2017). In Finland, nitrogen deposition is very low compared to 
most regions in Europe (Dirnböck et al., 2014; Ruoho-Airola et al., 2014) 
and the monotonous temporal trend in the atmospheric CO2 does not 
resemble with the observed growth trend. Furthermore, the mean 
annual temperature has risen by more than 2 ◦C during 1847–2013 in 

Fig. 2. Age-calendar year trajectories of the Norway spruce and Scots pine plots in Finland, Norway and Germany.  
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Finland, the warming being more rapid after the late 1960s (Mikkonen 
et al., 2015). Comparisons with temperature sums suggested similarities 
between summer temperatures and the environment-induced increment 
change in Finland (Henttonen et al., 2017) and Sweden (Mensah et al., 
2021). Thus, it is likely that increasing temperature has been a major 
contributing factor also for the observed change in the site carrying 
capacity. Low nitrogen content available to trees is typical of boreal 
forest soils (e.g., Saarsalmi and Mälkönen, 2001; Saarsalmi et al., 2014). 
Even though nitrogen influx is an implausible contributing factor, 
increasing soil temperature enhances organic matter decomposition and 
thus nutrient availability and uptake by trees (e.g., Lahti et al., 2005; 
Hedwall and Brunet, 2016). 

Forest growth has displayed a considerable increase during the latter 
part of the 20th century also in several Central European countries (e.g., 
Pretzsch et al., 2014a,b). Also, site productivity of spruce stands 

described by site index has increased after the mid-1950s in Southwest 
Germany, i.e., in the area covered by this study (Yue et al., 2014). The 
results of this study show that a corresponding change has also taken 
place in the site carrying capacity of spruce stands. In contrast, Pretzsch 
et al. (2014b) found that spruce and European beech stands grew faster 
but the number of trees per unit area at a given mean diameter had 
remained the same. Their data came from Southeast and Central Ger-
many, i.e., from adjacent geographical regions. Our results apply to sites 
in the plains and low - to mid-elevation mountain ranges with altitudes 
of 421–1087 m above sea level, and those by Pretzsch et al. (2014b) to 
altitudes of 330–843 m. Their plots were also unthinned or only slightly 
thinned and the site conditions comparable. Even though the observed 
change in the site carrying capacity in Germany was coincident with 
Norway and Finland, our German data contained only 13 plots, which 
makes the results less conclusive. In a parallel study with data from 

Fig. 3. Size-density trajectories of the individual plots (black thin lines). The dashed blue and continuous green lines show the SFA estimates (Eq. (2)) of the tra-
jectories for years 1970 and 2015, respectively, using the average site index on each data set. 
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Southeast and Central Germany, as well as from Western Poland, 
Pretzsch et al. (2014a) found that the carrying capacity of oak stands 
had indeed increased. Thus, the differences between our results and 
those by Pretzsch et al. (2014b), as well as those between Pretzsch et al. 
(2014a,b), are hard to explain. 

Throughout central Europe mean temperatures have increased dur-
ing the past decades (Schöpp et al., 2003; Wellbrock et al., 2005) and the 
increasing temperatures correspond to some extent with increasing 
forest growth and site indices (Kohnle et al., 2014; Yue et al., 2014). 
Simultaneously, nitrogen deposition has increased considerably (Schöpp 
et al., 2003; Wellbrock et al., 2005) associated with increases in soil 
nitrogen concentrations and availability of nitrogen (e.g., Phoenix et al., 
2012). Consequently, several studies have suggested that elevated ni-
trogen supply is a factor of major importance for net primary produc-
tivity and higher stand-level growth during the late 20th century (e.g., 
Kahle et al., 2008; Phoenix et al., 2012; Yue et al., 2016). 

Site productivity has increased also in Norway and the site indices of 
recently established stands tend to exceed those in older stands (Nilsen 
and Larsson, 1992; Bøhler and Øyen, 2011; Sharma et al., 2012; Allen 
et al., 2020). Sharma et al. (2012) found a significant interaction of 
increasing site index trend and temperature sum. Moreover, Andreassen 
et al. (2006) found that warm and dry summers increased growth of 
spruce stands in coastal, northern and mountainous areas, but decreased 
growth in the lowlands of Southeast Norway. Sharma et al. (2012) 
concluded that that even though changing temperature and precipita-
tion seem to contribute to the trends in site indices, increased nitrogen 
availability and atmospheric CO2 levels may also be important factors. 
In Southern Norway, nitrogen deposition has possibly increased forest 
growth up to 25% (Solberg et al., 2004, 2009). However, there is a steep 

nitrogen deposition gradient in Norway with a considerable input in the 
south and low input in the north. As the geographical trends in tem-
perature and nitrogen deposition are highly correlated across Norway, it 
is difficult to quantify their separate effects on forest growth. 

Pine is light-demanding early-successional species, whereas spruce is 
intermediate in shade tolerance and capable of occupying growing space 
below canopy. Pine typically grows on less fertile sites than spruce. 
Therefore, one would expect pine to benefit more from increasing 
temperature and resource supply, as indeed was the case according to 
the results of this study. Moreover, increasing drought periods have 
reduced productivity of spruce stands, especially in Central Europe but 
also in the boreal region due to the species’ shallow root system (Allen 
et al., 2010; Lindner et al., 2010; Kellomäki et al., 2018). 

In the early studies, the slope of the self-tinning line was considered a 
universal constant (Yoda et al., 1963; Weller, 1987). Later studies have 
suggested that the slope may not be a constant and it may vary between 
species and environmental conditions. For example, Aguirre et al. 
(2018) found for Scots pine in Spain that the intercept did not vary 
according to aridity, but the slope did, i.e., vice versa to our results. 
Brunet-Navarro et al. (2016) found that the slopes did not vary among 
different pine species growing in Spain, but Scots pine in colder condi-
tions had a higher intercept and steeper slope. Our results are, however, 
consistent with the previous Finnish studies (Hynynen, 1993) suggesting 
that site index had an effect on the intercept but not on the slope of self- 
thinning line. 

This study is based on periodically remeasured long-term experi-
ments which include fully stocked plots representing maximum stand 
density. The data set from the long-term experiments provide insight 
into site carrying capacity over time. Using unthinned plots of perma-
nent experiments ensures similar site conditions and helps to exclude 
several confounding factors that could impair the results. In contrast, if 
temporary plots under varying climatic conditions are used as database, 
it is hard to ensure that the range of space-time substitution exclusively 
represents changing climatic conditions over time. The effects of climate 
and other local site conditions may be coalesced and are difficult to 
differentiate. Other unknown differences, e.g., in tree genotype, repre-
sent additional sources of uncertainty. 

Due to the broad variation of stand age (Fig. 2), the plots represent a 
wide range of stand developmental stages. Even though new plots have 
been established over the study period, the material from recent years 
includes few young stands. In order to counterbalance the shift towards 
older ages, we calculated the results also by fixing the age span to 40–85 
years. The results remained essentially the same (Supplementary ma-
terial, Table S2). Thus, although a more balanced data set would be 
desirable, we are confident that the identified trends are genuine. 

5. Conclusions 

While several recently published papers have demonstrated the 
enhancing effect of warmer climate on site carrying capacity, our work is 
one of the few that has shown changing maximum stand densities over 
time under similar site conditions. Based on observation periods span-
ning up to 100 years, the findings of this study reveal that the level of 
self-thinning line has risen within a century, i.e., current stands sustain 
higher stand densities. The increase in maximum density was slightly 
more pronounced for pine than for spruce, but similar in all three 
geographical regions. In practical forestry, increased site carrying ca-
pacity will reduce mortality and therefore loss of growing stock. 

The maximum stand density on a given site is essential information 
for modelling and predicting stand dynamics and the effects of silvi-
cultural treatments. Growth and yield simulators often base their pre-
dictions on data collected under a different climate, for the boreal zone a 
less favourable one. If the competition-related processes are being 
altered due to changing environmental conditions, simulators using the 
concept of maximum stand density for predicting tree mortality need to 
be tuned. Thus, the findings of this study stress the need for temporally 

Table 2 
Parameter values and their standard errors of the size-density trajectory (Eq. (2)) 
for Norway spruce and Scots pine in Finland, Norway and Germany.  

Variable Estimate Std Err t-value P > t 

Finland: Norway spruce     
α0 11.714 0.150 78.29 0.001 
α1, ln(Dq) − 2.039 0.056 − 36.52 0.001 
α2, H100 0.037 0.003 11.87 0.001 
α3, Year-1920 0.008 0.001 8.20 0.001 
v 0.051 0.009 5.93 0.001 
u 0.134 0.014 9.67 0.001 
Finland: Scots pine     
α0 11.630 0.176 65.92 0.001 
α1, ln(Dq) − 1.989 0.066 − 30.15 0.001 
α2, H100 0.027 0.004 7.47 0.001 
α3, Year-1920 0.009 0.002 5.56 0.005 
v 0.156 0.012 13.00 0.001 
u 0.146 0.019 7.53 0.001 
Norway: Norway spruce     
α0 11.505 0.091 125.75 0.001 
α1, ln(Dq) − 1.517 0.035 − 43.64 0.001 
α2, H40 0.004 0.002 1.55 0.121 
α3, Year-1920 0.005 0.001 8.31 0.001 
v 0.210 0.014 15.45 0.001 
u 0.166 0.022 7.51 0.001 
Norway: Scots pine     
α0 11.817 0.105 112.57 0.001 
α1, ln(Dq) − 1.847 0.035 − 53.29 0.001 
α2, H40 0.029 0.003 11.26 0.001 
α3, Year-1920 0.006 0.001 11.80 0.001 
v 0.211 0.014 15.08 0.001 
u 0.138 0.024 5.71 0.001 
Germany: Norway spruce     
α0 11.024 0.488 22.60 0.001 
α1, ln(Dq) − 1.720 0.126 − 13.68 0.001 
α2, H100 0.032 0.006 5.24 0.001 
α3, Year-1920 0.006 0.002 3.66 0.001 
v 0.080 0.019 4.11 0.001 
u 0.134 0.029 4.60 0.001 

Dq is the quadratic mean diameter, H40 and H100 are site indices and Year is the 
calendar year (1920 was subtracted from it to provide intelligible coefficients). 
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variant self-thinning models. A direct implementation of the results into 
growth simulators is not possible. However, they may help to quantify 
causal relationships between forest growth and site carrying capacity in 
order to develop environment-sensitive mortality models. 

Even though the results imply that growing conditions are generally 
improving due to environmental changes, a causal analysis of changes in 
the site carrying capacity was explicitly not within the scope of the 
study. The question, which particular environmental changes have 
actually driven the increase in maximum stand density, requires a 
different approach. In particular, the finding that no major differences in 
the increase of stand carrying capacity existed between the regions ap-
pears to contradict some previous studies and calls for further 
elaboration. 
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