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ORIGINAL ARTICLE

Hyperspectral NIR time series imaging used as a new method for estimating the
moisture content dynamics of thermally modified Scots pine
Petter Stefanssona, Thomas Thiisa, Lone Ross Gobakkenb and Ingunn Buruda

aFaculty of Science and Technology, Norwegian University of Life Sciences NMBU, Ås, Norway; bNorwegian Institute of Bioeconomy Research, Ås,
Norway

ABSTRACT
The purpose of this research is to develop a method for estimating the spatially and temporally
resolved moisture content of thermally modified Scots pine (Pinus sylvestris) using remote sensing.
Hyperspectral time series imaging in the NIR wavelength region (953–2516 nm) was used to gather
information about the absorbance of eight thermally modified pine samples each minute as they
dried during a period of approximately 20 h. After preprocessing the collected spectral data and
identifying an appropriate wavelength selection, partial least squares regression (PLS) was used to
map the absorbance data of each pine sample to a distribution of moisture contents within the
samples at different time steps during the drying process. To enable separate studying and
comparison of the drying dynamics taking place within the early- and latewood regions of the pine
samples, the collected images were spatially segmented to separate between early- and latewood
pixels. The results of the study indicate that the 1966–2244 nm region of a NIR spectrum, when
preprocessed with extended multiplicative scatter correction and first order derivation, can be used
to model the average moisture content of thermally modified pine using PLS. The methods
presented in this paper allows for estimation and visualization of the intrasample spatial
distribution of moisture in thermally modified pine wood.
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1. Introduction

Altering the properties of timber using heat is a practice that
dates back thousands of years (Brelid 2013). It is well known
that exposing timber to high temperatures in an oxygen
deficient environment—i.e. thermally modifying it—can
increase the dimensional stability of the wood and improve
its resistance towards moisture-related inconveniences
caused by fungi and mold growth (Cirule et al. 2015, Dunning-
ham and Sargent 2015, Sandberg and Kutnar 2016) such as
wood discoloration, visible mold growth or unpleasant smel-
ling. More recently, along with an increased demand for envir-
onmentally friendly construction materials, thermally
modified timber (TMT) has rapidly gained popularity in appli-
cations such as claddings, decks and floors partly due to the
nontoxic and eco-friendly nature of the treatment (Cirule
et al. 2015, Dunningham and Sargent 2015). It is known that
the equilibrium moisture content (EMC) of wood decreases
when undergoing thermal modification (Hill 2006, Esteves
and Pereira 2009). It is also known that as wood dries, gradi-
ents of varying moisture content are formed in the wood
structure in both the radial, tangential and longitudinal direc-
tion (Edward 1957). Internal differences in the moisture
content of a wood board cause swelling and contraction to
occur at different rates within the board, which in turn leads
to tensile stresses in the wood which may cause several

undesired consequences: for instance, it may cause the
wood, or coatings applied to the wood surface, to crack
(Schweitzer 1999), or it may cause the wood to deform, some-
times permanently (Edward 1957). Methods enabling the
spatial distribution of moisture within a wood board to be
quantified is therefore of interest within wood sciences. Pre-
vious studies have used magnetic resonance imaging (MRI)
to study the distribution of moisture within both thermally
modified (Kekkonen et al. 2014, Javed et al. 2015) and unmo-
dified (Hameury and Sterley 2006) pine. The spatial resolution
of MRI is however still relatively low, and such instruments are
large and difficult to use outdoors to survey existing struc-
tures. Near infrared (NIR) spectroscopy has become a
popular tool in wood sciences due to its ability of nondestruc-
tively allowing several useful wood properties to be character-
ized. Previous studies have shown that the density of wood
(Fujimoto et al. 2012), the mechanical stress of wood
(Sandak et al. 2013), the geographical growth region of
wood (Sandak et al. 2010) and its moisture content (Watanabe
et al. 2011) can all be approximated from nondestructive NIR
measurements of the sample. Using hyperspectral imaging, as
opposed to traditional point based NIR measurements, allows
the NIR data to be used to nondestructively approximate the
spatial distribution of wood properties. Kobori et al. demon-
strated that hyperspectral imaging in the vis-NIR wavelength
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region can be used together with multivariate regression as a
viable means of determining the spatial distribution of moist-
ure content in unmodified pine (Kobori et al. 2013). Myrony-
cheva et al. used hyperspectral NIR imaging to exploratively
study the chemical composition of thermally modified pine
using principal component analysis (Myronycheva et al. 2018).

In the present study, the feasibility of using hyperspectral
imaging in the near infrared region (953–2516 nm) to esti-
mate the moisture content distribution of thermally
modified pine is evaluated. The ambition of the study is to
develop a multivariate regression model capable of nondes-
tructively estimating the spatial distribution of moisture in
thermally modified pine samples based on the individual
spectra of each pixel of a sample. Partial least squares
regression (PLS) will be used to calibrate a regression vector
which maps the spectra of the pine samples to a correspond-
ing moisture content. The predicted distributions will then be
spatially segmented such that separate estimates are
obtained of the moisture content within the early- and late-
wood regions of each samples. To ensure that the developed
model can accurately predict the moisture content of samples
at a wide variety of different moisture contents, hyperspectral
time series imaging will be used to gather spectral measure-
ments of each sample on a minute-by-minute basis as the
samples dry over the course of a day. Whilst hyperspectral
cameras cannot be used to measure radial moisture variations
in a sample (due to the limited surface penetration depth of
the radiation), the relatively high spatial resolution offered
by such cameras allow for a detailed view of the tangential
and longitudinal variations at the surface.

2. Materials & methods

2.1. Sample preparation & image acquisition

Eight thermally modified boards of Scots pine (Pinus sylvestris)
were planed to ensure surface flatness and cut into samples of
dimension 18 × 100 × 280 mm. The boards were bought at a
local (20 km south of Oslo, Norway) lumberyard and were
manufactured by Moelven. The pine originated from a
forest in Finland and the thermal modification was performed
in Estonia (Tallinn) at 210–215°C for a duration of 46 h accord-
ing to the ThermoWood method. After being cut, the eight
samples were dried at 103°C for 120 h to ensure that only
chemically bound moisture resided in the samples. The
dryness of the samples was verified by repeatedly measuring
the weight of the samples and confirming that their weight
had stabilized before removing them from the oven, at
which point the oven-dry weight of each sample was
recorded and we assumed that there was no free water left
in the sample.

In addition to the dry weight, the average annual ring dis-
tance Å�x of each sample was measured in the radial direction
(calculated according Section 8 of the SKANORM 2 method
(Bohumil 1992)) and a dry density r0 was calculated for every
sample. When establishing the dry density of our samples,
the original volume of 18 × 100 × 280 mm was used as dry
volume since any shrinkage which may have occurred during
drying was too small for us to reliably measure.

After the dry weights were established, the samples were
fully submerged in tap water for a period of approximately
one and a half months. After the soaking period, the
samples were one at a time taken from the water and
placed on a digital scale which in turn was placed on a trans-
lation stage situated underneath a hyperspectral camera as
can be seen depicted in Figure 1.

The hyperspectral line scan camera (HySpex SWIR-384
manufactured by Norsk Elektro Optikk, Skedsmokorset,
Norway) situated above the sample was automated to scan
each sample every minute for a period of roughly 21.5 h as
the pine dried. During the first hour or so a film of free
water was still present on the surface of some samples
which distorted the measured spectra and partly concealed
the spectra of the pine sample. The first one hundred
images (i.e. the data from the first 100 min of drying) from
each sample’s time series was therefore removed from the
dataset. The hyperspectral time series data used in the
study consists in 1196 images per pine sample, depicting
the samples between 1.5 and 21.5 h of drying. The room
the image acquisition/drying took place in was conditioned
to be approximately 21°C. For every image taken, the corre-
sponding sample weight was also registered. Using the pre-
established dry weight, the average moisture content (MC)
of each pine sample was calculated for each time point
during the drying process based on the instantaneous scale
reading using the relation (Kobori et al. 2013):

MC = wwetwood − wdryweight

wdryweight
(1)

where wwetwood represents the weight of the drying pine
sample and wdryweight represents the predetermined dry
weight of the same sample. The outcome of Equation 1
describes the amount of water contained in a sample com-
pared to the weight of its dry matter expressed as a percen-
tage. For instance, applying Equation 1 to an oven-dried
sample would yield 0%. Whereas a moisture content of
100% would indicate that the weight of the water in the
sample is equal to the weight of the same sample in an

Scale

Drying wood sample

Halogen lights

Hyperspectral camera

White reference

Translation stage

Figure 1. Illustration of experimental setup. A drying wood sample is positioned
on a digital scale which in turn is situated under a hyperspectral push-broom
camera and illuminated with halogen spotlights. Figure from (Stefansson
et al. 2019a).
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oven-dried state. Table I provides a summary of each sample’s
recorded dry weight, average annual ring distance, dry
density, together with highest, lowest, range, average and
standard deviation of the calculated moisture content
during the drying process.

The hyperspectral camera registered 288 equally spaced
bands in the 953–2516 nm range. The spatial resolution of
the region of interest of each sample was 801 × 335 pixels.
The complete dimensions of the collected hyperspectral
dataset is therefore 801 × 335 × 288 × 1196 × 8 (rows x
columns x spectral bands x time x sample). Which equates
to roughly 5.3 terabytes of spectral intensity data when
stored in double-precision format. The region of interest
extracted out from each hyperspectral image included
roughly 87 mm of the width of each board and 209 mm of
the length, centered around the middle of the board. The
spatial size of each pixel corresponds to 0.227 × 0.227 mm.

The resulting structure of the experimentally collected data
for each sample can be seen conceptually illustrated in Figure
2: each sample is associated with its own four-dimensional
hyperspectral time series as well as a one-dimensional time
series of its average moisture content.

2.2. Early-/latewood image segmentation

To allow for separate estimates to be obtained of the moisture
content within early- and latewood regions of a sample
during the drying process, the pixels of each hyperspectral
image was categorized according to wood type belonging.
Wood is a notoriously inhomogeneous material and the sea-
sonal growth patterns takes many, sometimes relatively
complex, forms which makes manual segmentation tedious
and nontrivial. To enable semi-automatic segmentation of
the dataset we employed the principal component analysis-

based segmentation technique introduced by Smeland et al.
(2016) for discriminating between early- and latewood
pixels within our hyperspectral images. The method consists
in performing principal component analysis (PCA) on a hyper-
spectral image and then forming a histogram from the result-
ing scores associated with one of the principal components.
Two thresholds are then placed in the histogram, and data-
points below the lower threshold are classified as earlywood
whereas datapoints above the higher threshold are classified
as latewood.

2.3. Normalization & linearization of raw spectral
signal

The spectrally resolved light intensity images I(l) registered
by the hyperspectral camera were initially converted into
reflectance units R(l), relative to a Spectralon white reference
plate included in each image, according to

R(l) = I(l)− Id(l)
I0(l)− Id(l)

. (2)

In Equation 2, I0(l) represents the measured light intensity
of the Spectralon white reference and Id(l) represents the
dark signal of each image (signal captured with the camera
shutter closed). The reflectance images were then trans-
formed into apparent absorbance A(l) in accordance with
Lambert Beer’s law (Rinnan et al. 2009):

A(l) = log10 (1/R(l)). (3)

2.4. Regression & data division

The hyperspectral time series data was spatially averaged to
obtain one spectrum per image. The data was then reshaped
into a two-dimensional matrix X with observations of samples
at various time points along the rows and wavelengths along
the columns. The average moisture content of each sample
and time step—the response values of the dataset—were
placed in a one-dimensional vector y such that the rows of
y correspond to the same sample and point in time as the
rows of X . The average moisture content of each sample for
each time step (y) is shown in Figure 3. A partial least
squares regression model was calibrated which mapped the
average spectra of the wood samples (X) to the average
measured moisture content (y).

In order for the spectra observed at the surface of the pine
to be able to predict the bulk moisture content of the sample,
the moisture distribution should be homogeneous

Table I. Dry weights, average annual ring distance (Å�x), dry density (r0), initial moisture content (MCHigh), final moisture content (MCLow), difference between highest
and lowest moisture content (MCRange), average moisture content (MCμ) and standard deviation of moisture content (MCσ) of all samples in the study.

Sample Dry weight Å�x r0 MCHigh MCLow MCRange MCμ MCσ
S1 188.9 g 2.8 mm 375 kg/m³ 73.7% 44.1% 29.5% 56.0% 8.2%
S2 187.0 g 3.1 mm 371 kg/m³ 66.9% 38.9% 28.1% 49.4% 7.6%
S3 202.2 g 2.2 mm 401 kg/m³ 80.6% 53.2% 27.4% 64.2% 7.2%
S4 211.8 g 2.2 mm 420 kg/m³ 63.3% 33.9% 29.4% 44.1% 7.8%
S5 185.8 g 3.7 mm 369 kg/m³ 85.4% 47.1% 38.3% 61.0% 10.3%
S6 193.5 g 2.7 mm 384 kg/m³ 70.0% 40.2% 29.8% 51.6% 8.2%
S7 190.7 g 3.0 mm 378 kg/m³ 77.5% 45.3% 32.3% 57.2% 8.7%
S8 205.5 g 3.0 mm 408 kg/m³ 65.1% 35.6% 29.5% 46.6% 8.0%

Figure 2. Illustration of hyperspectral time series data of a drying thermally
modified pine sample. The spectral signal of the pine sample is resolved
through both time and space. At each time step the average moisture
content of the sample is known. Figure from (Stefansson et al. 2019a).
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throughout the thickness of the sample, such that what is
observed at the surface of a sample is representative of
what occurs throughout its thickness. As wood is inhomo-
geneous this is naturally never entirely the case. The assump-
tion in our mapping from X to y is that the relation between
inner moisture content and surface moisture content is stable
enough to allow for useful approximations of the moisture
distribution to indirectly be made by studying only the
surface of the sample.

To test the developed model’s ability to generalize to new
unseen data, the hyperspectral time series of two samples, S5
and S2, were randomly chosen and withheld from the cali-
bration procedure. After calibrating the model on the remain-
ing six samples’ time series the model was applied to the data
from the two withheld time series (2 × 1196 images) to vali-
date its performance on new data. In total, 7176 hyperspectral
images were included in the training set and 2392 images
were included in the validation set.

To enhance the performance of the PLS model, spectral
preprocessing and wavelength selection was applied to the
measured absorbance data. In order to identify a spectral pre-
processing technique that would yield a low prediction error
in the PLS regression, a grid search over different common NIR
preprocess methods was therefore conducted. In addition to
the unprocessed absorbance spectra, the methods included
in this search were: Savitzky–Golay derivation (Savitzky and
Golay 1964) of first, second and third order, Multiplicative
Scatter Correction (Geladi and MacDougall 1985) (MSC), Stan-
dard Normal Variate (Barnes et al. 1989) (SNV) and Extended
Multiplicative Scatter Correction (Martens and Stark 1991)
(EMSC) as well as pairwise combinations of these methods.
For each of the preprocessing methods a PLS model was cali-
brated and cross-validated with 10-fold cross-validation. The
preprocessing technique resulting in the lowest cross-vali-
dated root-mean-squared-error (RMSEcv) was chosen for the
final model.

Once a suitable preprocessing technique was identified,
the preprocessed data was subjected to variable selection in
order to further enhance the model’s performance by elimi-
nating irrelevant or noisy wavelengths. Forward selection,
backwards elimination, interval PLS (Nørgaard et al. 2000)

(iPLS) in backwards mode and moving window variable selec-
tion (Jiang et al. 2002, Fang et al. 2009) (MW) were applied to
the data. When applying interval PLS and moving window
variable selection every interval/window width between 1
and n was tested, where n denotes the total number of vari-
ables in the spectra. Because this wavelength selection
search required many thousands of PLS models to be cali-
brated and evaluated, the feature selection calibrations
were performed using the kernel PLS feature selection tech-
nique introduced by Stefansson et al. (2019b) in order to
speed up the feature selection process.

Once a combination of preprocessing technique and wave-
length selection had been identified the final PLS model was
calibrated using the bidiag2 (Björck and Indahl 2017) algorithm.
All modeling was performed in MATLAB 2019a (TheMathWorks
Inc., Natick, Massachusetts) (MATLAB 2019).

3. Results

3.1. Segmentation

Smeland et al. (2016) found that the wood segmentation
algorithm they developed worked best using the second prin-
cipal component from PCA and suggested that thresholds be
positioned at the 25th and 65th percentile in the scores histo-
gram. For our dataset however, we found that, when perform-
ing PCA on the absorbance data, the first principal component
worked better than the second and that the percentile
thresholds needed to be tweaked manually for each sample
in order to adequately approximate the early- and latewood
distribution observed by studying the samples visually. An
example of a generated image segmentation mask can be
seen in Figure 4. In the figure, red color indicates earlywood,
brown color indicates latewood, the intermediary region
between the two classes which was not considered as
either early- or latewood is shown in gray. Since our
samples were kept stationary during the time series acqui-
sition and only negligible contraction of the samples was
found to take place during the drying process, the segmenta-
tion was performed only once per sample and then applied to
all images within the time series. The segmentation was

S1

S3
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S8

S4
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Average sample MC /%

Figure 3. Calculated average moisture content of all thermally modified pine samples in the study during the drying period.
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performed using the last image of each series, i.e. the image
corresponding to the driest sample state.

3.2. PLS regression modeling

The grid search over spectral preprocessing techniques indi-
cated that a combination of extended multiplicative scatter
correction followed by first order Savitzky–Golay derivation
yielded the lowest cross-validated prediction error. During
EMSC the basic EMSC model (Afseth and Kohler 2012) was
used, which entails a model containing an intercept term,
slope term, linear term and a quadratic term. The average
spectrum from the training dataset was used as a reference
spectrum in the EMSC correction. The Savitzky–Golay deri-
vation was carried out with a window size of seven and a poly-
nomial degree of one.

The best performing variable selection was identified using
the moving window algorithm. Moving window selection is
when a window iteratively traverses the entire spectra and a
model is calibrated and cross-validated at each possible
location using only the wavelengths within the window for

each location. The window width and location found to
result in the lowest cross-validated error is then used in the
final model. In our experiment, the best region found by the
algorithm consisted in 52 wavelengths between 1966 and
2244 nm. Figure 5 shows the average spectrum of every
hyperspectral image in the dataset after preprocessing
along the region identified during wavelength selection.

Using the combination of identified preprocessing and
wavelength selection, the lowest RMSEcv (and first local
minima) after 10-fold cross-validation was obtained using
nine PLS components, which was subsequently used when
calibrating the final PLS model. Figure 6 shows a regression
plot of PLS-modeled vs. average measured moisture content
of each image in the eight time series sequences. Blue dots
indicate data originating from any of the six training time
series, red squares indicate data from the two validation
time series. The model’s root-mean-squared-error, RMSE, on
the training data was 2.1%, with a coefficient of determination,
R², of 0.98. Applying the model to the validation data resulted
in a RMSE of 2.7% and a R2 of 0.97. For most samples in the
study, the discrepancy between modeled MC and sample-

Figure 4. Spatial early-/latewood segmentation of one of the samples in the study (sample S7). Brown color indicates pixels classified as latewood and red color
indicates pixels classified as earlywood. Gray color indicates intermediate wood which was not treated as either early- or latewood.

Figure 5. Mean absorbance spectrum of every time series image in the collected dataset preprocessed with basic EMSC followed by first order Savitzky-Golay deri-
vation. Gray region indicates wavelength region identified by the moving window feature selection algorithm. All spectra in the figure are colored according to the
average of moisture content of the sample they originate from.
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average MC was larger during the first few hours of drying
compared to the rest of the drying sequence.

3.3. PLS modeled spatial distribution & temporal
development of moisture content

Figure 7 shows chemical maps of the PLS-estimated spatial
distribution of moisture content for every sample in the
study obtained by applying the PLS model to the full

resolution hyperspectral data. The upper row depicts the
samples at the start of their time series, i.e. after 100 min of
drying. The lower row depicts the same samples at the end
of their time series, i.e. after 21.5 h of drying. Some samples,
such as S4, S6, S7 and S8, can be seen in the figure to have
a locally higher moisture content at the top of the sample,
indicating a slower rate of drying at the top. A possible expla-
nation for this could be that the Spectralon white reference
plate, which in our experimental setup is located at the top
edge of the sample, is hindering drying to freely take place
at the top of the sample.

Figure 8 shows the average PLS-estimated early- and late-
wood moisture content for every image in the dataset dis-
played as eight individual time series/drying curves. These
curves were obtained by applying the developed early-/late-
wood segmentation masks of each sample onto the
modeled spatial distribution of moisture content for every
time step in the series. The moisture content estimates for
all early- and latewood pixels were then separately averaged
to form two drying curves per sample; one containing
the estimated drying curve for latewood and the other for
earlywood.

During the first few hours of drying the estimated moisture
content of the earlywood was noticeably higher than the late-
wood estimates for all samples. Averaged across all samples
the estimated moisture content was 1.7% higher in the early-
wood than the latewood at the beginning of the time series
and decreased over time down to a 0.8% difference at the
end of the drying process. The samples with the lowest esti-
mated moisture difference between early- and latewood, S2,
S1 and S3, all have a fine grained early- and latewood

Training data
Validation data
1/1 line

30

40

50

60

70

80

30 40 50 60 70 80
Predicted moisture content /%

Target moisture content /%

Figure 6. Regression plot of PLS modeled vs. measured mean moisture content
for every image of the dataset. Blue dots represent images belonging to the
training data, red squares represent images belonging to the validation data.

Figure 7. Spatial distribution of PLS-estimated moisture content for every sample in the study. Upper row depicts the samples at the initial stages of drying, lower
row depicts the same samples approximately 20 h of drying later.
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structure with densely packed growth regions as can be seen
in Figure 7. It is also interesting to note that the sample with
the greatest radial annual ring distance of the sample set, S5,
also had the largest estimated moisture differential between
early- and latewood (2.9% during the initial stages of drying).

4. Discussion & conclusions

Our developed PLS model, calibrated on six time series con-
sisting of 7176 hyperspectral images in total, proved capable
of estimating the sample-average moisture content of ther-
mally modified pine at different points in time during
drying with a high degree of accuracy. Extended multiplica-
tive scatter correction combined with first order derivation
proved useful in relieving light scatter effects from the
spectra and enhancing the correlation between spectra
and moisture content. The wavelength region 1966–
2244 nm was found to hold strong predictive capacity over
the moisture content of the pine. This region includes
several wavelengths which are known to cause absorption
in free water at room temperature, although it slightly
misses the absorption peak which occurs around 1930–
1950 nm (Curcio and Petty 1951). Fujimoto et al. (2008)
found 1980nm to be a region representative of water
absorption in larch wood, which is included in our identified
region. Our model produced the best results at nine principal
components, which is rather high. Kobori et al. (2013) found
six PLS components to be optimal for estimating MC in
unmodified pine using vis-NIR hyperspectral spectral data
—thus, both experiments indicate that a surprisingly high
number of latent variables is beneficial when estimating
the moisture content of pine using PLS regardless of wood
treatment.

By superimposing a segmentation mask onto the PLS-
estimated spatially and temporally resolved distributions of
moisture content, our presented method allows separate
estimates to be obtained of the MC of early- and latewood
regions within a board during drying. However, as is often
the case with studies such as this one—were a model is
trained using a measured sample-average response value
and later used to estimate the spatial distribution of the
response throughout the sample—a major limitation is

that the chemical maps generated by the regression model
cannot easily be validated; since the true pixel-by-pixel dis-
tribution of moisture is unknown to us. We therefore
cannot conclude that the spatial predictions are accurate,
only that the spatial estimates appear realistic upon visual
inspection and that the PLS model is capable of estimating
the average moisture content of a thermally modified pine
sample based on the average spectra of the sample.
Further studies should therefore investigate the possibility
of training a regression model with hyperspectral input
data together with spatially resolved response values—
obtained for instance by using magnetic resonance
imaging on the same samples as are scanned with a hyper-
spectral camera.

Despite the successfulness of using surface reflected
visible and near-infrared radiation to model the moisture
content of wood samples, demonstrated in this study for ther-
mally modified pine as well as in Kobori et al. (2013) for unmo-
dified pine, it is important to note that such models rest on
the assumption that the moisture content is consistent
throughout the thickness of the sample. This assumption is
of course never entirely valid, and it likely increases in invalid-
ity when thicker wood samples are used with a more inhomo-
geneous internal annual ring structure. To circumvent this
issue entirely remote sensing technologies with a greater pen-
etration depth, such as MRI, are necessary. To lessen the
effects of this limitation in our own experimental setup,
thinner samples could have been used in our experiment—
such that there is less room for unobserved radial moisture
variations in the sample. In some preliminary experiments
we conducted prior to the experiment presented here
however, we monitored thinner samples with hyperspectral
imaging and found that although it certainly seems possible
to estimate the moisture content of such samples, the
drying dynamics of thin samples (∼2-3 mm thickness)
appears substantially different from that of thicker boards
(∼2 cm thickness). When using thin samples the moisture
evaporated rapidly around the edges of the sample when
exposed to the warm halogen light of the experimental
setup. Our motivation for choosing larger samples in this
experiment is that we wanted a slower, more controlled,
drying process.
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Figure 8. Temporal development of predicted moisture content of all samples (S1-S8). In each subplot the orange lines indicate the average modeled moisture
content in all earlywood pixels of a sample, blue lines indicate the average moisture content in the latewood pixels of a sample.
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Lastly it should be mentioned that we in our paper have
chosen to calibrate our model using a moisture content
which expresses the weight of the moisture in the wood in
relation to the wood’s dry matter according to Equation 1.

In Equation 1 wwetwood is the weight of the drying sample
and wdryweight is the weight of the sample in its dry state.
This moisture content formulation is commonly used in
wood science and calibrating models to approximate this
value from hyperspectral data has previously been proven
viable (Kobori et al. 2013). However, an alternative approach
would be to use the mass percentage of the water when cali-
brating the model, i.e. the mass of the constituent of interest
(water) divided by the total mass of the object multiplied
by 100:

MassPercentwater = wwetwood − wdryweight

wwetwood
· 100 (%) (4)

Given a MassPercentwater value, the conventional MC,
expressed in relation to the wood’s dry matter, can then be
obtained using the conversion:

MC = MassPercentwater
1− (MassPercentwater/100)

(%) (5)

Since absorbance spectra are related to the mass of an
absorbing species in relation to the mass of the sample as a
whole, it should in theory be advantageous to calibrate a
model using a target variable produced by Equation 4 and
then converting the model’s output to a conventional moist-
ure content using Equation 5, as opposed to calibrating the
model on the values produced by Equation 1. Employing
this strategy may help to resolve the nonlinearity present in
our results, observed in Figure 6 predominantly at low moist-
ure contents. The primary culprit of the deviations observed in
Figure 6 may be our choice of target variable (Equation 1), the
use of which is not as theoretically well-grounded in the
domain of spectroscopic modeling as the use of Equation
4. Future studies should, therefore, investigate if the
“detour” of calibrating a model on the values produced
using Equation 4 and then converting the model’s output
using Equation 5 is superior to calibrating directly on the con-
ventional moisture content produced by the Equation 1.
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