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Abstract: The separate and synergistic effects of land use and climate change on water quality
variables in Old Woman Creek (OWC) watershed were evaluated using a hydrological model set
up in Soil and Water Assessment Tool (SWAT) for the OWC watershed. Model calibration was
done using a multi-objective evolutionary algorithm and pareto optimization. The Parameter-
Elevation Regressions on Independent Slopes Model (PRISM) climate data and the 20 different Global
Circulation Models (GCMs) developed by the Coupled Model Intercomparison Project Phase five
(CMIP5) were used. Validation was done using the streamflow data from USGS gaging station and
water quality data from the water quality lab, Heidelberg University. The simulation was divided
into two land use scenarios: Scenario 1 for constant land use and Scenario 2 where land use was
varied. Both land use simulations were run in four time periods to account for climate change:
historical (1985–2014), current to near future (2018–2045), mid-century (2046–2075), and late-century
(2076–2100) climate windows. For the historical period, the average of all the simulations made from
the 20 different CMIP5 GCMs shows good agreement with the PRISM results for flow and the water
quality variables of interest with smaller inter-model variability compared to PRISM results. For the
other three climate windows, the results of Scenario 1 show an increase in flow and eight water quality
variables (sediment (total suspended sediment), organic nitrogen, organic phosphorus (particulate p),
mineral phosphorus (soluble reactive p), chlorophyll a, carbonaceous biochemical oxygen demand
(CBOD), dissolved oxygen, total nitrogen) across the climate windows but a slight decrease in one
water quality variable, mineral phosphorus in the mid-century. The results of Scenario 2 show a
greater increase in flow, and the eight water quality variables across the climate windows show a
relatively larger decrease in one water quality variable (mineral phosphorus). The projected land
use change has little impact compared to the projected climate change on OWC watershed in the
21st century.

Keywords: SWAT; multi-objective; pareto optimization; PRISM; CMIP5

1. Introduction

In previous centuries, the influence of land use/land cover (LULC) changes on water
were not recognized. It is now generally acceptable that the analysis of historical effects
of LULC can produce knowledge about the present, and inferences about the future [1,2].
LULC are indisputable causes of changes in environmental conditions throughout the
world and promote losses in biodiversity and deforestation [3]. The effect of LULC on
streamflow has been described in previous studies [4,5]. Gebremicael et al. [6] noted
that the conversion of a large area of vegetation into agricultural land in the Blue Nile
Basin between 1970 and 2010 increased the wet season flow and decreased the dry season
flow. In the upper mid-western United States, the previous land use change reported
was the conversion of forest to agricultural land, and the recent land use change was
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urbanization [7,8]. Niyogi et al. [9] has established that urban growth can significantly
affect climate and hydrological balance. Population growth, proximity to major urban
centers, and migration pattern can influence urban growth [10,11].

Urban areas have paved or impervious surfaces resulting in reduced infiltration and
increased surface runoff into the water bodies [12]. The combined effect of increasing
agricultural fertilizers and chemical use and increasing urbanization can severely impact
the water quality of a watershed. The synergistic effect of LULC changes and climate
changes could further warm the land surface [13]. LULC change and climate change
contribute to each other after a long period of time [14,15].

This work attempts to address how the projected 21st century land use and climate
change would impact the water quality of OWC watershed. Thus, the goal was to evaluate
the separate and the synergistic effects of the projected LULC and climate change in the
21st century on streamflow and nutrient transport in OWC watershed using 20 different
Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase
five (CMIP5) model ensemble. This involves finding out how close the SWAT simulated
flow and water quality variables from the 20 GCMs are with the simulated values from the
Parameter-Elevation Regressions on Independent Slopes Model (PRISM) historical climate
data (1985–2014). Then, using the predicted LULC and the corresponding GCMs, the flow
and water quality variables were simulated for future climate windows up to 2100. The
first hypothesis was, if SWAT simulation results from the 20 GCMs are consistent, within
error of SWAT simulations run with PRISM data for the historical period, then the 20 GCMs
can be used to run simulations for future scenarios. The second hypothesis was that the
future projected land use change (−3.6% agriculture and +2.4% in urban) from the present
should have an insignificant impact on water quality variables in OWC relative to the
projected changes in temperature (+47%) and precipitation (+13%) across the century. The
water quality variables of main focus in this study are sediment (total suspended sediment),
organic nitrogen, organic phosphorus (particulate p), mineral phosphorus (soluble reactive
p), chlorophyll a, carbonaceous biochemical oxygen demand (CBOD), dissolved oxygen,
total nitrogen, and total phosphorus.

2. Materials and Methods
2.1. Modeling Scenarios

The analysis was carried out in two scenarios: Scenario 1 where land use is constant
and climate is varied, and Scenario 2 where both land use and climate are varied accordingly
in four climate windows: W1-historical (1985–2014), W2-current to near future (2018–2045),
W3-mid-century (2046–2075), and W4-late-century (2076–2100). For the historical climate
window, simulation was set up for 1982–2014, but a warm up period of 3 years was used;
hence, the simulation results obtained was from 1985–2014. The following steps were taken
to achieve the overall objective:

1. PRISM climate data (1985–2014): simulating flow and water quality variables at
annual time scale for the historical climate window (1985–2014) using PRISM climate
data and the actual land use data.

2. CMIP5 GCMs simulation (1985–2014): simulating flow and water quality variables
at annual time scale for the historical climate window (1985–2014) using 20 different
GCMs climate models and the actual land use data.

3. Comparing the simulations made with PRISM with those made with the 20 different
GCMs from CMIP5 for the historical climate window (1985–2014).

4. Scenario 1 GCMs simulations (2018–2100): simulating flow and water quality vari-
ables at annual time scale for the current to near future (2018–2045), mid-century
(2046–2075), and late-century (2076–2100) climate windows using 20 GCMs from
CMIP5 and constant land use.

5. Scenario 2 GCMs simulations (2018–2100): simulating flow and water quality variables
at annual time scale for current to near future (2018–2045), mid-century (2046–2075),
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and late-century (2076–2100) climate windows using 20 GCMs from CMIP5 and the
corresponding projected land use data for the climate windows.

6. Comparing simulation results for Scenario 1 and Scenario 2.

2.2. Site Description

The OWC is located on the south-central shore of Lake Erie in northern Ohio. It drains
approximately 69 km2 of a watershed mainly used for agriculture [16] (Figure 1) [17]. OWC
was selected as a suitable site for the National Estuarine Research Reserve (NERR) System
by the National Oceanic and Atmospheric Administration (NOAA) in 1980, and presently,
there are only two NERR throughout the Great Lakes regions of North America. In 1995,
data loggers were installed at four locations within the estuary for the NERR System-Wide
Monitoring Program (SWMP). The Berlin Road (BR) station in the upstream area far south
of the estuary was chosen for this research, because it can better measure discharges into
the main reservoir, as it is upstream from the effect of hydro-dynamism associated with
the mouth of the estuary. Another reason was because of the presence of the USGS gauge
station at the BR station where streamflow calibration data were collected.
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Figure 1. Location map of Old Woman Creek watershed.

2.3. Data Acquisition
2.3.1. SWAT Data Acquisition and Preparation

The following data were acquired and used for the hydrological modeling of OWC
watershed: OWC shapefile, climate and weather data, digital elevation model (DEM), slope
map, land use/land cover map, and digital soil data.

The Ohio state shapefile was obtained from the data catalogue website (https://
catalog.data.gov/dataset/tiger-line-shapefile accessed on 22 August 2018) from which the
OWC shapefile was extracted to produce all the GIS layers used for this modeling. The
10 m spatial resolution digital elevation model (DEM) of Ohio state was downloaded from
national resources conservation services at https://datagateway.nrcs.usda.gov accessed
on 31 January 2019. The 30 m resolution LULC data used were downloaded from the
National Land Cover Database at https://www.mrlc.gov/data/type/land-cover accessed
on 31 January 2019. Digital soil data of Ohio state available at the national resources
conservation services website as Soil Survey Geographic (SSURGO) database (https://
www.nrcs.usda.gov accessed on 31 January 2021) were used in this work. For the model

https://catalog.data.gov/dataset/tiger-line-shapefile
https://catalog.data.gov/dataset/tiger-line-shapefile
https://datagateway.nrcs.usda.gov
https://www.mrlc.gov/data/type/land-cover
https://www.nrcs.usda.gov
https://www.nrcs.usda.gov
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calibration and validation, the streamflow measurement was obtained from the USGS
gauge station at Berlin Road, OWC watershed, Ohio while the water quality data were
obtained from the water quality lab, Heidelberg University, Tiffin, Ohio. The SWAT model
was run in ArcSWAT GIS interface developed and made available by the Texas A&M
University System. The 1981–2017 PRISM climate data with a spatial resolution of 4 × 4 km
were downloaded from http://www.PRISM.oregonstate.edu accessed on 31 January 2019.
The 1981–2100 CMIP5 model ensemble consisting of the selected 20 GCMs with spatial
resolution ranging from Latitude 1.1215 to 2.7906 and Longitude 1.1215 to 3.75 (Table 1)
was downloaded from the climate data store (CDS) catalogue, downscaled to 4 × 4 km
resolution, and bias-corrected using the distribution-based scaling (DBS) method described
by Yang et al. [18]. The 20 GCMs from CMIP5 at RCP 8.5 only were selected for the analysis
to test the performance of each model and identify the most suitable GCM models for
the OWC watershed simulation. The 20 GCMs selected consist of 19 GCMs available at
the global users in the Copernicus climate change service (C3S_422_Lot1_SMHI project)
and one North American GCM (CAN-ESM2). The calibration and validation data were
available from 2015–2017, and hence, the future climate window for this study starts
from 2018.

Table 1. Original spatial resolution of the 20 Global Circulation Models (GCMs) used in this study (1981–2100).

Institute Model GCM_Data GCMName Remarks Latitude Longitude

CSIRO-BOM ACCESS1-0 ACCESS1-0 CSIS10
Centre for Australian Weather

and Climate Research
(CAWCR)

1.25 1.875

CSIRO-BOM ACCESS1-3 ACCESS1-3 CSIS13
Centre for Australian Weather

and Climate Research
(CAWCR)

1.25 1.875

BCC CSM1-1 bcc-csm1-1 BCCSM1 Beijing Climate Center 2.7906 2.8125

BNU ESM BNU-ESM BNUESM Beijing Normal University 2.7906 2.8125

CCCma CanESM2 CanESM2 CanESM
Canadian Centre for Climate

Modelling and Analysis,
Victoria, BC, Canada

2.7906 2.8125

CNRM CNRM-CM5 CNRM-CM5 CNRCM5
National Centre for

Meteorological
Research, France

1.4008 1.40625

CSIRO-QCCCE CSIRO-Mk3-6-0 CSIRO-Mk3-6-0 CSI360

Commonwealth Scientific and
Industrial Research

Organization/Queensland
Climate Change Centre of

Excellence (CSIRO-QCCCE)

1.8653 1.875

SMHI EC-EARTH EC-EARTH EEARTH
A European community

Earth-System Model, led by
SMHI, Sweden

1.1215 1.125

GFDL CM3 GFDL-CM3 GFDCM3 Geophysical Fluid Dynamics
Laboratory, NOAA 2 2.5

GFDL ESM2G GFDL-ESM2G GFDM2G Geophysical Fluid Dynamics
Laboratory, NOAA 2.0225 2.0

GFDL ESM2M GFDL-ESM2M GFDM2M Geophysical Fluid Dynamics
Laboratory, NOAA 2.0225 2.5

MOHC HadGEM2-CC HadGEM2-CC HAD2CC
Met Office Hadley Centre,

Hadley Global Environment
Model, UK

1.25 1.875

MOHC HadGEM2-ES HadGEM2-ES HAD2ES
Met Office Hadley Centre,

Hadley Global Environment
Model, UK

1.25 1.875

http://www.PRISM.oregonstate.edu
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Table 1. Cont.

Institute Model GCM_Data GCMName Remarks Latitude Longitude

INM CM4 INMCM4 INMCM4
Russian Institute for

Numerical Mathematics
Climate Model Version 4

1.5 2

IPSL CM5A-LR IPSL-CM5A-LR IPSALR Institut Pierre Simon
Laplace, France 1.8947 3.75

IPSL CM5A-MR IPSL-CM5A-MR IPSAMR Institut Pierre Simon
Laplace, France 1.2676 2.5

IPSL IPSL-CM5B-LR IPSL-CM5B-LR IPSBLR Institut Pierre Simon
Laplace, France 1.8947 3.75

MPI ESM-LR MPI-ESM-LR MPIMLR Max Planck
Institute, Germany 1.8653 1.875

MPI MPI-ESM-MR MPI-ESM-MR MPIMMR Max Planck
Institute, Germany 1.8653 1.875

NCC NorESM1-M NorESM1-M NORM1M Norwegian Climate Centre
Earth System Model M 1.8947 2.5

2.3.2. SWAT Model

The widely used Soil and Water Assessment Tool (SWAT) is a watershed based hydro-
logical modeling framework produced by Jeff Arnold by upgrading the Simulator for Water
in Rural Basins (SWRRB). It was primarily produced for the United States Department
of Agriculture, Agricultural Research Services (USDA-ARS) to appraise the influence of
environmental pollution and land management practices on water quality. It can simulate
the effect of management practices on streamflow and water quality within a large basin
with dynamic soil and management practices for a long-time frame [19].

SWAT is capable of efficient simulation on a daily, monthly, and yearly time scale
using spatial and meteorological data as input. Arnold et al. [20] gave a detailed account
of SWAT parameters and units, some of which include weather, crop yield, soil types,
fertilizer application, and hydrological processes. In SWAT modeling, the whole basin is
divided into reaches that are further divided into the smallest units called the hydrological
response units (HRU). The spatial data needed for hydrological modeling are uploaded
into SWAT through the ArcSWAT 2012 graphical interface [21,22].

2.3.3. Model Set-Up, Calibration, and Validation

The ArcSWAT 2012 was employed for the setting up of SWAT for hydrological models.
To prepare the model for watershed delineation, drainage, and slope definition, OWC
watershed DEM was loaded, and digital stream data added to establish the stream network.
The SWAT inbuilt minimum threshold approach based on the minimum area function was
used to automatically generate the outlets for the sub-basins, and other outlets were manu-
ally added at important locations including one outlet leading to the location of the USGS
gauge station (Berlin Road) where calibration and validation data were obtained. OWC
watershed was delineated with a size of 66.95 km2 and a total of 103 sub-basins. Sub-basins
characterization involves the creation of 3 slope classes, which include 3, 3–15, and >15%,
and 12 land use classes, which include barren land, open waters, developed high intensity,
developed low intensity, developed open space, developed medium intensity, hay/pasture,
woody wetlands, evergreen forest, cultivated crops, herbaceous and deciduous forest, and
81 soil classes (Based on SSURGO classification). Land use, slope, and soil were reclassified,
and 479 HRUs were created to complete the HRU definition process. SWAT editor was used
to encode management practices for the different crops (corn, soya, and wheat) planted in
the watershed based on the actual conditions on agricultural land in OWC watershed. The
management practices include crop rotation, tillage, fertilizer application, planting time,
and harvesting time.
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PRISM temperature (min, max, and daily average) and precipitation (1981–2017) were
added to the setup, other climate parameters including wind speed, solar radiation, and
relative humidity were generated by SWAT for the modeling. The sensitivity of the SWAT
parameters to water quality variables was ascertained, and a total of the 56 most sensitive
parameters were selected for calibration.

The selected parameters were optimized by modifying the multi-objective evolution-
ary algorithm method developed by Confesor and Whittaker [23]. The curve number for
each of the 479 HRU was calibrated separately, and the soil evaporation compensation
factor for each of the 12 land use groups was calibrated separately. The limits of the param-
eters to be optimized were fixed based on the results obtained from sensitivity analysis.
The USGS gauging station at Berlin Road offers the most consistent daily streamflow
measurement record between 2015 and 2017, and thus, the model calibration period was
set to 5 May 2005–31 December 2016 (607 observations) and the validation period set to
1 January–31 December 2017 (365 observations). A warm-up period of 3 years was used
in all simulations. The calibrated and validated variables are streamflow, sediment (TSS),
organic nitrogen, mineral phosphorus (SRP), organic phosphorus, total nitrogen, and total
phosphorus. Three water quality variables including chlorophyll a, CBOD, and dissolved
oxygen were not calibrated because of lack of data, and this may impact the results reported
for these three variables.

The generic algorithm package (genalg) in R statistical language [24] was modified
and used to randomly create the first 1000 solutions of the parent population from which
the 1000 solutions of the child population were generated using five objective functions
(flow, TSS, total p, SRP, and total n). The calibration parameters were modified on the
fly, and SWAT was run as an R subroutine for each of the solutions and the iteration was
stopped at 200. A total of 201,000 SWAT runs were made with 200 iterations.

2.3.4. Objective Function and Model Performance Evaluation

The five objective functions (flow, TSS, total p, SRP, and total n) were used to keep the
average root mean square error (RMSE) of the observed versus simulated at minimum.
The RMSE equation is given as:

RMSE =

(
1
n

n

∑
i=1

(Qsm,i − Qob,i)
2

)0.5

(1)

The performance of the calibrated SWAT model was evaluated by comparing the simu-
lated with the observed variables using three statistical indices: percentage bias/percentage
error (PBIAS (%)), Nash–Sutcliffe model efficiency (NSE) [25] and coefficient of R2.

PBIAS[%] =
∑n

i=1(ob − sm)× 100
∑n

i=1 ob
(2)

NSE = 1 −
1
n ∑n

i=1(Qsm,i − Qob,i)
2

1
n ∑n

i=1

(
Qsm,i − Qob,i

)2 (3)

R2 =

[(
∑n

i=1

(
ob − ob

))
(sm − sm)

]2

∑n
i=1

(
ob − ob

)2
∑n

i=1(sm − sm)2
(4)

where QOb and QSm are the observed (measured) and the simulated daily streamflow at a
given time i, and n represents the total number of observations for the simulation.

NSE ranges from negative infinity to 1, with 1 indicating a perfect match between the
observed and simulated.
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2.4. Scenario Simulations

A total of 141 annual simulations were made in this work to analyze the response of
10 water quality variables. For the historical (first) climate window (1985–2014), a total
of 21 simulations were made. Only one simulation was run with PRISM climate data,
20 simulations were run with 20 GCMs, and the results were compared to establish the
extent to which CMIP5 GCMs can reproduce the actual (PRISM climate) results. For the
Scenario 1 of the current to near future (2018–2045), mid-century (2046–2075), and late-
century (2076–2100) climate windows, a total of 60 simulations were made using 20 GCMs
in each climate window with constant (current) LULC data applied across all the climate
windows. For Scenario 2 of the current to near future (2018–2045), mid-century (2046–2075),
and late-century (2076–2100) climate windows, a total of 60 simulations were also made
using 20 GCMs in each climate window with the respective projected LULC applied for
each climate window, and the results of the two scenarios were compared.

3. Results
3.1. Historical (PRISM) and Projected (CMIP5) Climate Forcing

The PRISM and GCMs climate forcing used for the simulations of flow and water
quality variables in OWC watershed for the 21st century are shown in Figures 2 and 3.
For the historical climate window, PRISM results were averaged to remove inter-annual
variability within the climate window. For each of the four climate windows, the results of
the simulations made from the 20 different GCMs were first averaged across the model to
remove inter model variability, and the results averaged to remove inter annual variability
within the climate window. Comparison of precipitation data in the historical climate
window shows that GCMs slightly underestimated precipitation with an annual average
value of 937.7 mm compared to the actual (PRISM climate) with an annual average value
of 962.4 mm, but the underestimation is statistically insignificant as the error bar from
GCMs’ results overlaps PRISM result. The GCMs’ precipitation increases almost linearly
from 937.7 mm in the historical climate window to 1060.7 mm in the late-century climate
window. The percentage increase in average annual precipitation relative to the historical
climate window for the current–future, mid-century, and late-century climate windows are
4.2, 7.6, and 13.1% respectively.
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Figure 3. PRISM vs. Average of 20 CMIP5 GCMs temperature.

For the historical climate window, PRISM and CMIP5 GCMs temperatures are almost
the same with values of 10.19 and 10.18 ◦C, respectively. CMIP5 GCMs’ temperature
increases almost linearly from the historical climate window with an annual average of
10.18 ◦C to the last climate window with an annual average of 14.99 ◦C. The percent-
age increase in average annual temperature relative to the historical climate window for
the current–future, mid-century, and late-century climate windows are 12.9, 30.1, and
47.3% respectively.

The error bars were constructed from the standard deviation of the projected climate
data and show the degree of variability in each data. The variability observed between the
average of the 20 GCMs’ result and the PRISM data is statistically insignificant as shown by
the overlapping error bars (Figures 2 and 3). In short, the average of 20 GCMs is consistent
with the PRISM climate data for the OWC watershed and can be used to run simulations
for the future scenarios.

3.2. Land Use Forcing

The OWC watershed is primarily agricultural, and the LULC has not been changing
significantly over the past years. The land use forcing in this analysis is shown in Table 2,
and it represents the average over the climate window. The land use data averaged over
the period 1985–2014 were used for the simulations in the historical climate window.
For Scenario 1, the baseline calibration land use data, which represents the average of
2015–2017, was used as a constant land use data for simulations for all climate windows.
For Scenario 2, the projected land use data, generated using joint MLP-CA Markov model
and averaged over the respective climate window, were used for all the simulations. The
agricultural land in the OWC watershed is projected to decrease across the century, while
urbanization is projected to increase slightly across the century (Tables 2 and 3).
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Table 2. Land use/land cover (LULC) forcing used in the simulation.

Climate Window Mid-Year Agriculture (%) Forest (%) Urban (%) Water (%) Wetland (%)

PRISM 1985–2014 1999.5 65.42 25.14 8.12 0.50 0.82

20 CMIP5 GCMs
1985–2014 1999.5 65.42 25.14 8.12 0.50 0.82

20 CMIP5 GCMs Scenario
1_2018–2100 2031.5 65.18 24.95 8.44 0.62 0.81

20 CMIP5 GCMs Scenario
2_2018-45 2031.5 64.38 25.02 9.02 0.73 0.84

20 CMIP5 GCMs Scenario
2_2046-75 2060.5 63.16 25.30 9.96 0.73 0.84

20 CMIP5 GCMs Scenario
2_2076-00 2088 61.58 26.01 10.82 0.73 0.85

Table 3. Percentages change in forcing from the historical climate window.

Forcing (W2–W1) % (W3–W1) % (W4–W1) %

Precipitation 4.2 7.6 13.1

Temperature 12.9 30.1 47.3

Agriculture −1.04 −2.26 −3.84

Urbanization 0.9 1.84 2.7

3.3. PRISM and CMIP5 GCMs Inter-Model Variability Results (1985–2014)

The results of the simulations made with PRISM and the 20 GCMs for flow and nine
water quality variables are shown in boxplots in the Appendix A, while the summary of
the statistics of the boxplots and the mean are shown in Table 4. Each of the 20 GCMs’
results and the average of the 20 GCMs’ results was compared with the PRISM result, and
it was found that the results of each of the 20 GCMs shows different variability with PRISM
result across all variables but the average of the 20 GCMs’ results is more consistent with
the PRISM result across all variables when compared along the mean and median values.
For all the water quality variables studied, the average of the 20 GCMs’ results slightly and
consistently overestimated the 10 variables of interest within the error of SWAT simulations.
The variability observed in the average of 20 GCMs’ results is smaller than that of the
PRISM result. This is because the GCMs’ results represent the average of 20 models, while
the PRISM result is one model result. In Table 4, the mean and median values for the
average of 20 GCMs (0.49, 0.48 m3/s) and PRISM (0.46, 0.47 m3/s) for flow are consistent.
For sediment, the mean and the median values for the average of 20 GCMs (5612, 5530 tons)
and PRISM (5022, 4919 tons) are also consistent. For all the 10 variables of interest, the
mean of the average of the 20 GCMs’ results is slightly and consistently higher than that of
the PRISM results.
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Table 4. Flow and WQ comparison between PRISM and average of 20 CMIP5 GCMs (1985–2014).

Streamflow (m3/s) Sediment (tons) Organic
Nitrogen (kg)

Organic
Phosphorus (kg)

Mineral
Phosphorus (kg)

CMIP5
Avg. PRISM CMIP5

Avg. PRISM CMIP5
Avg. PRISM CMIP5

Avg. PRISM CMIP5
Avg. PRISM

mean 0.49 0.46 5612 5022 38,508 35,955 9949 9353 2020 1848
std 0.04 0.19 659 2744 3350 16,130 947 4053 225 616
min 0.40 0.14 4362 783 32,802 8060 8318 2344 1705 722
0.25 0.46 0.33 5210 3250 35,908 24,908 9149 6230 1829 1442
0.50 0.48 0.47 5530 4919 37,731 34,775 9796 9422 2030 1910
0.75 0.53 0.60 6114 6948 40,318 43,675 10,621 11,409 2120 2264
max 0.58 0.91 6944 11,754 44,516 67,890 11,638 16,998 2639 2953

Outliers NA NA NA NA NA NA NA NA 2639.40 NA

Chlorophyll
a (kg) CBOD (kg) Dissolved

Oxygen (kg) Total Nitrogen (kg) Total
Phosphorus (kg)

CMIP5
Avg. PRISM CMIP5

Avg. PRISM CMIP5
Avg. PRISM CMIP5

Avg. PRISM CMIP5
Avg. PRISM

mean 685 614 711,384 676,462 64,550 63,389 111,316 107,745 11,969 11,201
std 66 363 59,993 298,464 4661 22,825 11,479 45,366 1091 4630
min 526 68 585,142 150,120 54,488 23,734 90,422 27,490 10,163 3066
0.25 640 404 670,726 473,875 61,231 45,250 101,697 68,085 11,141 7682
0.5 679 548 695,898 639,800 64,287 63,510 110,149 116,150 11,719 11,359
0.75 720 805 759,646 830,975 68,018 77740 118,118 141,418 12,629 13,590
max 843 1440 816,880 1,247,400 74,023 120,440 136,440 231,150 14,278 19,558

Outliers 843 1440 NA NA NA NA NA NA NA NA

CBOD = carbonaceous biochemical oxygen demand.

3.4. Scenario 1 and Scenario 2 CMIP5 Inter-Model Variability Results (2018–2100)

The statistics of the boxplots and the mean for the simulation results for the 10 variables
of interest for Scenario 1 and Scenario 2 in the current–future climate windows are presented
in Table 5. It should be noted that the simulated results for the water quality variables
reflect the synergistic effect of flow, other mechanisms of nutrients generation within
the system, and model uncertainty, which is not separable. In this study, emphasis is
placed on the respected effects of the main model forcing (climate change and LULC) over
other mechanisms. The results reveal slight differences between Scenario 1 and 2. The
mean, median, minimum, and maximum values for streamflow in Scenario 1 are 0.52,
0.52, 0.43, and 0.62 m3/s, respectively, and in Scenario 2 are 0.53, 0.52, 0.44, and 0.63 m3/s,
respectively. The slight increase in streamflow in Scenario 2 is attributed to a small decrease
(0.8%) in agriculture and 0.58% increase in urbanization in relation to Scenario 1. The mean
sediment transport for Scenario 1 and Scenario 2 are 6235 and 6333 tons, median values
are 6215 and 6249 tons, minimum values are 4717 and 4935 tons, and the maximum values
are 7608 and 7888 tons, respectively. Similar trends were observed for organic nitrogen
transport, organic phosphorus, chlorophyll a, CBOD, dissolved oxygen, total nitrogen, and
total phosphorus, and precipitation
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Table 5. Comparison between Scenario 1 and 2 (2018–2045).

Streamflow (m3/s) Sediment (tons) Organic
Nitrogen (kg)

Organic
Phosphorus (kg)

Mineral
Phosphorus (kg)

Scen01 Scen02 Scen01 Scen02 Scen01 Scen02 Scen01 Scen02 Scen01 Scen02

mean 0.52 0.53 6235 6333 40,002 40,409 10,162 10,426 2000 1784
std 0.05 0.05 717 706 4012 4332 1002 1222 260 181
min 0.43 0.44 4717 4935 31,333 30,921 7918 7811 1512 1383
0.25 0.49 0.50 5769 5821 37,410 38,315 9608 9671 1782 1703
0.50 0.52 0.52 6215 6249 39,761 40,217 10,056 10,330 1984 1799
0.75 0.55 0.56 6669 6798 42,306 42,776 10,731 11,061 2206 1871
max 0.62 0.63 7608 7888 47,797 49,009 12,406 12,807 2455 2184

Outliers NA NA NA NA NA 30,921 7918 NA NA 1383
Outliers NA NA NA NA NA NA NA NA NA 2184

Chlorophyll
a (kg) CBOD (kg) Dissolved

Oxygen (kg) Total Nitrogen (kg) Total
Phosphorus (kg)

Scen01 Scen02 Scen01 Scen02 Scen01 Scen02 Scen01 Scen02 Scen01 Scen02

mean 729 740 789,545 800,144 69,059 70,383 113,825 115,888 12,161 12,210
std 86 93 76,029 83,016 5541 5442 8561 9809 1180 1385
min 539 545 634,984 639,485 57,923 60,339 92,602 95,596 9430 9193
0.25 684 694 734,296 739,323 65,354 65,988 108,870 111,399 11,508 11,415
0.5 728 744 787,588 800,900 68,558 69,894 114,154 116,270 12,106 12,100
0.75 769 785 831,460 845,954 72,442 73,579 118,622 120,835 12,808 12,997
max 888 933 940,055 972,310 81,836 83,041 131,080 132,349 14,566 14,821

Outliers 557 545 NA NA NA NA 92,602 95,596 9430 NA
Outliers 538.83 933.25 NA NA NA NA NA NA NA NA

However, a reverse (decrease) trend was observed in mineral phosphorus from
Scenario 1 to Scenario 2. The mean, median, minimum, and maximum values for mineral
phosphorus in Scenario 1 are 2000, 1984, 1512, and 2455 kg, in Scenario 2 are 1784, 1799,
1383, and 2184 kg.

The same trend for Scenarios 1 and 2 described above was repeated in the mid-century
and late-century climate windows.

3.5. Scenario 1 and Scenario 2 Inter-Annual Variability Results (1985–2100)

The results of the inter-annual variability analysis for Scenario 1 and Scenario 2 for
all the 10 variables of interest are presented in Figures 4–13. Flow and sediment show
almost linear variability for the two scenarios across the century, but the effect of LULC is
greater in flow than in sediment. Organic nitrogen and organic phosphorus show nonlinear
increase for the two scenarios across the century with more increase towards the end of
the century. The effect of LULC is more in organic phosphorus transport than in organic
nitrogen. The effect of LULC created a decrease in mineral phosphorus (SRP) transport
across the century as seen in Scenario 2. Chlorophyll a, CBOD, dissolved oxygen, total
nitrogen, and total phosphorus also increase nonlinearly across the century with more
increase towards the end of the century in chlorophyll a, CBOD, and total phosphorus.
The error bars were constructed from the standard deviation of the simulated results
and show the degree of variability in each result. The variability between two results is
statistically insignificant when the vertical error bars overlap and statistically significant
when the vertical error bars do not overlap. For all the variables in the historical climate
window, the average of 20 CMIP5 results is consistent with PRISM results, but CMIP5
overestimated the variables compared to PRISM, within the error of SWAT simulation.
For all climate windows, the trend of the variables in Scenarios 1 and 2 are the same, the
trend of the variable is controlled by climate, which is common to both scenarios, while
the effect of LULC change is seen as the difference between the plots in the two scenarios.
In Scenario 2, the expected slight changes in land use (−3.6% in agriculture and +2.4% in
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urbanization) across the century generated an increase in the streamflow and other water
quality variables except for mineral phosphorus. The flow and nutrients increase annually
from current–future to late-century climate window. Table 6 shows the percentage change
in the simulated variables relative to the historical climate window for both Scenarios
1 and 2 across the century. In the current–future climate window, the highest increase
was observed in the Scenario 2 simulation for CBOD with 12.48% followed by sediment
transport with 11.51%. In the mid-century climate window, Scenario 2 simulation for
sediment transport yielded the highest increase at 24.85% followed by CBOD at 22.71%.
In the late-century climate window, CBOD was highest at 43.34% followed by sediment
transport at 40.13%. Total phosphorus gave the lowest increase across the century, while
mineral phosphorus decreased across the century.
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3.6. Relationship between Variables

Cross plots were made between flow and water quality variables (Figures 14–17).
Flow is highly correlated with sediment across all the climate windows with R2 value
of 0.99. This shows that flow controls the sediment and that explains the similar trend
between flow and sediment across the climate windows. Flow also correlated well with
total nitrogen, total phosphorus, and organic phosphorus with strong R2 values of 0.95,
0.90, and 0.92, respectively, but shows no correlation with mineral phosphorus. Apparently,
the projected increase in flow is expected to lead to an increase in water quality variables
that are positively correlated with flow across the climate windows.
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Table 6. Percentage change in the simulated variables relative to the historical climate window across the century.

Dataset Mid-Year Flow (%) Sediment (%) Organic
Nitrogen (%)

Organic
Phosphorus

(%)

Mineral
Phosphorus

(%)

20 CMIP5
GCMs

1985–2014
1999.50 - - - - -

20 CMIP5
GCMs Scenario

1_2018-45
2031.50 7.59 9.79 3.88 2.14 −1.02

20 CMIP5
GCMs Scenario

2_2018-45
2031.50 9.69 11.51 4.94 4.79 −11.68

20 CMIP5
GCMs Scenario

1_2046-75
2060.50 13.64 20.55 8.02 6.94 −3.47

20 CMIP5
GCMs Scenario

2_2046-75
2060.50 18.28 24.85 9.56 11.62 −11.63

20 CMIP5
GCMs Scenario

1_2076-00
2088.00 23.76 36.66 17.93 19.96 4.45

20 CMIP5
GCMs Scenario

2_2076-00
2088.00 28.06 40.13 20.09 25.07 −7.51

Dataset Mid-Year Chlorophyll a
(%) CBOD (%) Dissolved

Oxygen (%)
Total Nitrogen

(%)

Total
Phosphorus

(%)

20 CMIP5
GCMs

1985–2014
1999.50 - - - - -

20 CMIP5
GCMs Scenario

1_2018-45
2031.50 6.40 10.99 6.98 2.25 1.60

20 CMIP5
GCMs Scenario

2_2018-45
2031.50 7.99 12.48 9.04 4.11 2.01

20 CMIP5
GCMs Scenario

1_2046-75
2060.50 9.41 20.41 9.84 7.74 5.18

20 CMIP5
GCMs Scenario

2_2046-75
2060.50 12.01 22.71 13.76 10.42 7.70

20 CMIP5
GCMs Scenario

1_2076-00
2088.00 22.10 39.58 14.06 17.67 17.34

20 CMIP5
GCMs Scenario

2_2076-00
2088.00 22.97 43.34 18.96 19.08 19.57
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4. Discussion

For the historical climate window, the average of the 20 CMIP5 GCMs’ results is a
better predictor of the PRISM results than the individual results of the 20 GCMs model,
and hence, the 20 GCMs can be used to run simulations for the future climate windows.

For Scenarios 1 and 2’s inter-model variability result, the effect of the projected climate
change, which is (+13%) in precipitation and temperature (+47%), is seen in Scenario 1.
The slight increase in streamflow and water quality variables in Scenario 2 relative to
Scenario 1 is attributed to the effect of (+0.58%) in urbanization seen in Scenario 2, which
increases surface runoff. A decrease in agricultural land makes less land available for
infiltration, which increases flow. The synergistic effect of a 0.8% decrease in agricultural
land and 0.58% increase in urbanization in Scenario 2 would, therefore, increase flow and
sediment transport.

The effect of the slight increase in urbanization and slight decrease in agriculture
in Scenario 2 compared to 1 appears to be more in nutrient transport than in flow and
sediment transport.

The reduction in mineral phosphorus (SRP) in Scenario 2 relative to Scenario 1 is
attributed to the dissolution and the addition of the mineral phosphorus to the total
phosphorus. This was evident by the associated reduction in crop yield across the climate
windows. Hence, more mineral phosphorus is being dissolved, thereby increasing the
concentration of total phosphorus in the estuary. The increase in other nutrients would
drive more eutrophication leading to anoxic condition within the estuary.

For Scenarios 1 and 2’s inter-annual variability result, the increase in flow drives
sediment and nutrients transport. The projected high increase in CBOD and sediment
transport will deteriorate the water quality, high total suspended sediment would affect
water clarity, and high CBOD content would affect the dissolved oxygen content. As for
mineral phosphorus, the effect of the projected change in agricultural land use in Scenario
2 (−3.6% in agriculture) created a decrease in the quantity of the mineral phosphorus
transported relative to Scenario 1. The reduction in mineral phosphorus (SRP) is attributed
to the dissolution and addition of mineral phosphorus in the system to the total phosphorus
content. Mineral phosphorus is the only water quality variable that decreased from Scenario
1 to Scenario 2. The effect of the projected changes in LULC results in a small impact relative
to the effect of climate change.
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Similar results have been obtained by other researchers. Michalak et al. [26] carried
out hydrological modeling of the Maumee River basin using SWAT and found an estimated
increase in sediment and nutrient transport associated with the projected climate change.
Du et al. [27] used SWAT modeling to evaluate the impact of LULC and climate change on
runoff in the Dagu River basin in China and found out that the impact of LULC was lower
than that of climate.

In this analysis, the most affected variables are streamflow, sediment transport, and
CBOD. High stream flow would increase the vulnerability of the stream to flooding and
would also increase sediment transport. High sediment transport would increase water
turbidity and disrupt some aquatic habitats. High CBOD will lower the dissolved oxygen
level in the water leading to the loss of aquatic lives. The results obtained from this work as
shown by the cross plot are similar to those obtained by Stumpf et al. [28,29], who created
models that forecast cyanobacteria bloom in Lake Erie using the Maumee River discharge
and total phosphorus load.

The stochastic uncertainty of the model results for the OWC watershed is explained
based on the previous analysis made by Evenson et al. [30]; they used five newly con-
structed watershed-scale models consisting of four SWAT models and one spatially ref-
erenced regression on watershed attributes (SPARROW) model, with different structure,
input sources, and parameterization to assess the critical source areas (CSAs) uncertainty
in the Maumee River watershed. Similar to the OWC watershed, the Maumee River wa-
tershed is a tributary of Lake Erie, primarily dominated by agricultural land use (~70%),
which releases high phosphorus loads to the Lake Erie [31,32]. They observed a weak-to-
moderate correlation in the sub watersheds of the five models, an agreement in the CSAs
subset location, and a weak agreement in the CSAs location among five models. They
attributed CSA uncertainty to the structural differences in the models and noted that the
presence of uncertainty does not mean that the results of the simulations cannot be used
for its intended purpose. All possible sources of model uncertainty should be evaluated
using several models produced by different research organizations [30].

In this regard, the results of this analysis may be biased by model and climate uncer-
tainties, which could be eliminated by comparing with similar results from other sources
before use in decision making.

5. Conclusions

For the historical climate window results, the average of the 20 CMIP5 GCMs’ results
for all the 10 variables of interest are more consistent with the PRISM results than each of
the 20 individual GCMs’ results, and thus, the average is a better predictor of the PRISM
results within acceptable error of SWAT simulation. The variability is smaller in the average
of the 20 GCMs’ results being the average of 20 different results compared to the PRISM
result, which is one.

For the current-to-future climate window, the results of Scenario 1 represent the effect
of the projected climate change only. In Scenario 2, the slight increase in urbanization
would increase surface runoff, and the slight decrease in agriculture would make less
land available for infiltration, thereby increasing flow. Although these changes are not
statistically different given the uncertainty in the model estimates, the synergistic effect
of increasing urbanization and decreasing agricultural land is observed as an increase
in flow, sediment transport, organic nitrogen transport, organic phosphorus transport,
total nitrogen, and total phosphorus. Decrease or loss of mineral phosphorus observed in
Scenario 2 relative to Scenario 1 is attributed to the dissolution of mineral phosphorus.

The progressive increase observed in flow and eight water quality variables across
the century shows that there would be greater eutrophication and anoxic condition, which
would further deteriorate the water quality in OWC estuary as time goes on. The flow
controls the sediment and nutrient transport. Higher flow and nutrient transport are
predicted for the future climate windows. Comparison between Scenarios 1 and 2 shows
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that the projected LULC change in the 21st century has a smaller impact on the water
quality of Old woman creek compared to climate change.

Finally, the synergistic effect of the projected climate and LULC change observed in
Scenario 2 increases across the climate windows. Not all the increase observed in nutrients
would settle in the OWC estuary; a proportion would be transported into Lake Erie. The
increase would drive proportional increase in eutrophication in both the OWC estuary
and Lake Erie, thereby further deteriorating the water quality in the OWC estuary and
Lake Erie.

The results of this work would assist the Huron and Erie counties in making policies
relating to the land use management within the OWC watershed. It would assist the
Ohio Department of Natural Resources (ODNR) and the management of OWC (NERR) in
policies that would foster better management of the OWC estuary. It would assist the Ohio
coastal management agencies in water quality studies in Lake Erie. The result would also
serve as a reference for water quality studies in watersheds with dominantly agricultural
land use in the United States and across the world.
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