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ABSTRACT 

Diameter at breast height (DBH) distributions offer valuable information for operational and 

strategic forest management decisions. We predicted DBH distributions using Norwegian 

national forest inventory and airborne laser scanning data and compared the predictive 

performances of linear mixed- effects (PPM), generalized linear-mixed (GLM) and k nearest 

neighbor (NN) models. While GLM resulted in smaller prediction errors than PPM, both were 

clearly outperformed by NN. We therefore studied the ability of the NN model to improve the 

precision of stem frequency estimates by DBH classes in the 8.7 Mha study area using a model-

assisted (MA) estimator suitable for systematic sampling. MA estimates yielded greater than or 

approximately equal efficiencies as direct estimates using field data only. The relative 

efficiencies (REs) associated with the MA estimates ranged between 0.95–1.47 and 0.96–1.67 

for 2 and 6 cm DBH class widths, respectively, when dominant tree species were assumed to 

be known. The use of a predicted tree species map, instead of the observed information, 

decreased the REs by up to 10%. 

 

Keywords: generalized linear models, linear mixed-effects models, most similar neighbor 

approach, number of stems, systematic sampling 

 

 

 

 



1 INTRODUCTION 
Forest inventories provide essential information for the sustainable management of forest 

resources at different spatial levels. A key forest attribute is the diameter at breast height (DBH) 

which is correlated with many other tree attributes, such as timber volume, biomass and timber 

assortments. Therefore, the distribution of DBHs (henceforth DBH distribution) is vital in the 

assessment of timber-related attributes. DBH distributions are also indicative of forest structural 

characteristics which may be relevant for biodiversity assessments (Valbuena et al. 2013). In 

the planning of forest management operations, the main purpose of DBH distributions is to 

characterize forest stands at the tree-level. Tree-level information is required, for example, in 

growth simulations when tree-level models are applied (Hynynen et al. 2002). Tree-level 

information is also important in the strategic planning of larger areas like municipalities, 

provinces or a country. Time series of large-scale DBH distributions are useful in the 

monitoring of changes in forested areas (Coomes and Allen 2007, Henttonen et al. 2019).  

There are several probability density functions that have been used in the characterization of 

DBH distributions. The most common functions are Beta (Loetsch et al. 1973), Johnson SB 

(Hafley and Schreuder 1977) and Weibull (Bailey and Dell 1973). The two-parameter Weibull 

distribution has achieved popularity because of its convenient mathematical properties and 

flexibility to characterize various distribution shapes, such as right- and left-skewed, and 

Gaussian-shaped distributions (Bailey and Dell 1973). For the same reasons, we consider the 

Weibull distribution below. 

The parameters of the Weibull distribution can be obtained using the parameter prediction 

method (PPM) (Kilkki et al. 1989) or the parameter recovery method (PRM) (Burk and 

Newberry 1984, Siipilehto and Mehtätalo 2011). Both methods originate from traditional field-

based forest management inventories which today are vastly superseded by airborne laser 

scanning (ALS)-supported inventories following the area-based approach (ABA) (Næsset et al. 



1997). ALS-supported inventories typically utilize field datasets which consist of sample plots 

with a full enumeration of DBHs (Næsset 2014, Maltamo and Packalen 2014).  

PPM consists of three steps in ALS-supported forest inventories. First, Weibull distributions 

are fit to the DBH distributions of individual sample plots (e.g. Bailey and Dell 1973). Second, 

each of the estimated parameters is regressed against predictor variables such as ALS metrics 

(Gobakken and Næsset 2004) or forest attributes which were themselves predicted using ALS 

metrics (Packalén and Maltamo 2008). Finally, the model is applied to a wall-to-wall dataset of 

the predictor variables, typically consisting of grid cells with a similar size as the sample plots. 

An additional model for total stem frequency is needed to predict stem frequency per DBH 

class given the predicted Weibull parameters. 

PRM consists of two steps. First, recovery attributes, such as basal area, mean DBH, stem 

frequency and moments/percentiles of the DBH distribution, are predicted for grid cells using 

ALS metrics. Then, the mathematical relationships between the recovery attributes and 

parameters of the Weibull distribution are used to create a non-linear system of equations. This 

system is solved using a root-finding approach such as Newton-Raphson (Siipilehto and 

Mehtätalo 2013). Because a numerical solution is not always possible when using PRM with 

predicted recovery attributes (Mehtätalo et al. 2007), we focus on PPM below. 

Breidenbach et al. (2008) adapted a variety of PPM using a generalized linear model (GLM, 

see Cao 2004) for the prediction of DBH distribution in an ALS-supported forest inventory. 

Due to the structure of the field data (concentric sample plots), they used several truncated 

Weibull distributions conditional to specific DBH ranges. The key benefit of the approach 

compared to PPM is the estimation of the Weibull parameters in a single-step in which the 

observed DBHs are directly regressed against ALS metrics.  



One challenge related to the parametric methods is that the basic formulations of the probability 

density functions cannot characterize multimodal DBH distributions (Zhang et al. 2001, 

Thomas et al. 2008). This is one of the reasons why the non-parametric nearest neighbor 

approach (NN) has been proposed for the prediction of DBH distributions in boreal ALS-based 

forest inventories, for example in Finland (Packalén and Maltamo 2008), Norway (Maltamo et 

al. 2009), and the United States (Mauro et al. 2019). NN enables the prediction of DBH 

distributions without any assumptions related to the shape of the distribution. A disadvantage 

of NN is that it cannot produce predictions that are beyond the range of training data. Therefore, 

the field data must always be comprehensive enough in order to avoid systematic errors in 

predictions (e.g. Breidenbach et al. 2012). 

Only few studies have examined the estimation of DBH distributions at larger scales like 

municipalities, regions, or countries (Magnussen and Renaud 2016, Henttonen et al. 2019). The 

precision of direct (field-data based) estimates of forest attributes can be improved by means of 

remotely sensed data (e.g. McRoberts and Tomppo 2007, Haakana et al. 2020). In the context 

of DBH distributions, this has been investigated by Magnussen and Renaud (2016) who used a 

combination of forest inventory and ALS data to obtain model-assisted (MA) estimates of DBH 

distributions. They utilized multi-dimensional scaling (MDS) to link ALS data to the observed 

DBH distribution in four different study sites where the sample plot data were collected using 

stratified simple random sampling. The MDS approach is not scale dependent and it was applied 

both at the level of forest stand and at the level of stratum. From the point of view of boreal 

forests, the limitation of the approach proposed by Magnussen and Renaud (2016) might be the 

challenges associated with the prediction of stem frequency for small trees that grow under the 

dominant tree layer.  

We used Norwegian national forest inventory (NFI) and ALS data for the modeling of DBH 

distributions. We also estimated the DBH distribution at the level of study area (henceforth “the 



study area DBH distribution”) using the MA estimation and direct estimation. Our objectives 

were i) to predict DBH distributions at the plot-level using ALS metrics and ii) to study whether 

the MA estimates associated with the study area DBH distribution (by DBH classes) achieve 

higher precisions than the direct estimates. For objective i), we compared PPM, GLM, and NN. 

As a part of objective ii), we studied the efficiency of the estimators using both 2 cm and 6 cm 

DBH class widths.   

 

2 MATERIAL  
2.1 Study area 
The 8.7 Mha study area (forest area 7.5 Mha) is approximately located between 58° N and 66° 

N in Norway. The study area was selected based on the coverage of the national ALS data 

(Figure 1). The study area contains significant climatic gradients caused by the large latitudinal 

extend. Significant elevational variations are also typical in the mountainous topography of 

Norway. The most economic value of forest is associated with the coniferous tree species: 

Norway spruce (Picea abies [L.] Karst.) and Scots pine (Pinus sylvestris [L.]). There are also 

several deciduous species growing in the area. Among the deciduous species, the most 

dominant are birch species (Betula spp [L.]) (Breidenbach et al. 2020b).  



 

Figure 1. Approximate locations of the national forest inventory (NFI) field plots (n = 9 615) 

used in this study. 

 

2.2 Field data 
Our field dataset consisted of NFI plots measured between 2014 and 2018 from the lowland 

design stratum of the study area (Breidenbach et al. 2020a). The locations of the NFI plots 

follow a systematic grid with a resolution of 3 × 3 km, resulting in a total of 9 615 sample plots 

within the study area. Altogether, 8 384 of the sample plots were located within forest according 



to the NFI definition (10% crown cover and ability to reach 5 meters height). From the total 

number of forested plots, a total of 60 evident outliers resulting from harvests between field and 

ALS data acquisitions were excluded and assumed missing at random. The NFI plots are 

circular plots with an area of 250 m2. In plots with forest cover, DBH and species were recorded 

for each tree with a DBH ≥ 5cm. For more detailed information related to the Norwegian NFI 

data, we refer to Breidenbach et al. (2020a). 

Two datasets were created. The modeling dataset was used to compare PPM, GLM, and NN in 

the prediction of DBH distributions. The efficiency gains associated with the estimates, 

supported by using the best modeling approach, were analyzed using the estimation dataset. 

The modeling dataset consisted of plots that were located in single-layered forests, because 

PPM and GLM utilize a unimodal probability density function. We categorized the NFI plots 

into three groups by dominant tree species (spruce, pine, and deciduous). The dominance of 

tree species was determined based on the species-specific timber volumes. Furthermore, we 

excluded plots with less than 5 measured trees, and plots that were located at the border of forest 

stands (split plots). The dataset consisted of 905, 813, and 259 plots in spruce, pine and 

deciduous dominated forests, respectively. Statistics associated with the forest attributes of the 

modeling dataset are presented in Table 1. 

The estimation dataset consisted of all forested (nF = 8 324) and non-forested plots in the study 

area. The estimation dataset consisted of 3 156, 3 153 and 1 833 sample plots dominated by 

spruce, pine, and deciduous trees, respectively. The dominant tree species was undefined in a 

total of 182 forested plots without measured trees (young forests with no measured trees). The 

characteristics of the estimation dataset (plots within forest) are shown in Table 1 and Figure 

2. 

 



Table 1. Characteristics of selected forest attributes in the modeling dataset and the estimation 

dataset. V – volume, G – basal area, N – stem frequency, DBH – diameter at breast height, DG 

– basal area weighted mean DBH, Hg – Lorey’s height. 

  Modeling dataset Estimation dataset 

Statistic Dominant 
tree 
species 

Mean  Sd Min Max Mean  Sd Min Max 

V (m³⸱ha-1) 

Spruce 245.3 153.5 6.6 1000.4 146.2 141.1 0 1000.4 

Pine 163.6 93.0 11.4 615.1 103.1 95.6 0 702.2 

Deciduous 100.1 72.9 4.2 473.4 68.6 79.2 0 680.3 

G (m²⸱ha-1) 

Spruce 30.1 13.3 1.6 96.2 19.6 14.4 0 96.2 

Pine 22.5 9.8 2.6 59.6 15.2 11.3 0 79.1 

Deciduous 17.7 9.7 1.1 60.6 12.0 11.0 0 69.7 

N (ha-1) 

Spruce 1262 647 200 4560 1030 698 0 5000 

Pine 785 481 200 4200 662 522 0 4520 

Deciduous 1336 863 200 5560 1012 839 0 5560 

DG (cm) 

Spruce 23.0  6.2 8.5 47.0 20.3 7.5 5.0 60.6 

Pine 25.2 6.0 10.7 49.3 23.7 7.6 5.2 70.0 

Deciduous 17.5 6.4 7.1 51.3 15.6 7.2 5.0 155.0 

Hg (m) 

Spruce 16.0  4.0 5.6 28.8 13.4 4.8 3.2 32.3 

Pine 14.5 3.3 6.6 27.0 12.3 4.2 2.3 70.1 

Deciduous 10.9 3.5 4.9 26.0 9.8 4.1 2.7 26.6 

Tree-level 
DBH (cm) 

Spruce 15.4 8.2 5.0 79.8 13.4 7.9 5.0 79.8 

Pine 16.9 9.0 5.0 68.0 14.6 
 8.9 5.0 96.0 

Deciduous 11.5 6.0 5.0 58.0 10.7 6.0 5.0 155.0 

 



 

Figure 2. DBH distribution associated with the estimation dataset. 

 

2.3 Airborne laser scanning data and extracted metrics 

The acquisition of ALS data was carried out between 2010 and 2018. The study area was 

covered by several ALS campaigns, which means that the data acquisition parameters differ 

across the study area. The mean pulse density varied between 2–5 points per square meter 

among the ALS campaigns. A digital terrain model (DTM, 1 × 1 m) was created using the last 



returns of the ALS datasets (Kartverket 2019). The height measurements of the ALS datasets 

were normalized to above ground heights by subtracting the DTM elevation from the 

orthometric ALS height measurements.  

We extracted height, intensity, and echo proportion metrics from the ALS data for the sample 

plots. The height metrics consist of minimum, maximum, mean, variance and coefficient of 

variation, skewness and kurtosis, as well as height percentiles and densities. For density metrics, 

the height range from the ground to the 95% percentile was divided into 10 height slices of 

equal size (starting from slice 0 which is the closest to the ground level). The densities were 

computed as the proportion of returns above the height slices 0, 2, 4, 6, 8, and 9 to all returns 

(without echo categorization). In addition, the proportion of echoes above 2 meters was 

computed. The intensity metrics were computed based on the intensity recordings of ALS data 

and consisted of variance, coefficient of variation, and ratio between the mean of ground echo 

intensities and the mean of vegetation echo intensities. The metrics were computed by echo 

categories: first, last, and all. We extracted a total of 23 metrics from the ALS data per echo 

category. Table 2 shows the extracted metrics and their abbreviations. 

 



Table 2. Metrics extracted from the ALS data for the sample plots. The metrics were computed 

by echo categories first, last, and all. 

Abbreviation Description 

Height metrics  

hmin, hmax, hmean, hvar, hcv Minimum, maximum, mean, variance, coefficient of 

variation 

hskew, hkurt Skewness and kurtosis 

h10, h25, h50, h75, h90, h95  Height percentiles for 10%, 25%, …, 95% 

d0, d2, d4, d6, d8, d9 Height densities  

Intensity metrics  

ivar, icv, igratio Variance, coefficient of variation, ratio between the 

mean of ground echo intensities and the mean of 

vegetation echo intensities 

Proportion metrics  

proph  Proportion of echoes above 2 meters 

 

3 METHODS 
3.1 DBH distribution models 
3.1.1 Parameter prediction method using linear mixed-effects models (PPM) 
We applied a left-truncated two-parameter Weibull function (Zutter et al. 1986) in the modeling 

of DBH distributions. The left-truncation was used since the trees with a DBH < 5 cm were not 

measured. The truncated two-parameter Weibull probability distribution is as follows:  

f(x| a,  b)  =   �
𝑎𝑎
𝑏𝑏
�
𝑥𝑥
𝑏𝑏
�
𝑎𝑎−1
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𝑏𝑏�
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𝑎𝑎
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0 , 𝑥𝑥 < 𝑇𝑇
(1) 



where x is DBH, T is the fixed left-truncation point (5 cm), a is the shape parameter, and b (T 

< b) is the scale parameter. 

The estimates of Weibull parameters are needed for each sample plot in order to fit regression 

models for the scale and shape parameters. We estimated the parameters of Weibull distribution 

by maximizing the log-likelihood function. The log-likelihood function for plot j is maximized 

given the Weibull parameters (a and b) 

log�𝐿𝐿𝑗𝑗� = � log�𝑓𝑓(𝑥𝑥𝑘𝑘|𝑎𝑎, 𝑏𝑏)�

𝑛𝑛𝑗𝑗

𝑘𝑘=1

(2) 

where 𝑛𝑛𝑗𝑗  is the stem frequency in plot j and 𝑓𝑓(. ) is the truncated Weibull probability distribution 

(Eq. 1) and 𝑥𝑥𝑘𝑘 refers to the observed DBH in plot j. This approach is referred to as the maximum 

likelihood (ML) method (Bailey and Dell 1973, Mehtätalo and Lappi 2020 p. 337–338). We 

used the mle function of the package stats4 in R (R Core Team 2020) for the ML estimation of 

the plot-level Weibull parameters.  

Because the field data have a hierarchical structure (NFI plots within ALS project), we fitted 

linear mixed-effects models with random intercepts for the shape and scale parameter of the 

Weibull distribution. The coefficients were estimated using the restricted maximum likelihood 

approach (e.g. Fahrmeir et al. 2013, p. 109), and the models were restricted to the p=3 most 

important predictor variables  

𝑦𝑦𝑙𝑙𝑙𝑙𝑗𝑗 = 𝑏𝑏𝑙𝑙𝑙𝑙 + 𝛽𝛽𝑙𝑙0 + 𝛽𝛽𝑙𝑙1𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗
(1) + ⋯+ 𝛽𝛽𝑙𝑙𝑙𝑙𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗

(𝑙𝑙) + 𝜖𝜖𝑙𝑙𝑙𝑙𝑗𝑗 (3) 

where 𝑦𝑦𝑙𝑙𝑙𝑙𝑗𝑗 is the response variable l={shape (a), scale (b)} predicted at plot j using Eq. (2) in 

ALS project i, 𝛽𝛽𝑙𝑙0 + 𝛽𝛽𝑙𝑙1𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗
(1) + ⋯+ 𝛽𝛽𝑙𝑙𝑙𝑙𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗

(𝑙𝑙) is the fixed part of the model in which the 𝛽𝛽𝛽𝛽 are 

the coefficients to be estimated and 𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗
(𝑙𝑙) are predictor variables, 𝑏𝑏𝑙𝑙𝑙𝑙 + 𝜖𝜖𝑙𝑙𝑙𝑙𝑗𝑗 is the random part of 

the model in which 𝑏𝑏𝑙𝑙𝑙𝑙 ~ 𝑁𝑁(0,  𝜎𝜎𝑏𝑏2) represents the random part of the intercept in ALS project i 



and 𝜖𝜖𝑙𝑙𝑙𝑙𝑗𝑗  ~ 𝑁𝑁(0,𝜎𝜎2) represents the residual error of plot j in project i. We used the nlme package 

(Pinheiro et al. 2020) for the estimation of the model parameters. Ultimately, we transformed 

the predicted Weibull distributions to DBH distributions (i.e. histograms) using a bin width of 

2 cm. The transformation was based on the cumulative Weibull distribution function and total 

stem frequencies observed in the sample plots. Because of the small number of trees with a 

DBH > 50 cm (Figure 2), we consider DBH classes with the mid-points in the range of 6–

50 cm.  

3.1.2 Parameter prediction using generalized linear models (GLM) 
A GLM-like framework (Cao 2004; Mehtätalo and Lappi 2020, p. 370–373), simply denoted 

as GLM in the following, was used to construct parameter models that directly link the 

measured DBHs and ALS metrics (Breidenbach et al. 2008). We applied the truncated Weibull 

distribution described in Eq. 1 and maximized the likelihood function 

log(𝐿𝐿) = � log�𝐿𝐿𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

(4) 

for the Weibull parameters 𝜃𝜃𝑙𝑙𝑙𝑙𝑗𝑗𝑘𝑘={b, c} by optimizing the parameters of the regression function 

𝜃𝜃𝑙𝑙𝑙𝑙𝑗𝑗𝑘𝑘 = 𝑏𝑏𝑙𝑙𝑙𝑙 + 𝑏𝑏𝑙𝑙𝑙𝑙𝑗𝑗 + 𝛽𝛽𝑙𝑙0 + 𝛽𝛽𝑙𝑙1𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗𝑘𝑘
(1) + ⋯+ 𝛽𝛽𝑙𝑙𝑙𝑙𝑥𝑥𝑙𝑙𝑙𝑙𝑗𝑗𝑘𝑘

(𝑙𝑙) (5) 

where n is the number of plots, 𝑏𝑏𝑙𝑙𝑙𝑙 is a random effect at the ALS-project level and 𝑏𝑏𝑙𝑙𝑙𝑙𝑗𝑗 is a plot-

level random effect to consider the dependence among trees within a sample plot since they 

share the same predictor variables. The log link function was used in the modeling of the 

Weibull parameters. 

The models for shape and scale parameters were simultaneously fitted by maximizing the 

penalized likelihood. We fitted the models using the gamlss R package (Rigby and 

Stasinopoulos 2005). We dropped the project-level random effect (𝑏𝑏𝑙𝑙𝑙𝑙) describing the grouping 

of plots within the ALS projects after preliminary analysis because of numeric instability. 



Ultimately, we transformed the predicted Weibull distributions to DBH distributions (i.e. 

histograms) as described for PPM. 

3.1.3 Nearest neighbor approach 
While NN is considered non-parametric, the number of nearest neighbors (k), the number of 

predictor variables (p), the response configuration, and a distance metric need to be chosen. 

After preliminary analysis, we set k=p=5 and used basal area, stem frequency, basal area, basal 

area weighted mean DBH, and Lorey’s height as the response configuration. We used the most 

similar neighbor (MSN) distance, which is based on the canonical correlation analysis between 

the response and predictor variables (Moeur and Stage 1995). The squared MSN distance 

between reference u and target j observation derived from canonical correlation analysis is as 

follows: 

𝑑𝑑𝑢𝑢𝑗𝑗2 = �𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑗𝑗�
1 × 𝑝𝑝

ΓΛ2Γ′
𝑝𝑝 × 𝑝𝑝

�𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑗𝑗�
′

𝑝𝑝 × 1
(6) 

Where 𝑑𝑑𝑢𝑢𝑗𝑗 
2 is the squared MSN distance, 𝑥𝑥𝑢𝑢 and 𝑥𝑥𝑗𝑗 are row vectors of predictor variables for 

training and target plots, Γ is a matrix of canonical coefficients of predictor variables, and Λ2is 

a diagonal matrix of squared canonical correlations. 

The inverse of the distances 𝑑𝑑𝑢𝑢𝑗𝑗2  was used to weight the reference tree lists for the target 

observations and the tree lists were transformed to DBH distributions (i.e. histograms). The 

NN-based DBH distributions represent the absolute stem frequency which is an advantage 

compared to PPM and GLM which model relative stem frequencies. However, in order to 

compare the performance of NN with PPM and GLM in the prediction of DBH distributions, 

we converted the NN-based DBH distributions to be consistent with the observed stem 

frequencies. In the MA estimation, the absolute NN-based stem frequencies were used. NN was 

carried out using the yaImpute R package (Crookston and Finley 2007). The NN-based DBH 



distribution usually results in spikes and pits (Strunk et al. 2017). Therefore, we smoothed the 

NN-based DBH distributions with a 3-bin moving average. 

3.1.4 Selection of predictor variables 
We used the same predictor variables in PPM and GLM, which enabled us to trace differences 

in the predictive performance. The predictor variable selection was carried out based on PPM 

and comprised two steps: an automatized step using an optimization algorithm and a manual 

step for the final evaluation of model fit.  

The automatized step was based on the heuristic optimization algorithm, known as simulated 

annealing (Kirkpatrick et al. 1983, Packalén et al. 2012), which minimizes a cost function by 

repeatedly fitting the model and randomly changing the combination of predictor variables. The 

initial temperature, the number of iterations per temperature, and a cooling factor determined 

the number of iterations. The cooling factor (value < 1) is used to cool the system by multiplying 

the current temperature value. The temperature value determines the probability to accept a 

worse solution. The cost function was the root-mean-squared error associated with the response 

variable. 

The automatized step was used to reduce the number of predictor variable candidates. The 

manual step included visual and numerical assessments related to the model fit statistics. 

Finally, three predictor variables were selected for each Weibull parameter.  

In case of NN, we only applied the automatized step. We repeated the selection of predictor 

variables five times in order to observe the fluctuation in the ultimate cost value caused by the 

heuristic optimization. We selected the combination of predictor variables that resulted in the 

smallest cost value. The number of predictor variables was five. 

3.1.5 Evaluation of the predicted DBH distributions 
We predicted the DBH distributions using leave-one-out cross validation. The predictive 

performances of the DBH distribution models were evaluated by the DBH classes. The errors 



associated with DBH class 𝑐𝑐 were evaluated using root-mean-square error (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐, Eq. 7) and 

mean difference (𝑅𝑅𝑀𝑀𝑐𝑐, Eq. 8).     

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐 = �∑ �𝑦𝑦𝑐𝑐𝑗𝑗 − 𝑦𝑦�𝑐𝑐𝑗𝑗�
2𝑛𝑛

𝑗𝑗=1

𝑛𝑛
 (7) 

𝑅𝑅𝑀𝑀𝑐𝑐 =
∑ �𝑦𝑦𝑐𝑐𝑗𝑗 − 𝑦𝑦�𝑐𝑐𝑗𝑗�𝑛𝑛
𝑗𝑗=1

𝑛𝑛
(8) 

where 𝑦𝑦𝑗𝑗 and 𝑦𝑦�𝑗𝑗 are the observed and predicted stem frequency associated with DBH class c = 

{6, 8 ,…, 50} in plot j, and 𝑛𝑛 is the total number of sample plots in the dominant tree species 

group (pine, spruce, or deciduous).  

We used a variant of the error index (Reynolds et al. 1988) to assess the predicted DBH 

distribution. The error index (EI, Eq. 9) measures the goodness of the DBH distribution model 

at the level of all sample plots. This means that systematic prediction errors will be retained in 

the EI values whereas randomly occurring over- and under predictions may cancel out. 

𝑅𝑅𝐸𝐸 = ��
∑ 𝑦𝑦𝑐𝑐𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
−
∑ 𝑦𝑦�𝑐𝑐𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
�

𝑘𝑘

𝑐𝑐=1

(9) 

where k is the number of DBH classes. 

3.2 Estimation of the study area DBH distribution 
3.2.1 Direct estimation of the DBH distribution 
Direct estimators only utilized the NFI sample for the estimation. The direct estimators were 

used as references in the comparison with MA estimators. The direct estimator for the mean 

stem frequency per forest land hectare (�̂�𝜇) within a given DBH class is  

�̂�𝜇 =  
∑ 𝑦𝑦𝑗𝑗𝐸𝐸𝑗𝑗𝑗𝑗∈𝑆𝑆

∑ 𝐸𝐸𝑗𝑗𝑗𝑗∈𝑆𝑆
(10) 



where 𝑦𝑦𝑗𝑗 is the observed stem frequency per hectare forest land at sample plot j belonging to 

sample S. The binary indicator variable 𝐸𝐸𝑗𝑗 is 1 for forested plots and 0 for non-forest plots, 

respectively. 

A variance estimator assuming simple random sampling (SRS) is frequently used in NFIs, 

because there is no design-unbiased variance estimator available for systematic sampling. In 

systematic sampling, the SRS estimator is under practical conditions basically always 

conservative and thus overestimates the variance (e.g., Magnussen et al. 2020).  

It is, however, possible to reduce the overestimation of the variance by applying local difference 

estimators instead of the SRS estimator (Magnussen et al. 2020, Räty et al. 2020, Heikkinen 

2006). The local difference estimator proposed by Grafström and Schelin (2014) was therefore 

used in this study (Räty et al. 2020). The Grafström-Schelin (GS) variance estimator utilizes 

the local differences of sample plots in a neighborhood 𝑅𝑅𝑗𝑗∗ which is a subset of sample 𝑅𝑅 and 

comprises plot j and its closest neighbors in the four cardinal directions. 

𝑉𝑉𝑎𝑎𝑉𝑉� 𝐺𝐺𝑆𝑆(�̂�𝜇) =
1

(∑ 𝐸𝐸𝑗𝑗𝑗𝑗∈𝑆𝑆 )2
�

𝑛𝑛𝑗𝑗∗

𝑛𝑛𝑗𝑗∗ − 1
𝑗𝑗∈𝑆𝑆

�𝑧𝑧𝑗𝑗 −
1
𝑛𝑛𝑗𝑗∗

� 𝑧𝑧𝑘𝑘
𝑘𝑘∈𝑆𝑆𝑗𝑗

∗

�

2

(11) 

where 𝑧𝑧𝑗𝑗 = 𝑦𝑦𝑗𝑗 − �̂�𝜇𝐸𝐸𝑗𝑗, and 𝑛𝑛𝑗𝑗∗ is the number of sample plots in neighborhood 𝑅𝑅𝑗𝑗∗. 

The standard error (SE) of the estimate is 

𝑅𝑅𝑅𝑅(�̂�𝜇) =  �𝑉𝑉𝑎𝑎𝑉𝑉� (�̂�𝜇) (12) 

Because of its status as a quasi-standard, we present the variance estimator assuming SRS in 

Appendix 1. 



3.2.2 Model-assisted estimation of the DBH distribution 
The MA estimator is used to include the predicted forest attributes in the estimation process. In 

case a good model exists, this can reduce the variance in comparison to the direct estimator and 

thus increase the efficiency of the estimator (Särndal et al. 1992). The MA estimator for mean 

stem frequency per forest land hectare associated with a DBH class is 

�̂�𝜇𝑀𝑀𝑀𝑀 =  µ�𝑆𝑆 + µ�𝑐𝑐𝑐𝑐𝑐𝑐 (13) 

where µ�𝑆𝑆 is the synthetic estimate of the mean stem frequency per unit forest land based on the 

aggregation of a wall-to-wall map and µ�𝑐𝑐𝑐𝑐𝑐𝑐 =
∑ 𝑒𝑒𝑗𝑗𝑗𝑗∈𝑆𝑆

∑ 𝐼𝐼𝑗𝑗𝑗𝑗∈𝑆𝑆
 is the correction factor with 𝑒𝑒𝑗𝑗 = 𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗 

as the model residual associated with plot j. The correction factor (�̂�𝜇𝑐𝑐𝑐𝑐𝑐𝑐) adjusts possible 

systematic errors caused by the models. The variance of �̂�𝜇𝑀𝑀𝑀𝑀 was estimated using the GS 

estimator (Eq. 11) with 

𝑧𝑧𝑗𝑗 = 𝑒𝑒𝑗𝑗 − �̅�𝑒 (14) 

in which �̅�𝑒 is the mean of residuals. 

3.2.3 Application of the MA estimator 
We used leave-one-out cross validated predictions 𝑦𝑦� in the MA estimation. The MA estimator 

was applied using the forest/non-forest information and tree species observed in the sample 

plots to study the theoretical benefit of using the DBH distribution models. However, this 

information is only known in the sample plots. A predicted tree species map that also contains 

a non-forest class (i.e. forest/non-forest information), is used in the operational mapping of stem 

frequency. The tree species map introduces further uncertainty in the estimation process. 

Therefore, we utilized the predicted tree species map (prediction for the sample plots) in order 

to study the MA estimation from the viewpoint of operational practices.  

The forest/non-forest information had an overall accuracy (OA) of 92% while the tree species 

predictions had an OA 74% and 90% at the plot-level and stand-level, respectively 



(Breidenbach et al. 2020b). An error associated with the forest/non-forest class of the map has 

the effect that a forested plot is treated as a non-forest plot (�𝑒𝑒𝑗𝑗� equals to the observed stem 

frequency) or vice versa (�𝑒𝑒𝑗𝑗� equals to the predicted stem frequency). An error in the tree 

species class of the map has the effect that a suboptimal model (NN models by dominant tree 

species) is used for the prediction of the DBH distribution.  

3.2.4 Evaluation of the estimators 
In order to compare the efficiency of the direct and MA estimators, we used the half width of 

95 % confidence intervals, correction factors (µ�𝑐𝑐𝑐𝑐𝑐𝑐), and the relative efficiency (RE) 

𝑅𝑅𝑅𝑅 =
𝑉𝑉𝑎𝑎𝑉𝑉� (�̂�𝜇)
𝑉𝑉𝑎𝑎𝑉𝑉� (�̂�𝜇𝑀𝑀𝑀𝑀)

. (15) 

RE values larger than 1.0 indicate that the MA estimator of variance results in a smaller variance 

value than the direct estimator of variance. Assuming SRS, 𝑅𝑅𝑅𝑅 × 𝑛𝑛 is the number of sample 

plots required to obtain the same variance as the MA estimate. For example, RE = 1.5 means 

that the direct estimator results in the same variance as the MA estimator given that the number 

of sample plots is increased by 50%.  

 

4 RESULTS 
4.1 Modeling of DBH distributions 
In this section, we consider the goodness of the predicted DBH distributions from the viewpoint 

of large-scale estimation. The predictor variables selected for PPM, GLM and NN, and the 

estimated model parameters associated with the PPM and GLM models are presented in 

Appendix 2 (Tables A2.1, A2.2 and A2.3).  

NN outperformed PPM and GLM in terms of the EI values associated with the predicted DBH 

distributions in the pine- and spruce-dominated plots (Table 3). GLM outperformed PPM 

regardless of the dominant tree species and, for the deciduous-dominated plots, the GLM also 



resulted in a slightly smaller EI value than NN. The mean of EI values over all tree species 

groups (weighted by the number of plots) were 184, 150, and 47 stems per hectare for PPM, 

GLM, and NN, respectively. GLM and PPM resulted in systematic errors in certain DBH 

classes whereas NN produced moderate MD values for all DBH classes (Figure 3). The smaller 

systematic error is the reason for the smaller EI values associated with NN compared to the 

other approaches. 

 

Table 3. Error index (EI) values associated with the predicted DBH distribution at the level of 

plots dominated by spruce, pine and deciduous tree species. 

 Spruce-dominated 

plots, EI (stems 

per hectare) 

 Pine-dominated plots, 

EI (stems per hectare) 

Deciduous-

dominated plots, EI 

(stems per hectare) 

PPM 170.9  197.5 193.8 

GLM 153.6  162.8 100.8 

NN 40.6  34.0 108.9 

 



 

Figure 3. A) Root mean squared error and B) mean difference associated with the predicted 

stem frequencies of the DBH classes (the subscript c refers to DBH class) in the spruce-

dominated plots (n = 905). PPM – parameter prediction method using linear mixed-effects 

models, GLM – parameter prediction using generalized linear models, NN – Nearest neighbor 

approach 

 



4.2 Estimation of the study area DBH distribution  

We used NN in the MA estimation of DBH distribution for the study area due to its better 

predictive performance, compared to PPM and GLM, especially with respect to systematic 

errors. The comparison of the DBH distribution models (section 4.1) was carried out with the 

modeling dataset that did not include multi-layered forests, plots with less than 5 trees, or split 

plots. Because the models presented in section 4.1 are suboptimal for the MA estimation of the 

study area DBH distributions, we trained new NN models for each dominant tree species using 

the estimation dataset. These NN models were used in the MA estimation of the study area 

DBH distribution. The evaluation of the NN models by DBH classes is presented in Figure 4. 

Figure 4A shows that the RMSE values were larger than in the comparison of modeling 

approaches (Figure 3A), which is to be expected when including plots representing more 

heterogenous conditions. The MD values (Figure 4B) were, however, still moderate as observed 

in section 4.1 (Figure 3B).  



Figure 4. Evaluation of the nearest neighbor models by dominant species used in the model-

assisted estimation of the study area DBH distribution. A) root mean squared error and B) mean 

difference by DBH classes (the subscript c refers to DBH class).  

 

The MA estimator was more efficient than the direct estimator in the majority of the DBH 

classes regardless of the width of DBH class (Figure 5). The estimates on the left tail of the 

DBH distribution profited more from the use of remotely sensed data than those at the right tail 

of the DBH distribution. Furthermore, the RE values were larger with 6 cm than 2 cm DBH 



classes and smaller than 1.00 in the DBH classes with a mid-point ≥ 40 cm. Uncertainties that 

propagated from the tree species map reduced the RE values associated with the DBH classes 

up to 10 %, but the RE values were nonetheless ≥ 0.95 for all DBH classes (Figure 5). The RE 

values associated with the MA estimation of the total stem frequency were 2.11, given the 

observed forest/non-forest and tree species information, and 1.66, given the predicted tree 

species map.  

 

Figure 5. Relative efficiency (RE) of the model-assisted estimator by DBH classes.  



The confidence intervals and correction factors associated with the study area DBH distribution 

are presented in Table 4. The non-zero correction factors mean that systematic errors existed 

both with the observed forest/non-forest information and tree species, and with the tree species 

map. As can be expected, the correction factors were generally larger when the tree species map 

was used instead of the observed information. The correction factor was also required (non-

zero) for the estimate of total stem frequency.  

Results associated with the SRS variance estimator, are given in Appendix 1. 

 

Table 4. Characteristics associated with the direct and model-assisted estimates of the DBH 

distribution at the level of the study area. Variances were estimated using the Graftström-

Schelin (GS) estimator. The model-assisted estimates were computed using the observed tree 

species and predicted tree species map (in parenthesis). Values in per-cent are given in relation 

to the direct estimate. 

DBH 
class 
(cm) * 

Direct 
estimate �̂�𝜇 
(stems per 
hectare) 

Half 
95% 
CIGS 
�̂�𝜇, % 

Half 95% 
CIGS �̂�𝜇𝑀𝑀𝑀𝑀, % 

Correction 
factor �̂�𝜇𝑐𝑐𝑐𝑐𝑐𝑐, % 

DBH 
class 
(cm) * 

Direct 
estimate �̂�𝜇 
(stems per 
hectare) 

Half 
95% 
CIGS �̂�𝜇, 
% 

Half 95% 
CIGS �̂�𝜇𝑀𝑀𝑀𝑀, % 

Correction factor 
�̂�𝜇𝑐𝑐𝑐𝑐𝑐𝑐, % 

6 206.74 2.57 2.20 (2.32) 3.16 (9.54) 30 12.41 4.46 4.11 (4.17) -2.46 (0.41) 
8 159.83 2.41 2.00 (2.10) 0.81 (6.63) 32 9.49 5.10 4.72 (4.73) -4.54 (-1.17) 
10 121.24 2.39 1.97 (2.05) -0.57 (4.32) 34 7.38 5.57 5.33 (5.37) -3.23 (0.71) 
12 92.04 2.46 2.08 (2.16) -1.88 (2.22) 36 5.52 6.28 6.12 (6.13) -5.79 (-0.83) 
14 71.97 2.46 2.09 (2.20) -1.03 (2.13) 38 4.20 7.22 7.10 (7.09) -0.11 (3.95) 
16 56.08 2.62 2.25 (2.34) -2.41 (0.29) 40 2.75 8.71 8.71 (8.74) -11.93 (-7.79) 
18 44.70 2.79 2.42 (2.50) -2.54 (-0.55) 42 2.17 9.83 9.85 (9.86) -0.16 (1.86) 
20 36.59 3.03 2.65 (2.71) -1.42 (0.09) 44 1.66 11.30 11.38 (11.29) 4.73 (7.11) 
22 29.95 3.21 2.84 (2.91) -2.20 (-0.50) 46 1.04 13.37 13.68 (13.69) -7.67 (-4.71) 
24 24.70 3.40 3.04 (3.10) -0.42 (1.35) 48 0.80 15.02 15.34 (15.33) 0.65 (5.11) 
26 19.38 3.86 3.46 (3.52) -4.16 (-1.59) 50 0.60 18.98 19.28 (19.20) 5.16 (8.12) 
28 15.78 4.12 3.71 (3.75) -1.18 (1.16) All 928.23 1.57 1.08 (1.21) 1.40 (4.23) 

* DBH class refers to the middle of DBH class. 

 



5 DISCUSSION 
We compared PPM, GLM and NN for the modeling of DBH distributions at the plot-level and 

selected the best approach for the MA estimation of the study area DBH distribution. While 

GLM outperformed PPM in the prediction of DBH distributions, GLMs have not achieved 

popularity in the prediction of DBH distributions in the ALS-based forest inventories so far. 

Breidenbach et al. (2008) predicted DBH distributions using GLMs and ALS data but they did 

not consider the clustered structure of the data. Because trees observed in one plot are not 

independent of each other, the standard errors obtained by Breidenbach et al. (2008) were 

therefore too small. This issue was resolved here by adding a plot-level random effect. 

The advantage of GLM is that it is a single-step approach and supersedes the estimation of 

Weibull parameters per plot required in PPM. In order to reasonably estimate the Weibull 

parameters at the plot level, numerous DBH recordings are required. In some cases, the lack of 

trees may be an issue with relatively small plot sizes (e.g. 250 m2) which are often used in the 

ALS-based forest inventories. The predictive performance of GLM may also be improved by 

additional smoothing terms resulting in a generalized additive model (Rigby and Stasinopoulos 

2005). In our preliminary analysis, smoothing terms did not, however, improve the predictive 

performance of the models. 

An alternative to the parametric approaches is NN which predicts DBH distributions without 

any assumptions regarding the shape of DBH distribution. We showed that NN clearly 

outperformed the parametric approaches, especially among the coniferous species which are of 

the most economic interest in Nordic timber production. Our findings are in line with Packalén 

and Maltamo (2008) who reported that NN outperformed PPM in the prediction of DBH 

distributions for managed boreal forest stands. They utilized predicted forest attributes as 

predictor variables in the parameter models and focused on the prediction of species-specific 

DBH distributions.   



In the selection of the modeling approach for DBH distributions, it is worth noting that the 

shapes of DBH distributions are affected by silvicultural activity (Rouvinen and Kuuluvainen 

2005). For example, Maltamo et al. (2018) studied homogeneous Eucalyptus urograndis 

plantations and observed only marginal differences in the predictive performances between NN 

and PPM. The advantage of the parametric approaches is that they can be applied with a smaller 

training dataset. The parametric approaches can also extrapolate outside training data which is 

not the case with NN. We observed that GLM outperformed NN in the modeling of DBH 

distributions for deciduous-dominated plots, which may be explained by the lack of 

comprehensive training data for the NN model. 

Because PPM and GLM produce relative DBH distributions, they also require a total stem 

frequency prediction from an additional model. In contrast, NN is based on the tree lists fetched 

from the nearest neighbors and can be used to predict DBH frequency distributions in a single 

step. This also means that several forest attributes, consistent with the DBH distribution, can be 

predicted based on the nearest neighbors. 

Wall-to-wall maps of predicted forest attributes, based on NFI and remotely sensed data, are 

publicly available, for example, in Sweden (Nilsson et al. 2017), Finland (Kangas et al. 2018), 

and Norway (Astrup et al. 2019). However, wall-to-wall forest attribute maps may include 

systematic errors which can propagate in the aggregation of model-based predictions (e.g. grid 

cells) for large-area estimates. In MA estimation, systematic errors associated with the predicted 

forest attribute maps are mitigated (e.g., McRoberts et al. 2020, Næsset et al. 2020, Breidenbach 

et al. 2020b). This is a crucial step as can be seen from the non-zero correction factors utilized 

in the MA estimator (Table 4).  

We estimated the study area DBH distribution using 2 cm and 6 cm bin widths. The RE values, 

and thus the efficiency gain achieved by the MA estimator, were larger when a bin width of 6 



cm was used instead of 2 cm bin width. A DBH distribution with a bin width of 6 cm or even 

more may be appropriate for many applications focusing on large areas whereas a smaller bin 

width is typically required, for example, in forest management inventories. The efficiency gain 

achieved by the MA estimator compared with the direct estimator will also increase if the 

accuracies associated with the tree species map and the implicit forest/non-forest information 

could be improved further.  

 

6 CONCLUSIONS 
The following conclusions can be drawn from this study: i) GLM outperformed PPM in the 

prediction of DBH distributions whereas NN outperformed the parametric GLM and PPM 

approaches; ii) The use of NN-based predictions in the model-assisted estimation of the study 

area DBH distribution generally resulted in higher precisions of estimates compared with direct 

estimation; iii) The efficiency associated with the model-assisted estimator was larger when the 

DBH distribution was characterized using a bin width of 6 cm instead of a bin width of 2 cm. 
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APPENDIX 1 154 

Variance estimator assuming simple random sampling 155 

The variance estimator assuming simple random sampling (SRS) for the ratio �̂�𝜇 (Cochran 1977, 156 

p. 153–154; Mandallaz 2008, p. 63) is 157 

𝑉𝑉𝑎𝑎𝑉𝑉� 𝑆𝑆𝑆𝑆𝑆𝑆(�̂�𝜇) =
1
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(𝐴𝐴1)
 158 

where 𝑧𝑧𝑗𝑗 = 𝑦𝑦𝑗𝑗 − �̂�𝜇𝐸𝐸𝑗𝑗 in which 𝑦𝑦𝑗𝑗 is the observed stem frequency per hectare forest land at sample 159 

plot j belonging to sample S, �̂�𝜇 is the direct estimator for the mean stem frequency per forest 160 

land hectare (see Section 3.2 in the main document), and 𝑛𝑛 is the number of sample plots. The 161 

binary indicator variable 𝐸𝐸𝑗𝑗 is 1 for forested plots and 0 for non-forest plots, respectively. 162 

 163 

The variance associated with the model-assisted estimator �̂�𝜇𝑀𝑀𝑀𝑀 was estimated using the SRS 164 

estimator (Eq. A1) with 165 

𝑧𝑧𝑗𝑗 = 𝑒𝑒𝑗𝑗 − �̅�𝑒 (𝐴𝐴2) 166 

where 𝑒𝑒𝑗𝑗 = 𝑦𝑦𝑗𝑗 − 𝑦𝑦�𝑗𝑗 is the residual associated with plot j and �̅�𝑒 is the mean of residuals. 167 

Table A1 shows the characteristics associated with the estimation of the DBH distribution at 168 

the level of study area using the SRS variance estimator. Figure A1 shows the RE values 169 

associated with the model-assisted estimation of the DBH distribution using the SRS variance 170 

estimator. For more methodological details, please refer to Section 3.2 in the main paper. 171 

 172 

 173 



Table A1. Characteristics of the direct and model-assisted estimates of the DBH distribution at 174 

the level of the study area. The variances were estimated using the simple random sampling 175 

(SRS) estimator. Model-assisted estimates were computed using the observed tree species and 176 

predicted tree species map (in parenthesis).  177 

DBH 
class 
(cm) * 

Direct 
estimate �̂�𝜇 
(stems per 
hectare) 

Half 
95% 
CISRS 
�̂�𝜇, % 

Half 95% 
CISRS �̂�𝜇𝑀𝑀𝑀𝑀, % 

Correction 
factor �̂�𝜇𝐶𝐶, % 

DBH 
class 
(cm) * 

Direct 
estimate �̂�𝜇 
(stems per 
hectare) 

Half 
95% 
CISRS 
�̂�𝜇, % 

Half 95% 
CISRS �̂�𝜇𝑀𝑀𝑀𝑀, 
% 

Correction factor 
�̂�𝜇𝐶𝐶, % 

6 206.74 2.60 2.23 (2.34) 3.16 (9.54) 30 12.41 4.53 4.15 (4.21) -2.46 (0.41) 

8 159.83 2.45 2.04 (2.13) 0.81 (6.63) 32 9.49 5.14 4.73 (4.74) -4.54 (-1.17) 

10 121.24 2.42 1.99 (2.07) -0.57 (4.32) 34 7.38 5.66 5.37 (5.41) -3.23 (0.71) 

12 92.04 2.46 2.09 (2.17) -1.88 (2.22) 36 5.52 6.34 6.12 (6.14) -5.79 (-0.83) 

14 71.97 2.51 2.13 (2.24) -1.03 (2.13) 38 4.20 7.26 7.12 (7.14) -0.11 (3.95) 

16 56.08 2.66 2.27 (2.36) -2.41 (0.29) 40 2.75 8.85 8.81 (8.86) -11.93 (-7.79) 

18 44.70 2.87 2.47 (2.54) -2.54 (-0.55) 42 2.17 9.80 9.77 (9.80) -0.16 (1.86) 

20 36.59 3.06 2.65 (2.71) -1.42 (0.09) 44 1.66 11.27 11.29 (11.25) 4.73 (7.11) 

22 29.95 3.26 2.84 (2.91) -2.20 (-0.50) 46 1.04 13.56 13.82 (13.84) -7.67 (-4.71) 

24 24.70 3.42 3.03 (3.09) -0.42 (1.35) 48 0.80 15.29 15.52 (15.51) 0.65 (5.11) 

26 19.38 3.90 3.48 (3.54) -4.16 (-1.59) 50 0.60 19.15 19.42 (19.36) 5.16 (8.12) 

28 15.78 4.14 3.72 (3.75) -1.18 (1.16) All 928.23 1.60 1.12 (1.24) 1.40 (4.23) 

 178 



 179 

Figure A1. Relative efficiency (RE) of the model-assisted estimator by DBH classes. The 180 

variances were estimated assuming simple random sampling.  181 
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APPENDIX 2 185 

 186 

Table A2.1. Predictor variables of DBH distribution models by dominant tree species and 187 

modeling approaches. PPM – parameter prediction method using linear mixed-effects models, 188 

GLM – parameter prediction using generalized linear models, NN – Nearest neighbor approach 189 

Dominant tree 

species  
NN 

PPM/GLM Weibull 

scale 
PPM/GLM Weibull shape 

Norway spruce hmeanfirst, h75all, 

h95all, prophfirst, 

hskewlast 

prophfirst, hskewfirst, h95all prophfirst, hskewfirst, hcvfirst 

Scots pine h25first, h75all, h95first, 

d2all, d6first, 

d4all, h90all, h50last hmeanall, hvarall, d6first 

Deciduous 

species 

h95all, d0first, d2all, 

d4first, hskewfirst 

igratioall, h50all, hvarfirst hvarfirst, d8first, h75first 

 190 



Table A2.2. Parameter estimates and their standard errors/confidence intervals (SE/CI) associated with the linear mixed-effects models (PPM) for 191 

Weibull scale and shape parameters. Please refer to Table 2 for the abbreviations of predictor variables. L – lower bound, U – upper bound 192 

 Spruce-dominated Pine-dominated Deciduous-dominated 

 scale shape  scale shape  scale shape 

 Est. SE Est. SE  Est. SE Est. SE  Est. SE Est. SE 

Intercept 18.30  1.72 2.12  0.74 Intercept 3.53 1.05 1.33 0.17 Intercept 5.74 0.91 1.94 0.16 

prophfirst -22.94  2.23 -2.13  0.66 d4all 6.12 2.52 - - igratioall 1.21 1.21 - - 

hskewfirst -4.16  0.52 -1.65  0.11 h90all 0.96 0.08 - - h50all 0.24 0.24 - - 

h95all 0.95  0.05 - - h50last -0.60 0.13 - - hvarfirst 0.20 0.20 0.26 0.01 

hcvfirst - - 2.04  0.40 hmeanall - - -0.30 0.05 d8first - - 3.69 1.10 

- - - - - hvarall - - 0.06 0.01 h75first - - -0.09 0.026 

- - - - - d6first - - 3.34 0.77 - - - - - 

 Est. 
95% CI 

[L, U] 
Est. 

95% 

CI 

[L, U] 

 Est. 
95% CI 

[L, U] 
Est. 

95% CI 

[L, U] 
 Est. 

95% 

CI [L, 

U] 

Est. 
95% CI 

[L, U] 

𝜎𝜎𝑏𝑏 *  1.13  
[0.73, 

1.74] 
0.08  

[0.02, 

0.42] 
𝜎𝜎𝑏𝑏 * 1.86 

[1.27, 

2.74] 
0.36 

[0.21, 

0.60] 
𝜎𝜎𝑏𝑏 * 1.46 

[0.70, 

3.06] 
0.17 

[0.02, 

1.53] 

𝜎𝜎 4.82 
[4.59, 

5.06] 
0.89 

[0.85, 

0.93] 
𝜎𝜎 6.08 

[5.76, 

6.41] 
1.43 

[1.36, 

1.51] 
𝜎𝜎 4.55 

[4.08, 

5.06] 
0.98 

[0.88, 

1.09] 

* Note: ALS project-area random effect  193 

 194 



Table A2.3. Parameter estimates and their standard errors/confidence intervals (SE/CI) associated with the generalized linear models (GLM) for 195 

Weibull scale and shape parameters. Note that the log link function was used in the modeling of the Weibull parameters. Please refer to Table 2 196 

for the abbreviations of predictor variables. L – lower bound, U – upper bound 197 

 Spruce-dominated Pine-dominated Deciduous-dominated 

 scale shape  scale shape  scale shape 

 Est. SE Est. SE  Est. SE Est. SE  Est. SE Est. SE 

Intercept 2.60  0.03 1.98  0.16 Intercept 2.17 0.02 0.32 0.17 Intercept 1.91 0.02 0.51 0.02 

prophfirst -1.01  0.03 -1.82  0.13 d4all 0.12 0.04 - - igratioall 0.05 0.01 - - 

hskewfirst -0.16  0.01 -0.56  0.02 h90all 0.05 <0.01 - - h50all 0.02 <0.01 - - 

h95all 0.06  <0.01 - - h50last -0.03 <0.01 - - hvarfirst 0.02 <0.01 <0.01 <0.01 

hcvfirst - - 0.04  0.09 hmeanall - - -0.06 <0.01 d8first - - 1.46 0.12 

- - - - - hvarall - - 0.01 <0.01 h75first - - -0.02 <0.01 

- - - - - d6first - - 1.26 0.08 - - - - - 

 Est. 95% CI 

[L, U] 

Est. 95% CI 

[L, U] 

 Est. 95% CI 

[L, U] 

Est. 95% CI 

[L, U] 

 Est. 95% CI 

[L, U] 

Est. 95% CI 

[L, U] 

𝜎𝜎𝑏𝑏  
0.19  

[0.18, 

0.20] 
0.20  

[0.19, 

0.22] 
𝜎𝜎𝑏𝑏  0.22 

[0.21, 

0.23] 
0.31 

[0.30, 

0.33] 
𝜎𝜎𝑏𝑏  0.23 

[0.21, 

0.26] 
* * 

* Note: plot-level random effect was not used for the shape parameter due to numerical instability198 
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