
climate

Review

Impact of Seasonal Variation in Climate on Water Quality of
Old Woman Creek Watershed Ohio Using SWAT

Israel A. Olaoye 1,*, Remegio B. Confesor, Jr. 2 and Joseph D. Ortiz 3

����������
�������

Citation: Olaoye, I.A.; Confesor, R.B.,

Jr.; Ortiz, J.D. Impact of Seasonal

Variation in Climate on Water Quality

of Old Woman Creek Watershed Ohio

Using SWAT. Climate 2021, 9, 50.

https://doi.org/10.3390/cli9030050

Academic Editor:

Nektarios Kourgialas

Received: 31 December 2020

Accepted: 17 March 2021

Published: 19 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Texas Institute for Applied Environmental Research (TIAER), Tarleton State University, Member of the Texas
A&M System, Stephenville, TX 76401, USA

2 Norwegian Institute of Bioeconomy Research, 1430 Ås, Norway; remegio.confesor@nibio.no
3 Department of Geology, Kent State University, Kent, OH 44240, USA; jortiz@kent.edu
* Correspondence: olaoye@tarleton.edu

Abstract: The effect of the projected 21st century climate change on water quality in Old Woman
Creek (OWC) watershed was evaluated using the Soil and Water Assessment Tool (SWAT) and the
precipitation and temperature projections from three best Global Climate Circulation Model (GCM)l
ensemble downloaded from the Coupled Model Intercomparison Project Phase 5 (CMIP5). These
three best GCMs (GFDL-ESM2M, MPI-ESM-MR, EC-EARTH) were identified as those closest to the
multivariate ensemble average of twenty different GCM-driven SWAT simulations. Seasonal analysis
was undertaken in historical (1985–2014), current to near future (2018–2045), mid-century (2046–2075),
and late-century (2076–2100) climate windows. The hydrological model calibration was carried out
using a multi-objective evolutionary algorithm and pareto optimization. Simulations were made
for stream flow and nine water quality variables (sediment, organic nitrogen, organic phosphorus,
mineral phosphorus, chlorophyll a, carbonaceous biochemical oxygen demand, dissolved oxygen,
total nitrogen, and total phosphorus) of interest. The average of twenty different CMIP5-driven
SWAT simulation results showed good correlation for all the 10 variables with the PRISM-driven
SWAT simulation results in the historical climate window (1985–2014). For the historical period, the
result shows an over-estimation of flow, sediment, and organic nitrogen from January to March in
simulations with CMIP5 inputs, relative to simulations with PRISM input. For the other climate
windows, the simulation results show a progressive increase in stream flow with peak flow month
shifting from April to March. The expected seasonal changes in each water quality variable have
implications for the OWC estuary and Lake Erie water quality.

Keywords: SWAT; PRISM; CMIP5; multi-objective evolutionary algorithm

1. Introduction

The rise in the earth’s surface temperature due to climate change observed in the last
century has been projected into the 21st century. This temperature increase will further
moisten the atmosphere and influence the water cycle [1]. Climate change is expected to
have variable impact on water resources across the globe [2]. The effect of climate change on
streamflow cannot be overemphasized because of its implications on agriculture, economy,
flooding, and water quality. The projected effects of climate change and management
practices on hydrological variables have been studied using several climate models and
basin scale hydrological models [3,4]. Hydrological modeling based on general circulation
models (GCMs) are used to simulate the future changes in streamflow under projected
climate conditions [5,6]. GCMs are different in structure and composition and produce
results with different levels of uncertainties. Some studies combine multiple GCM for
simulations and some make simulations based on some selected GCM, but a good approach
is to test the performance of different GCMs and select the best model that reduces the
uncertainty. Githui et al. [7] used SWAT with Model for the Assessment of Greenhouse
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Gas-Induced Climate Change (MAGICC) and reported an increase in the streamflow with
the projected climate change in western Kenya.

Stumpf et al. [8] extracted the cyanobacteria index from MERIS data to study the
annual bloom of cyanobacteria in Lake Erie from 2002–2012. They found out that Maumee
River supplies enough phosphorus concentration to Lake Erie for the cyanobacteria bloom
and attributed the Spring discharge and phosphorus load to the bloom. They obtained
results that agreed with other works on the modeling of the intensity of the cyanobacteria
bloom using the nutrients and created models for bloom prediction.

In order to meet the national water quality goals, Martin et al. [9] developed five
different models in SWAT to simulate the impacts of 18 different management practices
on the nutrient transport from the Maumee river basin to Lake Erie over a time frame
of 10 years. The five models agreed on practices that would reduce the quantity and
concentration of phosphorus transport with some degree of uncertainty.

Kuwaja et al. [10] assessed the inherent uncertainty in the capability of climate models
and hydrological models to forecast water discharge and nutrient transport in the Maumee
River watershed for the period 2046–2065 by forcing five distinct SWAT models with six
different climate models from the CMIP5 ensemble. They found out that the hydrologic
models can create greater uncertainties than the climate models in water quality forecasts,
because hydrologic models created greater uncertainty in total phosphorus and dissolved
reactive phosphorus forecast, while the dominant source of uncertainty in total nitrogen
forecast was attributed to the climate models. They discouraged the use of single hydrologic
or climate models by decision makers.

This work attempts to build on the recommendation of previous studies within
available resources by using multiple climate models, a single hydrologic model, and a
multi-objective calibration approach. The goal was to determine the effect of the projected
21st century seasonal variation in climate on water quality in the Old Woman Creek
(OWC) watershed. The hypothesis tested was that increased streamflow driven by seasonal
and annual variation in precipitation and temperature will result in comparable linear
decreases in water quality across the century. It involved testing the performance of each
of the 20 GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP 5) and
selecting the best three models for seasonal variation simulations. Analysis was done on 10
variables of interest for four climate windows, which include historical (1985–2014), current
to near future (2018–2045), mid-century (2046–2075), and late century (2076–2100). The
variables of interest are streamflow, sediment transport (TSS), organic nitrogen, organic
phosphorus (particulate p), mineral phosphorus (soluble reactive p or SRP), chlorophyll a,
carbonaceous biochemical oxygen demand (CBOD), dissolved oxygen, total nitrogen, and
total phosphorus. The specific objectives are summarized below:

1. To evaluate the performance of each of the twenty GCMs from CMIP5 ensemble using
exploratory simulations, calculate Euclidean distance of each model result relative to
the multivariate ensemble average, and select the best three GCM models defined as
those closest to the multivariate ensemble average, because the multivariate ensemble
average of the 20 CMIP5 results is consistent with the average of the PRISM results.

2. To reproduce the Parameter-elevation Regressions on Independent Slopes Model
(PRISM) data simulation results for the historical climate window using the average
result of the simulation made with the best three CMIP5 models.

3. To make simulations for the current to near, mid-century, and late-century climate
windows using best three CMIP5 models.

2. Materials and Methods
2.1. Old Woman Creek (OWC) Watershed and Estuary

The OWC watershed drains a total land area of about 69 km2 with agriculture and
forest as the dominant LULC. The Old Woman Creek (OWC) watershed has an estuary that
was designated as the national estuarine research reserve (Latitude 41◦23′ N, Longitude
82◦33′ W). The OWC estuary is about 0.52 km2 in area; it consists of water, vegetation,
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swamps, marshes, and beach. It has a maximum width of 0.34 km, a mean depth of 0.4
km, and a depth of less than 1 m for the lower part, which can reach about 2 m around the
mouth where the estuary empties into Lake Erie [11,12]. The OWC estuary is a freshwater
estuary, within the OWC watershed, which maintains a natural habitat for aquatic life. It
has extensive biological and physical diversity with various forms of terrestrial animals,
aquatic animals, several species of birds, and habitat types [12]. There is diversity of
phytoplankton notably the green algae, blue-green algae, and the diatoms [13]. The estuary
helps in monitoring the water quality within the watershed and controls excessive flow of
water during flooding (Figure 1). More than 60% of the watershed is used for agricultural
purposes, which has implications on the water quality. Forest reserve occupies about 25%,
while the remaining areas are wetlands and developed or built-up areas.
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2.2. SWAT Data Acquisition and Preparation

Data needed for hydrological modeling in SWAT include LULC data, digital elevation
model (DEM), digital soil map, and climate and weather data. Ohio state 2001–2016 LULC
data of 30 m resolution were downloaded from the National Land Cover Database website
(https://www.mrlc.gov/data/type/land-cover, accessed on 15 March 2021) on 5 February
2019. Ohio area digital elevation model (DEM) of 10 m resolution was downloaded
from the Geospatial Data Gateway (https://datagateway.nrcs.usda.gov, accessed on 15
March 2021). Digital soil map of Ohio, available at SSURGO (Soil Survey Geographic)
database at https://www.nrcs.usda.gov, accessed on 15 March 2021, was downloaded
for the analysis. The (PRISM) climate data of a spatial resolution of 4 × 4 km from 1981–
2017 were downloaded from PRISM Climate Group at http://www.PRISM.oregonstate.
edu/, accessed on 15 March 2021. The 20 different CMIP5 models of a spatial resolution
ranging from latitude 1.25 to 2.7906 and longitude 1.125 to 3.75 from 1981–2100 were
downloaded from the climate data store. The RCP 8.5 data for the 20 different Climate
Model Intercomparison Project Phase 5 (CMIP5) ensemble were downloaded from the
climate data store catalogue, downscaled, and biased-corrected for the hydrological model.
Spatial interpolation method described by Flint and Flint [14] was used to extract the fine
scale information from the coarse-scale information. The CMIP5 model was divided into
historical (1981–2017) and future (2018–2100) data. The 4 km× 4 km grid resolution PRISM
dataset for the historical period (1981–2017) was used for the spatial downscaling of the

https://www.mrlc.gov/data/type/land-cover
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http://www.PRISM.oregonstate.edu/
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historical period data for the 20 CMIP5 models, and the climate parameters that were
downscaled are the daily precipitation, minimum temperature, and maximum temperature.
The historical (1981–2017) PRISM daily observed data were plotted against the simulated
data to obtain the natural cubic regression splines used to generate the transfer functions,
and this was applied to the CMIP5 future (2018–2100) data. The distribution-based scaling
(DBS) method described by Yang et al. [15] was used to downscale the future (2018–2100)
CMIP5 data to 4 km × 4 km grid resolution and bias-correct the data. All GIS layers were
prepared with the OWC watershed shapefile. Stream discharge data were downloaded
from the USGS national water information system (https://waterdata.usgs.gov/nwis/si,
accessed on 15 March 2021) at station number 04199155. The water quality data for
calibration and validation of the hydrological model were obtained from the water quality
lab at Heidelberg University, Tiffin, Ohio. Hydrological modeling was carried out using
the Soil and Water Assessment Tool (SWAT), which uses ArcMap as the graphical interface,
available on Texas A&M University system website and installed as ArcSWAT. The method
workflow is shown in Figure 2.
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2.3. SWAT Model

The Soil and Water Assessment Tool (SWAT) is a basin scale hydrological modeling
tool with the capability to model how land management will influence nutrient transport
and, consequently, water quality in a large watershed with variable land management,
soil types, and land use categories over a long period of time [16]. A detailed descrip-
tion of the different components of SWAT including pesticides application, management
practices, crop growth, channel and reservoir routing, hydrology, sediment and nutrient
transport, weather, and soil types and temperature can be found in Arnold et.al. [17].
SWAT is connected to the graphical platform (ArcGIS) using ArcSWAT for updating the
spatial information such as stream network, management practices, weather data, soil
data, and land use/cover maps into SWAT hydrological model [18,19]. The accuracy of the
calibrated SWAT model was assessed using three statistical parameters, which compared
the simulated to the observed values of the hydrological variables. They are percent-
age bias/percentage error [PBIAS (%)], Nash–Sutcliffe model efficiency (NSE) [20], and
coefficient of determination (R2).

2.4. Calibration of SWAT Model

The setting up and parameterization of SWAT hydrological modeling for the OWC
watershed was done in ArcSWAT 2012 interface. For the first stage, involving watershed
delineation, drainage network establishment, and slope characterization, a 10 m digital
elevation model (DEM) was prepared with the watershed shapefile and loaded. The digital
stream network was displayed on the watershed DEM, the sub basin outlets were automati-

https://waterdata.usgs.gov/nwis/si
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cally generated using the minimum threshold approach, and an outlet was manually added
at the location of the USGS gauge station at Berlin Road, where data were taken for SWAT
calibration and validation. OWC watershed was delineated after the initial set up with an
area of 66.9 km2 and 103 sub basins. To define the HRU and to hydrologically characterize
the sub basins, DEM, land use, and soil data were used to create three slope classes: 0–3%
for flat surfaces, 3–15% for moderate surfaces, and >15% for steep surfaces. Minor land
use classes were eliminated by redistributing the smallest land use, slope, and soil classes
occupying <10% of the sub basin over the larger ones, while keeping the entire modeling
area of the sub basin at 100%. There is a total of 12 land use classes including open waters,
developed open space, developed low intensity, developed medium intensity, developed
high intensity, barren land, deciduous forest, evergreen forest, herbaceous, hay, cultivated
crops, and woody wetlands. Complete HRU definition was done by reclassifying land use,
soil, and slope to create 479 HRUs. Best management practices described by Confesor et al.
and Scavia et al. [21,22] based on the three main crop types (soya, corn, and wheat) planted
at OWC, tillage, planting and harvesting time, fertilizer application, etc., were encoded for
each of the 479 HRUs in the SWAT model.

To prepare the model for calibration, PRISM climate data (1981–2017) were loaded,
external climate data included precipitation and temperature (min, max, and daily average),
while solar radiation, relative humidity, and wind speed were generated in SWAT for the
hydrological model. Sensitivity analysis was done to determine the influence of the SWAT
parameters on the water qualities variables and to select the most influential parameters for
calibration [16], and a total of 56 SWAT parameters were selected to be optimized. The soil
evaporation compensation factor was calibrated for each land use group, and each HRU
was calibrated separately for the curve number to obtain 479 different curve numbers. The
multi-objective calibration method developed by Confesor and Whittaker [23] (Figure 3)
was modified and used for the optimization of the selected 56 SWAT parameters. The
results of the sensitivity analysis and the hydrologic characteristics of the watershed
assisted in fixing the limits of the optimized parameter for best model performance. The
most complete record of daily streamflow found at USGS gaging station at Berlin Road in
OWC ranged from 2015–2017, and this restricted the model calibration period to 5 May
2015–31 December 2016 (607 observations) and the validation period to 1 January 2017–31
December 2017 (365 observations).
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In the calibration, the first 1000 solutions of the parent population were generated
using the generic algorithm package (genalg) in R statistical language [24], and the five
objective functions were applied to produce the child population. SWAT code was modified
to run 200 iterations as a subroutine on IBM server with two quad-core processors to make
a total of 201,000 SWAT runs for the calibration process.

2.5. Seasonal Analysis Simulations for Streamflow and Water Quality Variables

First, exploratory simulations were conducted with the PRISM data and the 20 differ-
ent CMIP5 models across all the climate windows; the average of the 20 different CMIP5
model results was found to be consistent with the PRISM results across all the climate
windows. The performance of each of the 20 CMIP5 models was evaluated by computing
the Euclidean distance of each of the models relative to the overall model ensemble aver-
age, and the best three models were defined as those closest to the multivariate ensemble
average, namely, GFDL-ESM2M, MPI-ESM-MR, and EC-EARTH were selected for the
seasonal variation analysis.

In short, apart from the exploratory simulations, a total of 13 simulations was made,
and the following tasks were performed to achieve the objectives:

1. Evaluating the performance of each of the 20 CMIP5 climate models with respect to
the overall average and selecting the best three CMIP5 models.

2. Running one monthly simulation using PRISM climate data for the historical climate
window.

3. Running three monthly simulations using the best three CMIP5 climate models for
the historical climate window.

4. Comparing the average of the best three CMIP5 models’ simulation results to PRISM
results for the historical climate window.

5. Running nine monthly simulations consisting of three each for the current to near
future, mid-century, and late-century climate windows using the best three CMIP5
climate models.

3. Results
3.1. Historical Climate Window (1985–2014) Results
3.1.1. Actual (PRISM) and Projected (CMIP5) Climate Forcing

The CMIP5 precipitation shows good agreement with the PRISM precipitation for most
times of the year with slight under-estimation in the Fall and Summer and over-estimation
between Winter and Spring with a phase lag. In PRISM data, the lowest (54.8 mm) and the
highest (100.2 mm) precipitation were recorded in January and May, respectively, while
in the CMIP5 model, the lowest (62.9 mm) and highest (97.8 mm) simulated precipitation
occurred in February and June, respectively. The PRISM and CMIP5 temperature show
almost perfect agreement across all seasons. The lowest and highest temperature in both
PRISM (−3.08, 22.73 ◦C) and CMIP5 (−3.33, 22.75 ◦C) were observed in January and July,
respectively.

3.1.2. PRISM and CMIP5 Streamflow and Water Quality Simulation Results (1985–2014)

The results of the monthly simulation for both PRISM data and CMIP5 models for
streamflow and water quality variables are shown in Table 1. CMIP5 flow shows a similar
trend to the PRISM flow and under-estimates flow for most part with slight over-estimation
in February and March. In PRISM flow simulation, the lowest (0.24 m3/s) and highest
(0.68 m3/s) flow were recorded in October and April, respectively, while in the CMIP5 flow
result, the lowest (0.17 m3/s) and the highest (0.81 m3/s) simulated values occurred in
September and February, respectively. The PRISM flow simulation appears to have dual
peak flows (December and April), CMIP5 flow simulation has a peak flow in February.
Analysis of the seasonal average for the flow of PRISM result shows that Spring has highest
average of 0.61 m3/s, followed by Winter (0.58 m3/s), Summer (0.39 m3/s), and Fall
(0.27 m3/s), and the same trend was recorded in CMIP5 results.
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Table 1. PRISM average and CMIP5-Best-3 average (1985–2014).

Flow (m3/s) Sediment (Tons) Organic Nitrogen (kg) Organic Phosphorus (kg) Mineral Phosphorus (kg)

PRISM-Avg. CMIP5-
BEST3-Avg. PRISM-Avg. CMIP5-

BEST3-Avg. PRISM-Avg. CMIP5-
BEST3-Avg. PRISM-Avg. CMIP5-

BEST3-Avg. PRISM-Avg. CMIP5-
BEST3-Avg.

Annual Max 0.68 0.81 667 797 4846 5736 1318 1395 217 283
Annual Min 0.24 0.18 198 109 1360 678 323 178 82 47

Annual Range 0.44 0.63 470 689 3486 5058 995 1217 136 236
Fall Avg. 0.27 0.21 213 162 1389 1130 347 272 92 76

Winter Avg. 0.58 0.60 534 611 3590 4480 889 1092 207 243
Spring Avg. 0.61 0.69 580 684 4016 4570 1070 1208 183 220

Summer Avg. 0.39 0.32 347 239 2990 2034 812 559 134 110
Annual Avg. 0.46 0.46 419 424 2996 3053 780 783 154 162

Fall Total 0.82 0.62 640 485 4165 3389 1040 816 276 227
Winter Total 1.74 1.81 1601 1833 10,771 13,439 2667 3276 620 728
Spring Total 1.83 2.08 1740 2051 12,049 13,710 3211 3623 548 659

Summer Total 1.18 0.96 1041 716 8971 6101 2435 1678 403 331
Annual Total 5.57 5.48 5022 5085 35,955 36,638 9353 9392 1848 1944

Chlorophyll a (kg) CBOD (kg) Dissolved Oxygen (kg) Total Nitrogen (kg) Total Phosphorus (kg)

PRISM-Avg. CMIP5-
BEST3-Avg. PRISM-Avg. CMIP5-

BEST3-Avg. PRISM-Avg. CMIP5-
BEST3-Avg. PRISM-Avg. CMIP5-

BEST3-Avg. PRISM-Avg. CMIP5-
BEST3-Avg.

Annual Max 89 119 96,341 100,631 9173 10,012 18,798 19,201 1505 1677
Annual Min 20 8 22,522 15,323 2522 2004 1942 974 407 224

Annual Range 69 111 73,819 85,308 6651 8008 16,856 18,226 1098 1453
Fall Avg. 21 19 27,195 20,170 3127 2492 3476 2448 439 347

Winter Avg. 68 93 61,178 77,307 7728 7101 11,233 10,228 1096 1334
Spring Avg. 72 82 76,124 85,566 6975 7856 15,799 17,997 1253 1427

Summer Avg. 43 25 60,988 40,483 3300 2869 5408 4638 946 670
Annual Avg. 51 55 56,371 55,882 5282 5079 8979 8828 933 945

Fall Total 64 57 81,584 60,511 9381 7477 10,428 7345 1317 1042
Winter Total 204 279 183,535 231,922 23,184 21,302 33,698 30,684 3287 4003
Spring Total 216 246 228,371 256,697 20,926 23,568 47,398 53,990 3759 4282

Summer Total 129 74 182,963 121,449 9899 8606 16,223 13,915 2838 2009

PRISM: Parameter-elevation Regressions on Independent Slopes Model. CMIP5-Best-3: Average of simulation results of 3 CMIP5 GCMs: GFDL-ESM2M, MPI-ESM-MR, and EC-EARTH.
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Sediment results for both PRISM and CMIP5 models bear good resemblance to the
flow model, indicating that the flow controls the sediment transport. CMIP5 sediment
curve shows slight under-estimation at the flanks and slight over-estimation from January
to April. In PRISM sediment simulation, the lowest (198 tons) and highest (667 tons)
sediment transport were observed in October and April, respectively, while in the CMIP5
sediment simulation, the lowest (109 tons) and the highest (797 tons) values were simulated
in September and March, respectively. The PRISM sediment simulation curve has dual
peak values (December and April), but the CMIP5 sediment simulation curve shows the
peak transport in March. Seasonal average for sediment transport across the season in
PRISM results shows that sediment transport was highest for Spring (1740 tons), followed
by Winter (1601 tons), Summer (1041 tons), and Fall (640 tons) with the same pattern
observed in CMIP5 results.

CMIP5 and PRISM organic nitrogen simulation shows the same trend with CMIP5
showing slight underestimation at the flanks of the curve and overestimation between
December and April.

In PRISM organic nitrogen result, the lowest (1360 kg) and highest (4846 kg) organic
nitrogen were recorded in October and May, respectively, while in the CMIP5 organic
nitrogen result, the lowest (678 kg) and the highest (5736 kg) were simulated in September
and February, respectively. Both PRISM and CMIP5 organic nitrogen simulations have
dual peak organic nitrogen transport occurring in February and May. In both PRISM and
CMIP5 results, the highest organic nitrogen transport was observed in Spring, followed by
Winter, Summer, and Fall.

In organic phosphorus, mineral phosphorus, chlorophyll a, CBOD, and total nitrogen,
CMIP5 results are similar to PRISM results with slight over-estimation from January to
March. The results for the dissolved oxygen and organic nitrogen are very close across the
year with CMIP5 over-estimating between February and March.

In all the variables including organic phosphorus, mineral phosphorus, chlorophyll a,
CBOD, dissolved oxygen, total nitrogen, and total phosphorus, the statistics of the average
of the best three CMIP5 results are similar to those of the PRISM results. This shows that
the average of the best three CMIP5 models is able to reproduce the PRISM results within
the error of SWAT simulation.

3.2. Future Climate Windows Results
3.2.1. Climate Forcing (CMIP5)

Because it has been established that the actual (PRISM) climate data are consistent with
the projected (CMIP5) climate model for the OWC watershed, CMIP5 best three climate
models were used for the simulations for the other three climate windows (2018–2045,
2046–2075, and 2076–2100).

The CMIP5 projected precipitation for OWC watershed for the four climate windows
from 1985–2100 is shown in Figure 4. In the current to future climate window and the
mid-century climate window, the lowest and the highest precipitation were observed in
September and May, respectively, but in the late-century climate window, the lowest and
the highest precipitation were observed in September and April, respectively.

Analysis of seasonal average precipitation shows that in the current to future climate
window, Spring has the highest precipitation (102 mm) followed by Summer (81 mm),
Winter (72 mm), and Fall (71 mm). In the mid-century climate window, the highest
precipitation (108 mm) was observed in Spring, followed by Summer (80 mm), Winter
(77 mm), and Fall (72 mm). In the late-century climate window, Spring has the highest
precipitation (114 mm) followed by Winter (84 mm), Summer (79 mm), and Fall (76 mm),
indicating that the OWC watershed is expected to get wetter across the climate windows.
Each of the climate windows shows one precipitation peak in Fall and another in Spring,
with the Fall peak shifting from November in the historical climate window to December
in the late-century climate window and the Spring peak shifting from June in the historical
climate window to April in the late-century climate window. The lowest precipitation
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observed also shifts from January in the historical climate window to September in the
late-century climate window.
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The CMIP5 projected temperature for the four climate windows from 1985–2100 is
shown in Figure 5. The trend of the projected temperature is consistent across the seasons
from the historical to the late-century climate window with the lowest temperature in
January and the highest in July. The lowest and the highest temperatures observed across
the climate windows are shown in Table 2. The seasonal warming pattern is consistent
across the climate windows with Summer being the warmest, followed by Fall, Spring, and
Winter. Both the coldest and the warmest season are projected to become warmer by the
end of the century.
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Table 2. Minimum and maximum parameters for climate data.

Parameter PRISM
(1985–2014)

CMIP5
(1985–2014)

CMIP5
(2018–2045)

CMIP5
(2046–2075)

CMIP5
(2076–2100)

Min PPT
(mm) 54.8 62.9 65.5 64.1 64.5

Max PPT
(mm) 100.2 97.8 105.1 109.1 120.0

Min Temp
(◦C) −3.1 −3.3 −1.7 0.0 2.0

Max Temp
(◦C) 22.7 22.7 24.2 26.1 27.7

3.2.2. CMIP5 Streamflow and Water Quality Simulation Results (2018–2100)

The results of the simulation of streamflow and other water quality variables for the
four climate windows are presented in Figures 6–15. In streamflow results for the current
to future climate window (Figure 6), the lowest and the highest streamflow were observed
in October and April, respectively; in the mid-century and the late-century climate window,
the lowest and the highest streamflow were observed in October and March, respectively,
indicating an increase in projected streamflow across the climate windows and a shift in
the peak flow from April to March.
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The seasonal streamflow pattern is consistent across the climate windows. In the
current to future climate window, Spring has the highest streamflow (0.84 m3/s) followed
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by Winter (0.69 m3/s), Summer (0.35 m3/s), and Fall (0.22 m3/s). In the mid-century
climate window, the highest streamflow (0.96 m3/s) was observed in Spring, followed by
Winter (0.68 m3/s), Summer (0.33 m3/s), and Fall (0.27 m3/s). In the late-century climate
window, Spring has the highest streamflow (1.07 m3/s) followed by Winter (0.81 m3/s),
Summer (0.37 m3/s), and Fall (0.33 m3/s). An increase in flow was also noticed between
Fall and Winter across the climate windows.

The sediment transport simulation results for the four climate windows bear almost
perfect resemblance in trends to those of the streamflow (Figure 7). The peak and the
lowest months are the same, and the seasonal pattern of sedimentation is the same as the
seasonal pattern exhibited by streamflow. Organic nitrogen simulation results for the four
climate windows are shown in Figure 8. The historical climate window has two peaks,
in February and May; the current to future climate window has two peaks, in January
and May; the mid-century climate window has two peaks, in March and May, while the
late-century climate window has only one peak, in April. The lowest and the highest
organic nitrogen transport values observed in the historical climate window were 678 and
5736 kg, respectively; in the current to future climate window these values were 909 and
6402 kg, respectively; in the mid-century climate window, the values were 1155 and 7043
kg, respectively, and in the late-century climate window, they were 957 and 8370 kg. A
consistent seasonal transport pattern was observed across the four climate windows with
Spring having the highest transport of organic nitrogen, followed by Winter, Summer, and
Fall. Organic phosphorus, mineral phosphorus, chlorophyll a, CBOD, and total phosphorus
have both Winter and Spring peaks in the first three climate windows with the Winter peak
disappearing in the last climate window (Figures 9–13). For dissolved oxygen and total
nitrogen, the peak concentration month stays constant in March and April, respectively,
with early Winter rise across the windows (Figures 14 and 15).

3.2.3. Estimated Change in Simulated Variables across the Century (2018–2100)

The changes observed in flow and water quality variables across the century relative
to the historical climate window are presented as percentages in Tables 3–5. In the current
to future climate window (Table 3), seasonal average increased across all the simulated
variables in the Fall and Spring with highest increase of 29.2% for CBOD and 26.0% for
sediment in the Spring, and the lowest seasonal increase was observed in the Winter simu-
lation for total phosphorus. Winter average also increased for all the simulated variables
except for mineral phosphorus, while Summer average increased for flow, sediment, CBOD,
and dissolved oxygen and decreased in other variables. The lowest seasonal decrease of
−12.6% was observed in the Summer simulation for total nitrogen. There is an increase in
the annual maximum and minimum for all the simulated variables relative to the historical
climate window. The highest total annual increase of 19.4% was observed in sediment
transport, followed by 16.4% in CBOD, and 15.3% in flow in the current to future climate
window relative to the historical climate window

Table 3. Percentage change in simulated variables in the current–future relative to the historical climate window (Window
2–Window 1).

Flow
(%) Sed (%) Org n

(%)
Org p

(%)
Min p

(%)
Chl a
(%)

CBOD
(%)

DisO2
(%)

Tot n
(%)

Tot p
(%)

Fall Avg. 6.8 8.0 6.0 3.1 2.8 10.5 12.8 6.4 3.8 3.0

Winter Avg. 14.5 18.2 3.2 1.7 −1.1 3.1 8.8 15.5 18.9 1.2

Spring Avg. 21.0 26.0 21.8 19.3 14.9 26.8 29.2 16.2 10.1 18.6

Summer Avg. 9.7 11.6 −2.9 −6.6 −2.4 −5.0 5.7 9.2 −12.6 −5.9
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Table 3. Cont.

Flow
(%) Sed (%) Org n

(%)
Org p

(%)
Min p

(%)
Chl a
(%)

CBOD
(%)

DisO2
(%)

Tot n
(%)

Tot p
(%)

Annual Max 10.7 13.7 11.6 21.0 1.3 5.4 29.3 11.9 12.1 15.8

Annual Min 6.7 31.6 33.9 27.2 10.7 42.6 36.8 13.3 29.5 23.8

Annual Range 11.8 10.9 8.6 20.1 −0.6 2.7 27.9 11.6 11.2 14.6

Annual Total 15.3 19.4 9.4 7.1 4.6 11.7 16.4 13.8 9.2 6.7

Table 4. Percentage change in simulated variables in the mid-century relative to the historical climate window (Window 3–Window 1).

Flow
(%) Sed (%) Org n

(%)
Org p

(%)
Min p

(%)
Chl a
(%)

CBOD
(%)

DisO2
(%)

Tot n
(%)

Tot p
(%)

Fall Avg. 30.0 48.9 29.3 27.4 20.1 37.9 46.6 17.4 28.4 25.8

Winter Avg. 12.9 16.4 −6.0 −6.1 −13.7 −9.9 5.1 16.5 23.0 −7.5

Spring Avg. 38.8 57.3 45.6 42.0 22.7 52.8 61.0 27.3 18.0 39.0

Summer Avg. 3.2 5.9 −11.2 −15.3 −13.3 −9.4 −0.9 −0.6 −30.6 −15.0

Annual Max 34.2 59.0 22.8 32.1 0.2 8.6 50.2 26.8 23.1 24.5

Annual Min 19.3 72.9 70.3 60.1 28.7 75.2 62.9 16.1 65.0 53.6

Annual Range 38.4 56.8 16.4 28.0 −5.4 3.8 48.0 29.5 20.8 20.0

Annual Total 23.0 34.5 15.7 13.7 2.6 17.8 29.2 18.4 13.8 11.8

Table 5. Percentage change in simulated variables in the late century relative to the historical climate window (Window
4–Window 1).

Flow
(%) Sed (%) Org n

(%)
Org p

(%)
Min p

(%)
Chl a
(%)

CBOD
(%)

DisO2
(%)

Tot n
(%)

Tot p
(%)

Fall Avg. 58.0 97.9 68.7 65.3 52.9 97.2 89.5 31.9 66.1 62.6

Winter Avg. 34.5 42.5 0.3 2.5 −3.4 −7.5 19.1 37.5 49.9 1.4

Spring Avg. 54.7 81.2 63.0 59.3 35.2 69.3 86.9 34.8 22.7 55.6

Summer Avg. 17.8 33.0 0.3 −5.8 −3.4 10.4 18.4 9.7 −25.6 −5.4

Annual Max 55.8 88.7 45.9 55.5 19.8 50.1 78.2 42.1 32.5 49.4

Annual Min 27.5 67.4 41.1 33.3 30.7 26.6 54.4 10.2 46.0 32.8

Annual Range 63.6 92.1 46.6 58.7 17.6 51.8 82.5 50.0 31.8 52.0

Annual Total 41.9 62.0 30.1 28.4 16.2 32.5 51.3 31.8 27.2 26.3

For the change observed in the mid-century climate window relative to the historical
climate window (Table 4), the seasonal average further increased across all the simulated
variables in the Fall and Spring with highest increase of 48.9% for sediment and 46.6% for
CBOD in the Fall, and 61% for CBOD and 57.3% for sediment in the Spring, and the lowest
seasonal increase was observed in the Summer simulation for flow. The Winter average
increased in five variables and decreased in five variables, while the Summer average
increased for flow and sediment but decreased in other variables. The lowest seasonal
decrease of -15.3% was observed in the Summer simulation for organic phosphorus. The
annual maximum and minimum values for all the simulated variables increased relative to
the historical climate window. The highest total annual increase of 34.5% was observed in
sediment transport, followed by 29.2% in CBOD relative to the historical climate window.
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The late-century climate window has the largest change relative to the historical
climate window. The seasonal average further increased across all the simulated variables
in the Fall and Spring with the highest increase of 97.9% for sediment and 97.2% for CBOD
in the Fall and 86.9% for CBOD and 81.2% for sediment in the Spring, and the lowest
seasonal increase of 0.3% was observed in the Winter and Summer simulation for organic
nitrogen. The Winter average increased in most variables except in mineral phosphorus
and chlorophyll a, while the Summer average increased in most variables except in organic
phosphorus, mineral phosphorus, total nitrogen, and total phosphorus. The lowest seasonal
decrease of −25.6% was observed in the Summer simulation for total nitrogen. The annual
maximum and minimum values for all the simulated variables increased relative to the
historical climate window. The highest total annual increase of 62.0% was observed in
sediment transport, followed by 51.3% in CBOD relative to the historical climate window.
Though these increases are significant, a large portion of the increase would be transported
into Lake Erie, while some will be retained in the OWC estuary to contribute to the water
quality degradation.

In the current–future climate window, the projected change in precipitation of about
+4.2% and temperature of about +12.9% relative to the historical climate window is ex-
pected to bring about an average annual increase of 15.3% in streamflow, 19.4% in sediment
transport, 9.4% in organic nitrogen, 7.1% in organic phosphorus, 4.6% in mineral phos-
phorus, 11.7% in chlorophyll a, 16.4% in CBOD, 13.8% in dissolved oxygen, 9.2% in total
nitrogen, and 6.7% in total phosphorus, relative to the level in the historical climate window.
In the mid-century climate window, the projected change in precipitation of about +7.6%
and temperature of about +30.1% relative to the historical climate window is expected to
bring about an average annual increase of 23% in streamflow, 34.5% in sediment transport,
15.7% in organic nitrogen, 13.7% in organic phosphorus, 2.6% in mineral phosphorus, 18.8%
in chlorophyll a, 16.4% in CBOD, 13.8% in dissolved oxygen, 9.2% in total nitrogen, and
6.7% in total phosphorus, relative to the level in the historical climate window.

In the late-century climate window, the projected change in precipitation of about
+13.1% and temperature of about +47.3% relative to the historical climate window is
expected to bring about an average annual increase of 41.9% in streamflow, 62% in sediment
transport, 30.1% in organic nitrogen, 28.4% in organic phosphorus, 16.2% in mineral
phosphorus, 32.5% in chlorophyll a, 51.3% in CBOD, 31.8% in dissolved oxygen, 27.2% in
total nitrogen, and 26.3% in total phosphorus, relative to the level in the historical climate
window.

4. Discussion

The good agreement observed between PRISM input and CMIP5 input data for
the historical period (1985–2014) validates the accuracy of the CMIP5 model ensemble
in climate simulations for the future climate windows. The result also agrees with the
historical data of the Great Plains, and the northeast United States presented the National
Climate Assessment, which shows increased precipitation between 1986–2015 [25]. The
similarity in the SWAT simulation results observed between the PRISM model results and
CMI5 model results in the historical period further validates the efficacy of the CMIP5
model ensemble for simulations for future scenarios.

The results of the analysis of the CMIP5 seasonal precipitation for the current to future,
mid-century, and late-century climate windows agree with the progressive increase in
precipitation to the late century (2070–2099) projected for the northeastern United States
and Alaska in the Winter and Spring under higher representative concentration pathway
(RCP 8.5) by the National Climate Assessment [25]. In CMIP5 seasonal temperature results,
an average increase of about 1.47 ◦C was observed from historical to current–future climate
window, 1.85 ◦C was projected from current–future to mid-century climate window, and
an average increase of 1.66 ◦C projected from mid-century to late-century climate window.
The value obtained from the mid-century to late-century climate window is close to the
average value of 1.11 ◦C (converted) obtained from mid (2036–2065) to late (2071–2100)
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century under a lower RCP 4.5 and 2.23 ◦C (converted) obtained under a higher RCP 8.5
presented by the National Climate Assessment [25].

The increase in sediment and nutrients transport simulated across the climate windows
would increase the siltation level and nutrients enrichment in the estuary. This result is
similar to the findings reported by The State of Ohio Environmental Protection Agency
(EPA). The Ohio State EPA, under the division of surface water in 2005, identified nutrient
enrichment, siltation, and habitat alteration as the main causes of deterioration in OWC
watershed [26] (https://www.epa.state.oh.us/portals/35/tmdl/OWC_Final_062905.pdf,
accessed on 15 March 2021). This further validates the simulation results for the future
climate windows, which implies that a further higher nutrients enrichment level as well as
siltation level should be expected with time.

Similar results have been obtained by other researchers using SWAT. Ficklin et al. [27]
assessed the climate change sensitivity of a similarly highly agricultural watershed in
California, USA. They obtained an increase of 23.5% in stream flow and 36.5% of water
yield in a scenario simulation averaged over 50 years with CO2 concentration of 970 ppm
and temperature increase of 6.4 ◦C. In the attempt to assess the effect of climate change
using a hydrology and water quality model, Čerkasova et al. [28] used the RCP4.5 and
RCP8.5 seasonal temperature and precipitation data to simulate flow and nutrient loads in
a large transboundary river watershed. They concluded that the effect of climate change
would lead to increased nutrient transport to the rivers if measures to reduce the effect are
not provided.

5. Conclusions

The average of the 20 CMIP5 models for the historical period compared with the
PRISM climate data show good agreement in precipitation and almost perfect agreement in
temperature with CMIP5 exhibiting low variability across the models. The good agreement
of the precipitation data over the seasonal cycle is not apparent in the streamflow data,
which suggests that the difference on a monthly basis could be due to spatial heterogeneity,
but not in the mean value, as the streamflow is essentially an integral of the precipitation
data.

The best three CMIP5 models (GFDL-ESM2M, MPI-ESM-MR, EC-EARTH) were used
for seasonal analysis. The analysis was done in the historical (1985–2014), current to near
future (2018–2045), mid-century (2046–2075), and late-century climate windows (2076–
2100). For the historical period, the result shows an over-estimation of flow and sediment
between January and April, and organic nitrogen between December and April in the
SWAT model runs with the best three CMIP5 models, relative to runs with the PRISM input.
Peak flow, sediment, and nutrients were observed changing from Winter to Spring across
the time periods. The average of the best three CMIP5 model results for OWC watershed is
consistent with the PRISM data result.

The increase in precipitation and temperature are caused by both natural and anthro-
pogenic factors. The Fall, Winter, and Spring are projected to be progressively wetter with
the climate windows with Spring being excessively wet and Summer slightly drier. All
seasons are projected to be progressively warmer with the climate windows.

For the current to near future, mid-century, and late-century climate windows, an
increase in projected streamflow across the climate windows was observed. The seasonal
streamflow pattern is consistent across the climate windows, and peak flow season is
predicted to shift from Winter to Spring. Spring peak flow was predicted to shift from April
to March and to rise by 33.7% from the current to future climate window to the late-century
climate window.

The results for sediment transport follow the same pattern as those of streamflow,
the peak, and the lowest sediment transport month, and the seasonal pattern of sediment
transport are the same as those of the streamflow, which implies that sediment transport is
controlled by flow. Early rise was predicted for Winter and the peak transport predicted
for Spring across the climate windows.

https://www.epa.state.oh.us/portals/35/tmdl/OWC_Final_062905.pdf
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In organic nitrogen, organic phosphorus, mineral phosphorus, chlorophyll a, CBOD,
and total phosphorus results, the two peaks collapsed from the historical to late-century
climate window with the disappearance of the Winter peak. The highest nutrient concen-
tration occurs in the Spring followed by Winter, Summer, and Fall. The peak concentration
months for dissolved oxygen and total nitrogen stay constant in March and April, re-
spectively. Organic nitrogen transport peaks in Winter and Spring with the Spring peak
shifting from May to April across the climate windows. The simulated seasonal and annual
change in flow is expected to drive nutrients, the increase in nutrients is expected to drive
eutrophication and algae growth, which would worsen the water quality and affect aquatic
life in OWC estuary and Lake Erie.

Author Contributions: Conceptualization, J.D.O., I.A.O. and R.B.C.; methodology and software,
R.B.C. and I.A.O.; validation, I.A.O. and R.B.C.; formal analysis, visualization, and writing—original
draft preparation, I.A.O.; project supervision, J.D.O. and R.B.C.; review and editing, J.D.O. and R.B.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors wish to acknowledge the participation of Abdul Shakoor and
Anne Jefferson of Kent State University Ohio in the review of the dissertation from which this
manuscript was extracted. They also wish to acknowledge the support received from the Old Woman
Creek National Estuarine Research Reserve, Ohio, USA for data accessibility, the National Water
Quality Laboratory at Heidelberg University, Ohio, USA for access to their supercomputers and the
department of Geology Kent State University, Ohio, USA.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huntington, J.; Mcgwire, K.; Morton, C.; Snyder, K.; Peterson, S.; Erickson, T.; Niswonger, R.; Carroll, R.; Smith, G.; Allen, R.

Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments
with the Landsat archive. Remote Sens. Environ. 2016, 185, 186–197. [CrossRef]

2. IPOC Change. Climate Change 2007: The Physical Science Basis. Agenda 2007, 6, 333.
3. Pathak, P.; Kalra, A.; Ahmad, S. Temperature and precipitation changes in the Midwestern United States: Implications for water

management. Int. J. Water Resour. Dev. 2017, 33, 1003–1019. [CrossRef]
4. Nazari-Sharabian, M.; Taheriyoun, M.; Ahmad, S.; Karakouzian, M.; Ahmadi, A. Water quality modeling of Mahabad Dam

watershed–reservoir system under climate change conditions, using SWAT and system dynamics. Water 2019, 11, 394. [CrossRef]
5. Thodsen, H. The influence of climate change on stream flow in Danish rivers. J. Hydrol. 2007, 333, 226–238. [CrossRef]
6. Yin, J.; Guo, S.; He, S.; Guo, J.; Hong, X.; Liu, Z. A copula-based analysis of projected climate changes to bivariate flood quantiles.

J. Hydrol. 2018, 566, 23–42. [CrossRef]
7. Githui, F.; Gitau, W.; Mutua, F.; Bauwens, W. Climate change impact on SWAT simulated streamflow in western Kenya. Int. J.

Climatol. 2009, 29, 1823–1834. [CrossRef]
8. Stumpf, R.P.; Wynne, T.T.; Baker, D.B.; Fahnenstiel, G.L. Interannual variability of cyanobacterial blooms in Lake Erie. PLoS ONE

2012, 7, e42444. [CrossRef] [PubMed]
9. Martin, J.F.; Kalcic, M.M.; Aloysius, N.; Apostel, A.M.; Brooker, M.R.; Evenson, G.; Wang, Y.C.; Kast, J.B.; Kujawa, H.; Murumkar,

A.; et al. Evaluating management options to reduce Lake Erie algal blooms using an ensemble of watershed models. J. Environ.
Manag. 2020, 280, 111710. [CrossRef] [PubMed]

10. Kujawa, H.; Kalcic, M.; Martin, J.; Aloysius, N.; Apostel, A.; Kast, J.; Murumkar, A.; Evenson, G.; Becker, R.; Boles, C.; et al. The
hydrologic model as a source of nutrient loading uncertainty in a future climate. Sci. Total Environ. 2020, 724, 138004. [CrossRef]

11. McCarthy, M.J.; Gardner, W.S.; Lavrentyev, P.J.; Moats, K.M.; Jochem, F.J.; Klarer, D.M. Effects of hydrological flow regime on
sediment-water interface and water column nitrogen dynamics in a Great Lakes coastal wetland (Old Woman Creek, Lake Erie).
J. Great Lakes Res. 2007, 33, 219–231. [CrossRef]

12. Herdendorf, C.E.; Klarer, D.M.; Herdendorf, R.C. The Ecology of Old Woman Creek, Ohio: An Estuarine and Watershed Profile, 2nd ed.;
Ohio Department of Natural Resources, Division of Wildlife: Columbus, OH, USA, 2006.

13. Reeder, B.C.; Binion, B.M. Algal Community Habitat Preferences in Old Woman Creek Wetland, Erie County, Ohio. Ohio J. Sci.
2008, 108, 95–102.

http://doi.org/10.1016/j.rse.2016.07.004
http://doi.org/10.1080/07900627.2016.1238343
http://doi.org/10.3390/w11020394
http://doi.org/10.1016/j.jhydrol.2006.08.012
http://doi.org/10.1016/j.jhydrol.2018.08.053
http://doi.org/10.1002/joc.1828
http://doi.org/10.1371/journal.pone.0042444
http://www.ncbi.nlm.nih.gov/pubmed/22870327
http://doi.org/10.1016/j.jenvman.2020.111710
http://www.ncbi.nlm.nih.gov/pubmed/33308931
http://doi.org/10.1016/j.scitotenv.2020.138004
http://doi.org/10.3394/0380-1330(2007)33[219:EOHFRO]2.0.CO;2


Climate 2021, 9, 50 19 of 19

14. Flint, L.E.; Flint, A.L. Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis.
Ecol. Process. 2012, 1, 2. [CrossRef]

15. Yang, W.; Andréasson, J.; Phil Graham, L.; Olsson, J.; Rosberg, J.; Wetterhall, F. Distribution-based scaling to improve usability of
regional climate model projections for hydrological climate change impacts studies. Hydrol. Res. 2010, 41, 211–229. [CrossRef]

16. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and water assessment tool user’s manual. In GSWRL
Report, version 2000; TWRI Report TR-192; Texas Water Resources Institute: College Station, TX, USA, 2002; Volume 202.

17. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hy-drologic modeling and assessment—Part 1: Model
development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]

18. Gull, S.; Ahangar, M.A.; Dar, A.M. Prediction of stream flow and sediment yield of lolab watershed using swat model. Hydrol.
Curr. Res 2017, 8, 265. [CrossRef]

19. Di Luzio, M.; Srinivasan, R.; Arnold, J.G.; Neitsch, S.L. ArcView interface for SWAT2000: User’s guide. In TWRI Report TR-193;
Texas Water Resources Institute: College Station, TX, USA, 2002.

20. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10,
282–290. [CrossRef]

21. Confesor, R.B.; Richards, R.P.; Arnold, J.G.; Whittaker, G.W. Modeling Dissolved Phosphorus Exports in Lake Erie Watersheds; ASABE
Meeting Presentation Number 1111060; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2011; p. 1.

22. Scavia, D.; Kalcic, M.; Muenich, R.L.; Read, J.; Aloysius, N.; Bertani, I.; Yen, H. Multiple models guide strategies for agricultural
nutrient reductions. Front. Ecol. Environ. 2017, 15, 126–132. [CrossRef]

23. Confesor, R.B., Jr.; Whittaker, G.W. Automatic Calibration of Hydrologic Models with Multi-Objective Evolutionary Algorithm
and Pareto Optimization 1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 981–989. [CrossRef]

24. R-Development-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2011; Available online: http://www.R-project.org (accessed on 5 February 2019).

25. Balbus, J. The Fourth National Climate Assessment Vol. II: Impacts, Risks, and Adaptation in the United States. In Proceedings of
the 99th American Meteorological Society Annual Meeting, Phoenix, AZ, USA, 6–10 January 2019.

26. Taft, B.; Koncelik, J. Total Maximum Daily Loads for the Old Woman Creek and Chappel Creek Watersheds. 2000. Available
online: https://www.epa.state.oh.us/portals/35/tmdl/OWC_Final_062905.pdf (accessed on 1 August 2018).

27. Ficklin, D.L.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural watershed using
SWAT. J. Hydrol. 2009, 374, 16–29. [CrossRef]
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